Skip to content
2000
Volume 32, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

COVID-19 has emerged as the most significant global health issue of our time. The causative agent, SARS-CoV-2, causes extensive damage to the lower respiratory tract in susceptible populations, leading to lung damage and death. COVID-19-infected patients are also prone to respiratory pathogens such as , , , and In some cases, these respiratory pathogens are multidrug-resistant and cause life-threatening infections in patients. Since the existing antibiotics are ineffective against these antibiotic-resistant bacteria, urgent attention is required to develop new and effective therapeutic agents to combat antimicrobial-resistant bacteria. Alternatively, novel therapeutic strategies can be explored to enhance the antimicrobial effects of the existing antimicrobial agents, such as antibiotics. Adding natural compounds with existing antimicrobial agents to increase their antimicrobial activity is one of the most suitable and promising options to combat the rising threat of both COVID-19 and antimicrobial resistance. Natural compounds are generally considered safe and may even reduce the side effects of drugs and medicines. In light of such advantages, the current review summarized some of the studies that have combined natural compounds with antibiotics and antiviral to increase the antimicrobial potential of these drugs. This study can help researchers compare and understand already existing data to design new studies to develop antimicrobial agents against COVID-19.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673294083240520044158
2025-05-23
2025-10-22
Loading full text...

Full text loading...

References

  1. DhamaK. SharunK. TiwariR. DadarM. MalikY.S. SinghK.P. ChaicumpaW. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics.Hum. Vaccin. Immunother.20201661232123810.1080/21645515.2020.173522732186952
    [Google Scholar]
  2. MalikY.S. SircarS. BhatS. SharunK. DhamaK. DadarM. TiwariR. ChaicumpaW. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments.Vet. Q.2020401687610.1080/01652176.2020.172799332036774
    [Google Scholar]
  3. AsraniP. EapenM.S. HassanM.I. SohalS.S. Implications of the second wave of COVID-19 in India.Lancet Respir. Med.202199e93e9410.1016/S2213‑2600(21)00312‑X34216547
    [Google Scholar]
  4. ReboldN. HolgerD. AlosaimyS. MorrisetteT. RybakM. COVID-19: before the fall, an evidence-based narrative review of treatment options.Infect. Dis. Ther.20211019311310.1007/s40121‑021‑00399‑633495967
    [Google Scholar]
  5. ElekhnawyE. KamarA.A. SonbolF. Present and future treatment strategies for coronavirus disease 2019.Future J. Pharm. Sci.2021718410.1186/s43094‑021‑00238‑y33850936
    [Google Scholar]
  6. XuX. ChenP. WangJ. FengJ. ZhouH. LiX. ZhongW. HaoP. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission.Sci. China Life Sci.202063345746010.1007/s11427‑020‑1637‑532009228
    [Google Scholar]
  7. SulaimanI. ChungM. AngelL. TsayJ.C.J. WuB.G. YeungS.T. KrolikowskiK. LiY. DuerrR. SchlugerR. ThannickalS.A. KoideA. RafeqS. BarnettC. PostelnicuR. WangC. BanakisS. Pérez-PérezL. ShenG. JourG. MeynP. CarpenitoJ. LiuX. JiK. CollazoD. LabarbieraA. AmorosoN. BrosnahanS. MukherjeeV. KaufmanD. BakkerJ. LubinskyA. PradhanD. StermanD.H. WeidenM. HeguyA. EvansL. UyekiT.M. ClementeJ.C. de WitE. SchmidtA.M. ShopsinB. DesvignesL. WangC. LiH. ZhangB. ForstC.V. KoideS. StaplefordK.A. KhannaK.M. GhedinE. SegalL.N. Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome.Nat. Microbiol.20216101245125810.1038/s41564‑021‑00961‑534465900
    [Google Scholar]
  8. LiX. WangL. YanS. YangF. XiangL. ZhuJ. ShenB. GongZ. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China.Int. J. Infect. Dis.20209412813210.1016/j.ijid.2020.03.05332251805
    [Google Scholar]
  9. DicksonR.P. SchultzM.J. van der PollT. SchoutenL.R. FalkowskiN.R. LuthJ.E. SjodingM.W. BrownC.A. ChanderrajR. HuffnagleG.B. BosL.D.J. de BeerF.M. BosL.D. ClaushuisT.A. GlasG.J. HornJ. HoogendijkA.J. van HooijdonkR.T. HusonM.A. de JongM.D. JuffermansN.P. LagrandW.A. van der PollT. SciclunaB. SchoutenL.R. SchultzM.J. van der SluijsK.F. StraatM. van VughtL.A. WieskeL. WiewelM.A. WitteveenE. Biomarker Analysis in Septic ICU Patients (BASIC) Consortium Lung microbiota predict clinical outcomes in critically ill patients.Am. J. Respir. Crit. Care Med.2020201555556310.1164/rccm.201907‑1487OC31973575
    [Google Scholar]
  10. MurrayA.K. The novel coronavirus COVID-19 outbreak: global implications for antimicrobial resistance.Front. Microbiol.202011102010.3389/fmicb.2020.0102032574253
    [Google Scholar]
  11. LangfordB.J. SoM. RaybardhanS. LeungV. WestwoodD. MacFaddenD.R. SoucyJ.P.R. DanemanN. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis.Clin. Microbiol. Infect.202026121622162910.1016/j.cmi.2020.07.01632711058
    [Google Scholar]
  12. KariyawasamR.M. JulienD.A. JelinskiD.C. LaroseS.L. Rennert-MayE. ConlyJ.M. DingleT.C. ChenJ.Z. TyrrellG.J. RonksleyP.E. BarkemaH.W. Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019–June 2021).Antimicrob. Resist. Infect. Control20221114510.1186/s13756‑022‑01085‑z35255988
    [Google Scholar]
  13. PhamS.N. HoriT.M. ShafiqA. Pharmacist-led antimicrobial stewardship and antibiotic use in hospitalized patients with COVID-19.Fed. Pract.2023406178181a10.12788/fp.038037860070
    [Google Scholar]
  14. HuttnerB.D. CathoG. Pano-PardoJ.R. PulciniC. SchoutenJ. COVID-19: don’t neglect antimicrobial stewardship principles!Clin. Microbiol. Infect.202026780881010.1016/j.cmi.2020.04.02432360446
    [Google Scholar]
  15. FeldmanC. AndersonR. The role of co-infections and secondary infections in patients with COVID-19.Pneumonia2021131510.1186/s41479‑021‑00083‑w33894790
    [Google Scholar]
  16. MaesM. HigginsonE. Pereira-DiasJ. CurranM.D. ParmarS. KhokharF. Cuchet-LourençoD. LuxJ. Sharma-HajelaS. RavenhillB. Ventilator-associated pneumonia in critically ill patients with COVID-19.Crit. Care (Fullerton)202125111
    [Google Scholar]
  17. OsmanH. NguyenP. First case of COVID-19 complicated with B. cepacia pneumonia and bacteremia.Chest20201584A54410.1016/j.chest.2020.08.514
    [Google Scholar]
  18. Garcia-VidalC. SanjuanG. Moreno-GarcíaE. Puerta-AlcaldeP. Garcia-PoutonN. ChumbitaM. Fernandez-PittolM. PitartC. InciarteA. BodroM. MorataL. AmbrosioniJ. GrafiaI. MeiraF. MacayaI. CardozoC. CasalsC. TellezA. CastroP. MarcoF. GarcíaF. MensaJ. MartínezJ.A. SorianoA. RicoV. Hernández-MenesesM. AgüeroD. TorresB. GonzálezA. de la MoraL. RojasJ. LinaresL. FidalgoB. RodriguezN. NicolasD. AlbiachL. MuñozJ. AlmuedoA. CamprubíD. Angeles MarcosM. CamprubíD. CillonizC. FernándezS. NicolasJ.M. TorresA. COVID-19 Researchers Group Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study.Clin. Microbiol. Infect.2021271838810.1016/j.cmi.2020.07.04132745596
    [Google Scholar]
  19. HughesS. TroiseO. DonaldsonH. MughalN. MooreL.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting.Clin. Microbiol. Infect.202026101395139910.1016/j.cmi.2020.06.02532603803
    [Google Scholar]
  20. AdebisiY.A. AlaranA.J. OkerekeM. OkeG.I. AmosO.A. OlaoyeO.C. OladunjoyeI. OlanrewajuA.Y. UkorN.A. Lucero-PrisnoD.E.III COVID-19 and antimicrobial resistance: a review.Infect. Dis. (Auckl.)202114p. 1178633721103387010.1177/1178633721103387034376994
    [Google Scholar]
  21. ChristakiE. MarcouM. TofaridesA. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence.J. Mol. Evol.2020881264010.1007/s00239‑019‑09914‑331659373
    [Google Scholar]
  22. GiedraitienėA. VitkauskienėA. NaginienėR. PavilonisA. Antibiotic resistance mechanisms of clinically important bacteria.Medicina (Kaunas)20114731910.3390/medicina4703001921822035
    [Google Scholar]
  23. RazonableR.R. Antiviral drugs for viruses other than human immunodeficiency virus.Mayo Clin Proc201186101009102610.4065/mcp.2011.0309
    [Google Scholar]
  24. DasK. Antivirals targeting influenza A virus.J. Med. Chem.201255146263627710.1021/jm300455c22612288
    [Google Scholar]
  25. Influenza antiviral drug resistance.Available from: https://www.cdc.gov/flu/treatment/antiviralresistance.htm
  26. WangY. ZhangD. DuG. DuR. ZhaoJ. JinY. FuS. GaoL. ChengZ. LuQ. HuY. LuoG. WangK. LuY. LiH. WangS. RuanS. YangC. MeiC. WangY. DingD. WuF. TangX. YeX. YeY. LiuB. YangJ. YinW. WangA. FanG. ZhouF. LiuZ. GuX. XuJ. ShangL. ZhangY. CaoL. GuoT. WanY. QinH. JiangY. JakiT. HaydenF.G. HorbyP.W. CaoB. WangC. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial.Lancet2020395102361569157810.1016/S0140‑6736(20)31022‑932423584
    [Google Scholar]
  27. WuZ. HanZ. LiuB. ShenN. Remdesivir in treating hospitalized patients with COVID-19: A renewed review of clinical trials.Front. Pharmacol.20221397189010.3389/fphar.2022.97189036160434
    [Google Scholar]
  28. BeigelJ.H. TomashekK.M. DoddL.E. MehtaA.K. ZingmanB.S. KalilA.C. HohmannE. ChuH.Y. LuetkemeyerA. KlineS. de CastillaL.D. FinbergR.W. DierbergK. TapsonV. HsiehL. PattersonT.F. ParedesR. SweeneyD.A. ShortW.R. TouloumiG. LyeD.C. OhmagariN. OhM. PalaciosR.G.M. BenfieldT. FätkenheuerG. KortepeterM.G. AtmarR.L. CreechC.B. LundgrenJ. BabikerA.G. PettS. NeatonJ.D. BurgessT.H. BonnettT. GreenM. MakowskiM. OsinusiA. NayakS. LaneH.C. Remdesivir for the treatment of COVID-19-preliminary report.N. Engl. J. Med.2020383191813182610.1056/NEJMoa200776432445440
    [Google Scholar]
  29. SzemielA.M. MeritsA. OrtonR.J. MacLeanO.A. PintoR.M. WickenhagenA. LieberG. TurnbullM.L. WangS. FurnonW. SuarezN.M. MairD. da Silva FilipeA. WillettB.J. WilsonS.J. PatelA.H. ThomsonE.C. PalmariniM. KohlA. StewartM.E. In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2.PLoS Pathog.2021179e100992910.1371/journal.ppat.100992934534263
    [Google Scholar]
  30. HarakehS. KhanI. AlmasaudiS.B. AzharE.I. Al- JaouniS. NiedzweickiA. Role of nutrients and phyto- compounds in the modulation of antimicrobial resistance.Curr. Drug Metab.201718985886728721833
    [Google Scholar]
  31. HartmannM.S. MousaviS. BereswillS. HeimesaatM.M. Vitamin E as promising adjunct treatment option in the combat of infectious diseases caused by bacterial including multi-drug resistant pathogens – Results from a comprehensive literature survey.Eur. J. Microbiol. Immunol.202010419320110.1556/1886.2020.0002033151163
    [Google Scholar]
  32. NaguibM.M. ValvanoM.A. Vitamin E increases antimicrobial sensitivity by inhibiting bacterial lipocalin antibiotic binding.MSphere201836e00564-1810.1128/mSphere.00564‑1830541778
    [Google Scholar]
  33. KhamenehB. Fazly BazzazB.S. AmaniA. RostamiJ. MashhadianV.N. Combination of anti-tuberculosis drugs with vitamin C or NAC against different S. aureus and M. tuberculosis strains.Microb. Pathog.201693838710.1016/j.micpath.2015.11.00626602814
    [Google Scholar]
  34. VilchèzeC. KimJ. Jacobs JrW.R. Vitamin C potentiates the killing of M. tuberculosis by the first-line tuberculosis drugs isoniazid and rifampin in mice.Antimicrob. Agents Chemother.2018623e02165-1710.1128/AAC.02165‑1729298757
    [Google Scholar]
  35. ShahzadS. AshrafM.A. SajidM. ShahzadA. RafiqueA. MahmoodM.S. Evaluation of synergistic antimicrobial effect of vitamins (A, B1, B2, B6, B12, C, D, E and K) with antibiotics against resistant bacterial strains.J. Glob. Antimicrob. Resist.20181323123610.1016/j.jgar.2018.01.00529408383
    [Google Scholar]
  36. YeQ. ChenW. HuangH. TangY. WangW. MengF. WangH. ZhengY. Iron and zinc ions, potent weapons against multidrug-resistant bacteria.Appl. Microbiol. Biotechnol.2020104125213522710.1007/s00253‑020‑10600‑432303820
    [Google Scholar]
  37. SharmaN. JandaikS. KumarS. ChitkaraM. SandhuI.S. Synthesis, characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles.J. Exp. Nanosci.2016111547110.1080/17458080.2015.1025302
    [Google Scholar]
  38. FadwaA.O. AlkoblanD.K. MateenA. AlbaragA.M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains.Saudi J. Biol. Sci.202128192893510.1016/j.sjbs.2020.09.06433424384
    [Google Scholar]
  39. IsbaniahF. WiyonoW.H. YunusF. SetiawatiA. TotzkeU. VerbruggenM.A. Echinacea purpurea along with zinc, selenium and vitamin C to alleviate exacerbations of chronic obstructive pulmonary disease: Results from a randomized controlled trial.J. Clin. Pharm. Ther.201136556857610.1111/j.1365‑2710.2010.01212.x21062330
    [Google Scholar]
  40. GhoshT. SrivastavaS.K. GauravA. KumarA. KumarP. YadavA.S. PathaniaR. NavaniN.K. A combination of linalool, vitamin C, and copper synergistically triggers reactive oxygen species and DNA damage and inhibits Salmonella enterica subsp. enterica Serovar Typhi and Vibrio fluvialis. Appl. Environ. Microbiol.2019854e02487-1810.1128/AEM.02487‑1830552187
    [Google Scholar]
  41. DasU.N. Essential fatty acids: biochemistry, physiology and pathology.Biotechnol. J.20061442043910.1002/biot.20060001216892270
    [Google Scholar]
  42. KaurN. ChughV. GuptaA.K. Essential fatty acids as functional components of foods- A review.J. Food Sci. Technol.201451102289230310.1007/s13197‑012‑0677‑025328170
    [Google Scholar]
  43. Mil-HomensD. BernardesN. FialhoA.M. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen B. cenocepacia.FEMS Microbiol. Lett.20123281616910.1111/j.1574‑6968.2011.02476.x22150831
    [Google Scholar]
  44. EijkelkampB.A. BeggS.L. PederickV.G. TrapettiC. GregoryM.K. WhittallJ.J. PatonJ.C. McDevittC.A. Arachidonic acid stress impacts pneumococcal fatty acid homeostasis.Front. Microbiol.2018981310.3389/fmicb.2018.0081329867785
    [Google Scholar]
  45. WarraichA.A. MohammedA.U.R. GibsonH. HussainM. RahmanA.S. Acidic amino acids as counterions of ciprofloxacin: Effect on growth and pigment production in S. aureus NCTC 8325 and Pseudomonas aeruginosa PAO1.PLoS One2021164e025070510.1371/journal.pone.025070533914790
    [Google Scholar]
  46. BarmanS. MukherjeeS. GhoshS. HaldarJ. Amino-acid-conjugated polymer-rifampicin combination: Effective at tackling drug-resistant Gram-negative clinical isolates.ACS Appl. Bio Mater.20192125404541410.1021/acsabm.9b0073235021539
    [Google Scholar]
  47. LamH. OhD.C. CavaF. TakacsC.N. ClardyJ. de PedroM.A. WaldorM.K. D-amino acids govern stationary phase cell wall remodeling in bacteria.Science200932559471552155510.1126/science.117812319762646
    [Google Scholar]
  48. WangQ. LvY. PangJ. LiX. LuX. WangX. HuX. NieT. YangX. XiongY.Q. JiangJ. LiC. YouX. In vitro and in vivo activity of d-serine in combination with β-lactam antibiotics against methicillin-resistant S. aureus Acta Pharm. Sin. B20199349650410.1016/j.apsb.2019.01.01731193801
    [Google Scholar]
  49. SinghP. KumarD. PalS. KumariK. BahadurI. L-amino-acids as immunity booster against COVID-19: DFT, molecular docking and MD simulations.J. Mol. Struct.2022125013192410.1016/j.molstruc.2021.13192434803185
    [Google Scholar]
  50. AngL. LeeH.W. KimA. LeeM.S. Herbal medicine for the management of COVID-19 during the medical observation period: A review of guidelines.Integr. Med. Res.20209310046510.1016/j.imr.2020.10046532691000
    [Google Scholar]
  51. DemekeC.A. WoldeyohaninsA.E. KifleZ.D. Herbal medicine use for the management of COVID-19: A review article.Metab. Open20211210014110.1016/j.metop.2021.10014134693242
    [Google Scholar]
  52. LauT.F. LeungP.C. WongE.L.Y. FongC. ChengK.F. ZhangS.C. LamC.W.K. WongV. ChoyK.M. KoW.M. Using herbal medicine as a means of prevention experience during the SARS crisis.Am. J. Chin. Med.200533334535610.1142/S0192415X0500296516047553
    [Google Scholar]
  53. MehtaP. ShahR. LohidasanS. MahadikK.R. Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants-A comprehensive review.J. Tradit. Complement. Med.20155420722710.1016/j.jtcme.2014.11.04126587392
    [Google Scholar]
  54. YarnellE. Herbs for viral respiratory infections.Altern. Complement. Ther.2018241354310.1089/act.2017.29150.eya
    [Google Scholar]
  55. LiangS-B. FangM. LiangC-H. LanH-D. ShenC. YanL-J. HuX-Y. HanM. RobinsonN. LiuJ-P. Therapeutic effects and safety of oral Chinese patent medicine for COVID-19: A rapid systematic review and meta-analysis of randomized controlled trials.Complement. Therap. Med.202160102744
    [Google Scholar]
  56. XiaL. ShiY. SuJ. FriedemannT. TaoZ. LuY. LingY. LvY. ZhaoR. GengZ. CuiX. LuH. SchröderS. Shufeng Jiedu, a promising herbal therapy for moderate COVID-19: Antiviral and anti-inflammatory properties, pathways of bioactive compounds, and a clinical real-world pragmatic study.Phytomedicine20218515339010.1016/j.phymed.2020.15339033158717
    [Google Scholar]
  57. CaiY. ZhangQ. FuY. LiL. ZhaoN. LuA. LiuQ. JiangM. Effectiveness of Chinese herbal medicine combined with antibiotics for extensively drug-resistant enterobacteria and nonfermentative bacteria infection: Real-life experience in a retrospective cohort.Biomed Res Int20172017289704510.1155/2017/2897045
    [Google Scholar]
  58. NatarajanH. CrowleyA.R. ButlerS.E. XuS. WeinerJ.A. BlochE.M. LittlefieldK. Wieland-AlterW. ConnorR.I. WrightP.F. BennerS.E. BonnyT.S. LaeyendeckerO. SullivanD. ShohamS. QuinnT.C. LarmanH.B. CasadevallA. PekoszA. ReddA.D. TobianA.A.R. AckermanM.E. Markers of polyfunctional SARs-COV-2 antibodies in convalescent plasma.MBio2021122e00765-2110.1128/mBio.00765‑2133879585
    [Google Scholar]
  59. XiaoM. TianJ. ZhouY. XuX. MinX. LvY. PengM. ZhangY. YanD. LangS. ZhangQ. FanA. KeJ. LiX. LiuB. JiangM. LiuQ. ZhuJ. YangL. ZhuZ. ZengK. LiC. ZhengY. WuH. LinJ. LianF. LiX. TongX. Efficacy of Huoxiang Zhengqi dropping pills and Lianhua Qingwen granules in treatment of COVID-19: A randomized controlled trial.Pharmacol. Res.202016110512610.1016/j.phrs.2020.10512632781283
    [Google Scholar]
  60. SmithD.J. BiH. HammanJ. MaX. MitchellC. NyirendaK. Monera-PendukaT. Oketch-RabahH. PaineM.F. PettitS. PheifferW. Van BreemenR.B. EmbryM. Potential pharmacokinetic interactions with concurrent use of herbal medicines and a ritonavir-boosted COVID-19 protease inhibitor in low and middle-income countries.Front. Pharmacol.202314121057910.3389/fphar.2023.121057937502215
    [Google Scholar]
  61. ZhangH. TsaoR. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr. Opin. Food Sci.20168334210.1016/j.cofs.2016.02.002
    [Google Scholar]
  62. El-MissiryM.A. FekriA. KesarL.A. OthmanA.I. Polyphenols are potential nutritional adjuvants for targeting COVID -19.Phytother. Res.20213562879288910.1002/ptr.699233354848
    [Google Scholar]
  63. LaskibarM.I. TrepianaJ. MacarullaM.T. ZoritaG.S. GarcíaA.L. QuintelaF.A. PortilloM.P. Potential usefulness of Mediterranean diet polyphenols against COVID-19-induced inflammation: A review of the current knowledge.J. Physiol. Biochem.202379237138210.1007/s13105‑022‑00926‑036346507
    [Google Scholar]
  64. de LigtM. HesselinkM.K.C. JorgensenJ. HoebersN. BlaakE.E. GoossensG.H. Resveratrol supplementation reduces ACE2 expression in human adipose tissue.Adipocyte202110140841110.1080/21623945.2021.196531534402717
    [Google Scholar]
  65. McCrearyM.R. SchnellP.M. RhodaD.A. Randomized double-blind placebo-controlled proof-of-concept trial of resveratrol for outpatient treatment of mild coronavirus disease (COVID-19).Sci. Rep.20221211097810.1038/s41598‑022‑13920‑935768453
    [Google Scholar]
  66. GhoshR. ChakrabortyA. BiswasA. ChowdhuriS. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study.J. Biomol. Struct. Dyn.202139124362437410.1080/07391102.2020.177981832568613
    [Google Scholar]
  67. JangM. ParkY.-I. ChaY.-E. ParkR. NamkoongS. LeeJ.I. ParkJ. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med202020205630838
    [Google Scholar]
  68. RakshitM. MuduliS. SrivastavP.P. MishraS. Pomegranate peel polyphenols prophylaxis against SARS-CoV-2 main protease by in silico docking and molecular dynamics study.J. Biomol. Struct. Dyn.20224023129171293110.1080/07391102.2021.197942734569409
    [Google Scholar]
  69. HassaniazadM. EftekharE. InchehsablaghB.R. KamaliH. TousiA. JaafariM.R. RafatM. FathalipourM. SahlabadiN.S. GouklaniH. AlizadeH. NikpoorA.R. A triple-blind, placebo-controlled, randomized clinical trial to evaluate the effect of curcumin-containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID -19 patients.Phytother. Res.202135116417642710.1002/ptr.729434541720
    [Google Scholar]
  70. BorbaR.S. WilsonM.B. SpivakM. Hidden benefits of honeybee propolis in hives.Beekeeping - From Science to PracticeSpringer International Publishing20171738
    [Google Scholar]
  71. Simone-FinstromM. BorbaR. WilsonM. SpivakM. Propolis counteracts some threats to honey bee health.Insects2017824610.3390/insects802004628468244
    [Google Scholar]
  72. BarsolaB. SaklaniS. KumariP. SidhuA.K. DharA. Role and the importance of green approach in biosynthesis of nanopropolis and effectiveness of propolis in the treatment of COVID-19 pandemic.Green Process Synth.20231212022810610.1515/gps‑2022‑8106
    [Google Scholar]
  73. OżarowskiM. KarpińskiT.M. The effects of propolis on viral respiratory diseases.Molecules202328135910.3390/molecules2801035936615554
    [Google Scholar]
  74. AL-AniI. ZimmermannS. ReichlingJ. WinkM. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics.Medicines201851210.3390/medicines501000229301368
    [Google Scholar]
  75. DilokthornsakulW. KosiyapornR. WuttipongwaragonR. DilokthornsakulP. Potential effects of propolis and honey in COVID-19 prevention and treatment: A systematic review of in silico and clinical studies.J. Integr. Med.202220211412510.1016/j.joim.2022.01.00835144898
    [Google Scholar]
  76. SilveiraM.A.D. De JongD. BerrettaA.A. GalvãoE.B.S. RibeiroJ.C. SilvaC.T. AmorimT.C. ConceiçãoL.F.M.R. GomesM.M.D. TeixeiraM.B. SouzaS.P. SantosM.H.C.A. San MartinR.L.A. SilvaM.O. LírioM. MorenoL. SampaioJ.C.M. MendonçaR. UltchakS.S. AmorimF.S. RamosJ.G.R. BatistaP.B.P. GuardaS.N.F. MendesA.V.A. PassosR.H. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial.Biomed. Pharmacother.202113811152610.1016/j.biopha.2021.11152634311528
    [Google Scholar]
  77. GaldieroS. FalangaA. VitielloM. CantisaniM. MarraV. GaldieroM. Silver nanoparticles as potential antiviral agents.Molecules201116108894891810.3390/molecules1610889422024958
    [Google Scholar]
  78. SilvaL.P. SilveiraA.P. BonattoC.C. ReisI.G. MilreuP.V. Silver nanoparticles as antimicrobial agents: Past, present, and future.Nanostructures for antimicrobial therapyElsevier201757759610.1016/B978‑0‑323‑46152‑8.00026‑3
    [Google Scholar]
  79. HosseinyM. KoorakiS. GholamrezanezhadA. ReddyS. MyersL. Radiology perspective of coronavirus disease 2019 (COVID-19): Lessons from severe acute respiratory syndrome and middle east respiratory syndrome.AJR Am. J. Roentgenol.202021451078108210.2214/AJR.20.2296932108495
    [Google Scholar]
  80. HanJ. ChenL. DuanS-M. YangQ-X. YangM. GaoC. ZhangB-Y. HeH. DongX.P. Efficient and quick inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts.Biomed. Environ. Sci.200518317618016131020
    [Google Scholar]
  81. JeremiahS.S. MiyakawaK. MoritaT. YamaokaY. RyoA. Potent antiviral effect of silver nanoparticles on SARS-CoV-2.Biochem. Biophys. Res. Commun.2020533119520010.1016/j.bbrc.2020.09.01832958250
    [Google Scholar]
  82. DomínguezV.A. AlgabaA.R. CanturriM.A. VillodresR.Á. SmaniY. Antibacterial activity of colloidal silver against gram-negative and gram-positive bacteria.Antibiotics2020913610.3390/antibiotics901003631963769
    [Google Scholar]
  83. GaikwadS. IngleA. GadeA. RaiM. FalangaA. IncoronatoN. RussoL. GaldieroS. GaldieroM. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3.Int. J. Nanomedicine201384303431424235828
    [Google Scholar]
  84. MorrisD. AnsarM. SpeshockJ. IvanciucT. QuY. CasolaA. GarofaloR. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection.Viruses201911873210.3390/v1108073231398832
    [Google Scholar]
  85. ReyesA.H. MorenoS. LópezP.I. VeraA.M. RomeroP.L. BorregoB. EscamillaR.A. ManzoV.D. BrunA. PestryakovA. BogdanchikovaN. Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: In vitro and in vivo. PLoS One2021168e025640110.1371/journal.pone.025640134411199
    [Google Scholar]
  86. TangJ. FengY. TsaoS. WangN. CurtainR. WangY. Berberine and Coptidis Rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations.J. Ethnopharmacol.2009126151710.1016/j.jep.2009.08.00919686830
    [Google Scholar]
  87. AiX. YuP. PengL. LuoL. LiuJ. LiS. LaiX. LuanF. MengX. Berberine: A review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases.Front. Pharmacol.20211276265410.3389/fphar.2021.76265435370628
    [Google Scholar]
  88. ChuM. ZhangM. LiuY. KangJ. ChuZ. YinK. DingL. DingR. XiaoR. YinY. LiuX. WangY. Role of berberine in the treatment of methicillin-resistant S. aureus infections.Sci. Rep.2016612474810.1038/srep2474827103062
    [Google Scholar]
  89. AhmedN. MahmoodM.S. UllahM.A. ArafY. RahamanT.I. MoinA.T. HosenM.J. COVID-19-associated candidiasis: Possible patho-mechanism, predisposing factors, and prevention strategies.Curr. Microbiol.202279512710.1007/s00284‑022‑02824‑635287179
    [Google Scholar]
  90. HanY. LeeJ.H. Berberine synergy with amphotericin B against disseminated candidiasis in mice.Biol. Pharm. Bull.200528354154410.1248/bpb.28.54115744087
    [Google Scholar]
  91. MusumeciR. SpecialeA. CostanzoR. AnninoA. RagusaS. RapisardaA. PappalardoM.S. IaukL. Berberis aetnensis C. Presl. extracts: Antimicrobial properties and interaction with ciprofloxacin.Int. J. Antimicrob. Agents2003221485310.1016/S0924‑8579(03)00085‑212842327
    [Google Scholar]
  92. BabalghithA.O. kuraishyA.H.M. GareebA.A.I. De WaardM. HamashA.S.M. MarcJ.S. NegmW.A. BatihaG.E.S. The role of berberine in COVID-19: Potential adjunct therapy.Inflammopharmacology20223062003201610.1007/s10787‑022‑01080‑136183284
    [Google Scholar]
  93. RuheeR.T. RobertsL.A. MaS. SuzukiK. Organosulfur compounds: A review of their anti-inflammatory effects in human health.Front. Nutr.202076410.3389/fnut.2020.0006432582751
    [Google Scholar]
  94. WalagA.M.P. AhmedO. JeevanandamJ. AkramM. EmmanuelE.B.C. EgbunaC. SemwalP. IqbalM. HassanS. UbaJ.O. Health benefits of organosulfur compounds.Functional Foods and Nutraceuticals EgbunaC. DableT.G. SpringerCham2020
    [Google Scholar]
  95. MösbauerK. FritschV.N. AdrianL. BernhardtJ. GruhlkeM.C.H. SlusarenkoA.J. NiemeyerD. AntelmannH. The effect of allicin on the proteome of SARS- CoV-2 infected Calu-3 Cells.Front. Microbiol.20211274679510.3389/fmicb.2021.74679534777295
    [Google Scholar]
  96. YaghoubianH. NiktaleH. YazdiA.P. GhoraniV. RashedM.M. HashemianA.M. Evaluate the therapeutic effect of allicin (L-cysteine) on clinical presentation and prognosis in patients with COVID-19.Eur. J. Transl. Myol.20213123110.4081/ejtm.2021.951834148335
    [Google Scholar]
  97. MazarakisN. HigginsR.A. AndersonJ. TohZ.Q. LuworR.B. SnibsonK.J. KaragiannisT.C. DoL.A.H. LicciardiP.V. The effects of the dietary compound L-sulforaphane against respiratory pathogens.Int. J. Antimicrob. Agents202158610646010.1016/j.ijantimicag.2021.10646034695564
    [Google Scholar]
  98. NovelliG. LiuJ. BiancolellaM. AlonziT. NovelliA. PattenJ.J. CocciadiferroD. AgoliniE. ColonaV.L. RizzacasaB. GianniniR. BigioB. GolettiD. CapobianchiM.R. GrelliS. MannJ. McKeeT.D. ChengK. AmanatF. KrammerF. GuarracinoA. PepeG. TominoC. LambiotteT.Y. UzunhanY. TubianaS. GhosnJ. NotarangeloL.D. SuH.C. AbelL. CobatA. ElhananG. GrzymskiJ.J. LatiniA. SidhuS.S. JainS. DaveyR.A. CasanovaJ.L. WeiW. PandolfiP.P. Inhibition of HECT E3 ligases as potential therapy for COVID-19.Cell Death Dis.202112431010.1038/s41419‑021‑03513‑133762578
    [Google Scholar]
  99. RoufR. UddinS.J. SarkerD.K. IslamM.T. AliE.S. ShilpiJ.A. NaharL. TiralongoE. SarkerS.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data.Trends Food Sci. Technol.202010421923410.1016/j.tifs.2020.08.00632836826
    [Google Scholar]
  100. KhubberS. HashemifesharakiR. MohammadiM. GharibzahediS.M.T. Garlic (Allium sativum L.): A potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19.Nutr. J.202019112410.1186/s12937‑020‑00643‑833208167
    [Google Scholar]
  101. ColumpsiP. SacchiP. ZuccaroV. CimaS. SardaC. MarianiM. GoriA. BrunoR. Beyond the gut bacterial microbiota: The gut virome.J. Med. Virol.20168891467147210.1002/jmv.2450826919534
    [Google Scholar]
  102. LinL. ZhangJ. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.BMC Immunol.2017181210.1186/s12865‑016‑0187‑328061847
    [Google Scholar]
  103. ChenY. ZhouJ. WangL. Role and mechanism of gut microbiota in human disease.Front. Cell. Infect. Microbiol.20211162591310.3389/fcimb.2021.62591333816335
    [Google Scholar]
  104. WuY. ChengX. JiangG. TangH. MingS. TangL. LuJ. GuoC. ShanH. HuangX. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization.NPJ Biofilms Microbio.2021761
    [Google Scholar]
  105. ZhongH. WangY. ShiZ. ZhangL. RenH. HeW. ZhangZ. ZhuA. ZhaoJ. XiaoF. YangF. LiangT. YeF. ZhongB. RuanS. GanM. ZhuJ. LiF. LiF. WangD. LiJ. RenP. ZhuS. YangH. WangJ. KristiansenK. TunH.M. ChenW. ZhongN. XuX. LiY. LiJ. ZhaoJ. Characterization of respiratory microbial dysbiosis in hospitalized COVID-19 patients.Cell Discov.2021712310.1038/s41421‑021‑00257‑233850111
    [Google Scholar]
  106. NguyenQ.V. ChongL.C. HorY.Y. LewL.C. RatherI.A. ChoiS.B. Role of probiotics in the management of COVID-19: A computational perspective.Nutrients202214227410.3390/nu1402027435057455
    [Google Scholar]
  107. AlharbiK.S. SinghY. AlmalkiH.W. RawatS. AfzalO. AltamimiA.A.S. KazmiI. Al-AbbasiF.A. AlzareaS.I. SinghS.K. BhattS. ChellappanD.K. DuaK. GuptaG. Gut microbiota disruption in COVID-19 or post-COVID illness association with severity biomarkers: A possible role of pre / pro-biotics in manipulating microflora.Chem. Biol. Interact.202235810989810.1016/j.cbi.2022.10989835331679
    [Google Scholar]
  108. VenzonM. RaichonB.L. KleinJ. AxelradJ.E. ZhangC. HusseyG.A. SullivanA.P. MassanaC.A. NovalM.G. JimenezV.A.M. Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation.Biorxiv2021
    [Google Scholar]
  109. ValenciaG.M. LeacheL. LibreroJ. JericóC. GermánE/M. ErceG.J.A. ABO blood group and risk of COVID-19 infection and complications: A systematic review and meta-analysis.Transfusion202262249350510.1111/trf.1674834773411
    [Google Scholar]
  110. RodriguezJ.A.M. BifanoM. Roca GomaE. PlasenciaC.M. TorralbaA.O. FontM.S. MillánP.R. Effect and tolerability of a nutritional supplement based on a synergistic combination of β-glucans and selenium-and zinc-enriched Saccharomyces cerevisiae (ABB C1®) in volunteers receiving the influenza or the COVID-19 vaccine: A randomized, double-blind, placebo-controlled study.Nutrients20211312434710.3390/nu1312434734959898
    [Google Scholar]
  111. ChengR.Z. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)?Med. Drug Discov.2020510002810.1016/j.medidd.2020.10002832328576
    [Google Scholar]
  112. BorettiA. BanikB.K. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome.PharmaNutrition20201210019010.1016/j.phanu.2020.10019032322486
    [Google Scholar]
  113. MashhadiS.N. KazemiM. SaadatS. MoradiS. Effects of select dietary supplements on the prevention and treatment of viral respiratory tract infections: A systematic review of randomized controlled trials.Expert Rev. Respir. Med.202115680582110.1080/17476348.2021.191854633858268
    [Google Scholar]
  114. JolliffeD.A. CamargoC.A.Jr SluyterJ.D. AglipayM. AloiaJ.F. GanmaaD. BergmanP. FerrariB.H.A. BorzutzkyA. DamsgaardC.T. Dubnov-RazG. EspositoS. GilhamC. GindeA.A. TriptoG.I. GoodallE.C. GrantC.C. GriffithsC.J. HibbsA.M. JanssensW. KhadilkarA.V. LaaksiI. LeeM.T. LoebM. MaguireJ.L. MajakP. MaugerD.T. HollandM.S. MurdochD.R. NakashimaA. NealeR.E. PhamH. RakeC. ReesJ.R. RosendahlJ. ScraggR. ShahD. ShimizuY. YapS.S. KumarT.G. UrashimaM. MartineauA.R. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials.Lancet Diabetes Endocrinol.20219527629210.1016/S2213‑8587(21)00051‑633798465
    [Google Scholar]
  115. AbioyeA.I. BromageS. FawziW. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: A systematic review and meta-analysis.BMJ Glob. Health202161e00317610.1136/bmjgh‑2020‑00317633472840
    [Google Scholar]
  116. MajidiN. BahadoriE. ShekariS. GholamalizadehM. TajadodS. AjamiM. GholamiS. ShadnoushM. AhmadzadehM. MoghadamD.A. ArdekanizadehH.N. KachaeiS.H. ShafieF. MoslemA. DoaeiS. GoodarziM.O. Effects of supplementation with low-dose group B vitamins on clinical and biochemical parameters in critically ill patients with COVID-19: A randomized clinical trial.Expert Rev. Anti Infect. Ther.202220221710.1080/14787210.2022.212586736108676
    [Google Scholar]
  117. BeigmohammadiM.T. BitarafanS. HoseindokhtA. AbdollahiA. AmoozadehL. SoltaniD. The effect of supplementation with vitamins A, B, C, D, and E on disease severity and inflammatory responses in patients with COVID-19: A randomized clinical trial.Trials202122180210.1186/s13063‑021‑05795‑434776002
    [Google Scholar]
  118. ÖztürkA.A. Namlıİ. AygülA. Cefaclor monohydrate-loaded colon-targeted nanoparticles for use in COVID-19 dependent coinfections and intestinal symptoms: Formulation, characterization, release kinetics, and antimicrobial activity.Assay Drug Dev. Technol.202119315617510.1089/adt.2020.101433728979
    [Google Scholar]
  119. DoaeiS. GholamiS. RastgooS. GholamalizadehM. BourbourF. BagheriS.E. SamipoorF. AkbariM.E. ShadnoushM. GhoratF. JarrahiM.S.A. MirsadeghiA.N. HajipourA. JoolaP. MoslemA. GoodarziM.O. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: A randomized clinical trial.J. Transl. Med.202119112810.1186/s12967‑021‑02795‑533781275
    [Google Scholar]
  120. LingL. WangX. ZhangY. YinF. ZhangZ. LyuX. Efficacy of qingfei paidu granules combined with non- drug traditional chinese medicine therapy in the treatment of patients with asymptomatic coronavirus disease: A retrospective study.Medicine202310246e3486810.1097/MD.000000000003486837986280
    [Google Scholar]
  121. MugabiI. COVID-19: WHO cautions against traditional herbs in Africa.Available from: https://www.dw.com/en/covid-19-who-cautions-against-the-use-of-traditional-herbs-in-africa/a-53341901 2020
  122. FDA News ReleaseCoronavirus update: FDA and FTC warn seven companies selling fraudulent products that claim to treat or prevent COVID-19.Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-update-fda-and-ftc-warn-seven-companies-selling-fraudulent-products-claim-treat-or 2020
  123. GamaleldinM. NashatS. Impact of different treatment modalities on immunity against COVID-19.NCT Patent 045537052020
  124. HermelM. SweeneyM. NiY.-M. BonakdarR. TriffonD. SuharC. MehtaS. DalhoumiS. GrayJ. Natural supplements for COVID-19 background, rationale, and clinical trials.J. Evid. based. Integrat. Med.2021262515690X211036875
    [Google Scholar]
  125. UyiO.A.G. StadenV.J. Natural product remedies for COVID-19: A focus on safety.S. Afr. J. Bot.202113938639810.1016/j.sajb.2021.03.01233753960
    [Google Scholar]
  126. ShaikhA.S. ThomasA.B. ChitlangeS.S. Herb-drug interaction studies of herbs used in treatment of cardiovascular disorders-A narrative review of preclinical and clinical studies.Phytother. Res.20203451008102610.1002/ptr.658531908085
    [Google Scholar]
  127. AgarwalS. AgarwalS.K. Lopinavir-ritonavir in SARS- CoV-2 infection and drug-drug interactions with cardioactive medications.Cardiovasc. Drugs Ther.202135342744010.1007/s10557‑020‑07070‑132918656
    [Google Scholar]
  128. BaracA. BartolettiM. AzapO. BussiniL. ErgonulO. KrauseR. PardoP.J.R. PowerN.R. BañoR.J. SibaniM. SzaboB.G. TsiodrasS. VerweijP.E. QuirósA.M. SchwetzZ.I. Inappropriate use of ivermectin during the COVID-19 pandemic: Primum non nocere!Clin. Microbiol. Infect.202228790891010.1016/j.cmi.2022.03.02235337977
    [Google Scholar]
  129. OnyeaghalaA.A. AnyiamA.F. HusainiD.C. OnyeaghalaE.O. ObiE. Herbal supplements as treatment options for COVID-19: A call for clinical development of herbal supplements for emerging and re-emerging viral threats in Sub-Saharan Africa.Sci. Afr.202320e0162710.1016/j.sciaf.2023.e0162736974333
    [Google Scholar]
  130. SoltaniA. JaamM. NazarZ. StewartD. ShaitoA. Attitudes and beliefs regarding the use of herbs and supplementary medications with COVID-19: A systematic review.Res. Social Adm. Pharm.202319334335510.1016/j.sapharm.2022.11.00436402712
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673294083240520044158
Loading
/content/journals/cmc/10.2174/0109298673294083240520044158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test