Skip to content
2000
Volume 32, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Globally, cardiovascular diseases (CVDs) are the main cause of mortality every year worldwide. CVD health is influenced by various health factors, such as blood pressure, cholesterol levels, and glucose control. The main risk factors include smoking, physical activity, food intake, and body mass index. Around 90% of CVDs could be prevented by controlling these risk factors. Heavy metals are indigenous to the environment of the earth. However, modern lifestyles have led to the exploitation of our environment by unconstrained use of heavy metals. Though heavy metals are essential components, they are hazardous to humans and living systems due to their persistent and non-degradable nature. The main purpose of this study is to provide a literature review on the mechanisms of heavy metals, particularly arsenic, lead, and cadmium, that cause cardiovascular diseases. The major mechanism by which heavy metals result in various modalities of cardiovascular disease is the generation of reactive species and the depletion of the antioxidant reserves inside the biological system. The generation of reactive species gradually leads to the activation of various signaling pathways, resulting in either apoptosis or unrestricted cell growth. These unfavorable conditions result in a state when there is an imbalance between reactive species generation and antioxidant activity. Both endogenously present antioxidants and dietary antioxidants are very much essential in regulating the redox potential of the body. They help in the detoxification and excretion of heavy metals and their metabolites in the biological system. Therefore, recognizing the role of heavy metals in cardiovascular health is crucial for developing preventive strategies and interventions aimed at mitigating their adverse effects on human health.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673307446240514064253
2024-05-16
2025-09-06
Loading full text...

Full text loading...

References

  1. UkaogoP. EwuzieU. OnwukaC. Environmental pollution: Causes, effects, and the remedies.Microorganisms for Sustainable Environment and Health2020419429
    [Google Scholar]
  2. WuX. CobbinaS.J. MaoG. XuH. ZhangZ. YangL. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment.Environ. Sci. Pollut. Res. Int.20162398244825910.1007/s11356‑016‑6333‑x26965280
    [Google Scholar]
  3. JomovaK. ValkoM. Advances in metal-induced oxidative stress and human disease.Toxicology20112832-3658710.1016/j.tox.2011.03.00121414382
    [Google Scholar]
  4. JaishankarM. TsetenT. AnbalaganN. MathewB.B. BeeregowdaK.N. Toxicity, mechanism and health effects of some heavy metals.Interdiscip. Toxicol.201472607210.2478/intox‑2014‑000926109881
    [Google Scholar]
  5. AliH. KhanE. IlahiI. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation.J. Chem.2019201911410.1155/2019/6730305
    [Google Scholar]
  6. BriffaJ. SinagraE. BlundellR. Heavy metal pollution in the environment and their toxicological effects on humans.Heliyon202069e0469110.1016/j.heliyon.2020.e0469132964150
    [Google Scholar]
  7. ChenP. BornhorstJ. Diana NeelyM. AvilaD. Mechanisms and disease pathogenesis underlying metal-induced oxidative stress.Oxid. Med. Cell201818
    [Google Scholar]
  8. GallJ.E. BoydR.S. RajakarunaN. Transfer of heavy metals through terrestrial food webs: A review.Environ. Monit. Assess.2015187420110.1007/s10661‑015‑4436‑325800370
    [Google Scholar]
  9. AmadiC.N. OfforS.J. FrazzoliC. OrisakweO.E. Natural antidotes and management of metal toxicity.Environ. Sci. Pollut. Res. Int.20192618180321805210.1007/s11356‑019‑05104‑231079302
    [Google Scholar]
  10. ČelechovskáO. MalotaL. ZimaS. Entry of heavy metals into food chains: A 20-year comparison study in northern moravia (Czech Republic).Acta Vet. Brno200877464565210.2754/avb200877040645
    [Google Scholar]
  11. IgiriB.E. OkoduwaS.I.R. IdokoG.O. AkabuoguE.P. AdeyiA.O. EjioguI.K. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review.J. Toxicol.2018201811610.1155/2018/256803830363677
    [Google Scholar]
  12. IslamE. YangX. HeZ. MahmoodQ. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.J. Zhejiang Univ. Sci. B20078111310.1631/jzus.2007.B000117173356
    [Google Scholar]
  13. AfonneO.J. IfedibaE.C. Heavy metals risks in plant foods – need to step up precautionary measures.Curr. Opin. Toxicol.2020221610.1016/j.cotox.2019.12.006
    [Google Scholar]
  14. SonuK. Chandra YadavI. KumarA. DeviN.L. Dataset on assessment of heavy metals contamination in multi-environmental samples from Patna, India.Data Brief20192510407910.1016/j.dib.2019.10407931249852
    [Google Scholar]
  15. StephensW.E. CalderA. NewtonJ. Source and health implications of high toxic metal concentrations in illicit tobacco products.Environ. Sci. Technol.200539247948810.1021/es049038s15707047
    [Google Scholar]
  16. HaidarZ. FatemaK. ShoilyS.S. SajibA.A. Disease-associated metabolic pathways affected by heavy metals and metalloid.Toxicol. Rep.20231055457010.1016/j.toxrep.2023.04.01037396849
    [Google Scholar]
  17. MoonK. GuallarE. Navas-AcienA. Arsenic exposure and cardiovascular disease: An updated systematic review.Curr. Atheroscler. Rep.201214654255510.1007/s11883‑012‑0280‑x22968315
    [Google Scholar]
  18. ScottN. HatlelidK.M. MacKenzieN.E. CarterD.E. Reactions of arsenic(III) and arsenic(V) species with glutathione.Chem. Res. Toxicol.19936110210610.1021/tx00031a0168448339
    [Google Scholar]
  19. BuchetJ.P. LauwerysR. Role of thiols in the in-vitro methylation of inorganic arsenic by rat liver cytosol.Biochem. Pharmacol.198837163149315310.1016/0006‑2952(88)90313‑93401245
    [Google Scholar]
  20. SinghN. KumarD. SahuA.P. Arsenic in the environment: Effects on human health and possible prevention.J. Environ. Biol.2007282Suppl.35936517929751
    [Google Scholar]
  21. GregusZ. GyurasicsA. CsanakyI. Biliary and urinary excretion of inorganic arsenic: Monomethylarsonous acid as a major biliary metabolite in rats.Toxicol. Sci.2000561182510.1093/toxsci/56.1.1810869450
    [Google Scholar]
  22. AlissaE.M. FernsG.A. Heavy metal poisoning and cardiovascular disease.J. Toxicol.2011201112110.1155/2011/87012521912545
    [Google Scholar]
  23. ChowdhuryU.K. BiswasB.K. ChowdhuryT.R. SamantaG. MandalB.K. BasuG.C. ChandaC.R. LodhD. SahaK.C. MukherjeeS.K. RoyS. KabirS. QuamruzzamanQ. ChakrabortiD. Groundwater arsenic contamination in Bangladesh and West Bengal, India.Environ. Health Perspect.2000108539339710.1289/ehp.0010839310811564
    [Google Scholar]
  24. HoqueM.A. BurgessW.G. ShamsudduhaM. AhmedK.M. Delineating low-arsenic groundwater environments in the Bengal Aquifer System, Bangladesh.Appl. Geochem.201126461462310.1016/j.apgeochem.2011.01.018
    [Google Scholar]
  25. WangS.L. ChiouJ.M. ChenC.J. TsengC.H. ChouW.L. WangC.C. WuT.N. ChangL.W. Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan.Environ. Health Perspect.2003111215515910.1289/ehp.545712573898
    [Google Scholar]
  26. LuK. AboR.P. SchlieperK.A. GraffamM.E. LevineS. WishnokJ.S. SwenbergJ.A. TannenbaumS.R. FoxJ.G. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: An integrated metagenomics and metabolomics analysis.Environ. Health Perspect.2014122328429110.1289/ehp.130742924413286
    [Google Scholar]
  27. DelnomdedieuM. BastiM.M. StybloM. OtvosJ.D. ThomasD.J. Complexation of arsenic species in rabbit erythrocytes.Chem. Res. Toxicol.19947562162710.1021/tx00041a0067841340
    [Google Scholar]
  28. KitchinK.T. ConollyR. Arsenic-induced carcinogenesis-oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment.Chem. Res. Toxicol.201023232733510.1021/tx900343d20035570
    [Google Scholar]
  29. LantzR.C. HaysA.M. Role of oxidative stress in arsenic-induced toxicity.Drug Metab. Rev.200638479180410.1080/0360253060098010817145702
    [Google Scholar]
  30. HughesM.F. BeckB.D. ChenY. LewisA.S. ThomasD.J. Arsenic exposure and toxicology: A historical perspective.Toxicol. Sci.2011123230533210.1093/toxsci/kfr18421750349
    [Google Scholar]
  31. CooperD. StokesK.Y. TailorA. GrangerD.N. Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation.Cardiovasc. Toxicol.20022316518010.1007/s12012‑002‑0002‑712665663
    [Google Scholar]
  32. PichlerG. Grau-PerezM. Tellez-PlazaM. UmansJ. BestL. ColeS. GoesslerW. FrancesconiK. NewmanJ. RedonJ. DevereuxR. Navas-AcienA. Association of arsenic exposure with cardiac geometry and left ventricular function in young adults.Circ. Cardiovasc. Imaging2019125e00901810.1161/CIRCIMAGING.119.00901831060373
    [Google Scholar]
  33. SmithK.R. KleiL.R. BarchowskyA. Arsenite stimulates plasma membrane NADPH oxidase in vascular endothelial cells.Am. J. Physiol. Lung Cell. Mol. Physiol.20012803L442L44910.1152/ajplung.2001.280.3.L44211159027
    [Google Scholar]
  34. CrowJ.P. IschiropoulosH. Detection and quantitation of nitrotyrosine residues in proteins: In vivo marker of peroxynitrite.Methods Enzymol.199626918519410.1016/S0076‑6879(96)69020‑X8791648
    [Google Scholar]
  35. BundersonM. CoffinJ.D. BeallH.D. Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: Possible role in atherosclerosis.Toxicol. Appl. Pharmacol.20021841111810.1006/taap.2002.949212392964
    [Google Scholar]
  36. OyamaJ. ShimokawaH. MomiiH. ChengX. FukuyamaN. AraiY. EgashiraK. NakazawaH. TakeshitaA. Role of nitric oxide and peroxynitrite in the cytokine-induced sustained myocardial dysfunction in dogs in vivo.J. Clin. Invest.1998101102207221410.1172/JCI9869593776
    [Google Scholar]
  37. GidlowD.A. Lead toxicity.Occup. Med.2004542768110.1093/occmed/kqh01915020724
    [Google Scholar]
  38. BrentJ. A review of: “Medical Toxicology”.Clin. Toxicol.200644335535510.1080/15563650600584733
    [Google Scholar]
  39. BellingerD.C. Lead.Pediatrics20041134Suppl. 31016102210.1542/peds.113.S3.101615060194
    [Google Scholar]
  40. FloraG. GuptaD. TiwariA. Toxicity of lead: A review with recent updates.Interdiscip. Toxicol.201252475810.2478/v10102‑012‑0009‑223118587
    [Google Scholar]
  41. VijA. Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C.Al Ameen J. Med. Sci.200922736
    [Google Scholar]
  42. GrantL. Lead and compounds.Environ. Toxicol.20202020627675
    [Google Scholar]
  43. SalehH.A. El-AzizG.A. El-FarkM.M. El-GoharyM. Effect of maternal lead exposure on craniofacial ossification in rat fetuses and the role of antioxidant therapy.Anat. Histol. Embryol.200938539239910.1111/j.1439‑0264.2009.00960.x19769572
    [Google Scholar]
  44. PatraR.C. RautrayA.K. SwarupD. Oxidative stress in lead and cadmium toxicity and its amelioration.Vet. Med. Int.201120111910.4061/2011/45732721547215
    [Google Scholar]
  45. TeleanuR.I. NiculescuA.G. RozaE. VladâcencoO. GrumezescuA.M. TeleanuD.M. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system.Int. J. Mol. Sci.20222311595410.3390/ijms2311595435682631
    [Google Scholar]
  46. BhatS. El-KasabyA. FreissmuthM. SucicS. Functional and biochemical consequences of disease variants in neurotransmitter transporters: A special emphasis on folding and trafficking deficits.Pharmacol. Ther.202122210778510.1016/j.pharmthera.2020.10778533310157
    [Google Scholar]
  47. SüdhofT.C. Calcium control of neurotransmitter release.Cold Spring Harb. Perspect. Biol.201241a01135310.1101/cshperspect.a01135322068972
    [Google Scholar]
  48. ShahK. SeeleyS. SchulzC. FisherJ. Gururaja RaoS. Calcium channels in the heart: Disease states and drugs.Cells202211694310.3390/cells1106094335326393
    [Google Scholar]
  49. MarksA.R. Calcium cycling proteins and heart failure: Mechanisms and therapeutics.J. Clin. Invest.20131231465210.1172/JCI6283423281409
    [Google Scholar]
  50. KhanD.A. QayyumS. SaleemS. KhanF.A. Lead-induced oxidative stress adversely affects health of the occupational workers.Toxicol. Ind. Health200824961161810.1177/074823370809812719106128
    [Google Scholar]
  51. ChowdhuryR. RamondA. O’KeeffeL.M. ShahzadS. KunutsorS.K. MukaT. GregsonJ. WilleitP. WarnakulaS. KhanH. ChowdhuryS. GobinR. FrancoO.H. Di AngelantonioE. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis.BMJ2018362k331010.1136/bmj.k331030158148
    [Google Scholar]
  52. GlicklichD. ShinC.T. FrishmanW.H. Heavy metal toxicity in chronic renal failure and cardiovascular disease.Cardiol. Rev.202028631231810.1097/CRD.000000000000030432040019
    [Google Scholar]
  53. KangM.Y. ChoS.H. LimY.H. SeoJ.C. HongY.C. Effects of environmental cadmium exposure on liver function in adults.Occup. Environ. Med.201370426827310.1136/oemed‑2012‑10106323322921
    [Google Scholar]
  54. RajakC. SinghN. ParasharP. Metal toxicity and natural antidotes: Prevention is better than cure.Environ. Sci. Pollut. Res. Int.20202735435824359810.1007/s11356‑020‑10783‑332951168
    [Google Scholar]
  55. KimH.S. KimY.J. SeoY.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention.J. Cancer Prev.201520423224010.15430/JCP.2015.20.4.23226734585
    [Google Scholar]
  56. Milton PrabuS. MuthumaniM. ShagirthaK. Quercetin potentially attenuates cadmium induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats.Eur. Rev. Med. Pharmacol. Sci.201317558259523543441
    [Google Scholar]
  57. SarkarS. YadavP. TrivediR. BansalA.K. BhatnagarD. Cadmium-induced lipid peroxidation and the status of the antioxidant system in rat tissues.J. Trace Elem. Med. Biol.19959314414910.1016/S0946‑672X(11)80038‑68605602
    [Google Scholar]
  58. ValkoM. MorrisH. CroninM. Metals, toxicity and oxidative stress.Curr. Med. Chem.200512101161120810.2174/092986705376463515892631
    [Google Scholar]
  59. YiinS.J. ChernC.L. SheuJ.Y. TsengW.C. LinT.H. Shuenn-Jiun Yiin, Chi-Liang Chern Cadmium-induced renal lipid peroxidation in rats and protection by selenium.J. Toxicol. Environ. Health A199957640341310.1080/00984109915760110478822
    [Google Scholar]
  60. PaithankarJ.G. SainiS. DwivediS. SharmaA. ChowdhuriD.K. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction.Chemosphere202126212835010.1016/j.chemosphere.2020.12835033182141
    [Google Scholar]
  61. NairA. DeGheselleO. SmeetsK. Van KerkhoveE. CuypersA. Cadmium-induced pathologies: Where is the oxidative balance lost (or Not)?Int. J. Mol. Sci.20131436116614310.3390/ijms1403611623507750
    [Google Scholar]
  62. FerramolaM.L. Pérez DíazM.F.F. HonoréS.M. SánchezS.S. AntónR.I. AnzulovichA.C. GiménezM.S. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet.Toxicol. Appl. Pharmacol.2012265338038910.1016/j.taap.2012.09.00922995158
    [Google Scholar]
  63. SchutteR. NawrotT. RichartT. ThijsL. RoelsH.A. Van BortelL.M. Struijker-BoudierH. StaessenJ.A. Arterial structure and function and environmental exposure to cadmium.Occup. Environ. Med.200865641241910.1136/oem.2007.03557617951338
    [Google Scholar]
  64. RochaJ.B.T. AschnerM. DóreaJ.G. CeccatelliS. FarinaM. SilveiraL.C.L. Mercury toxicity.J. Biomed. Biotechnol.201220121210.1155/2012/83189022988426
    [Google Scholar]
  65. YangL. ZhangY. WangF. LuoZ. GuoS. SträhleU. Toxicity of mercury: Molecular evidence.Chemosphere202024512558610.1016/j.chemosphere.2019.12558631881386
    [Google Scholar]
  66. LinC.J. PehkonenS.O. The chemistry of atmospheric mercury: A review.Atmos. Environ.199933132067207910.1016/S1352‑2310(98)00387‑2
    [Google Scholar]
  67. BernhoftR.A. Mercury toxicity and treatment: A review of the literature.J. Environ. Public Health2012201211010.1155/2012/46050822235210
    [Google Scholar]
  68. BerlinM. ZalupsR.K. FowlerB.A. Mercury.Handbook on the Toxicology of Metals.Chapter 333rd ed NordbergG.F. FowlerB.A. NordbergM. FribergL.T. New York, NY, USAElsevier200710.1016/B978‑012369413‑3/50088‑4
    [Google Scholar]
  69. BjörkmanL. LundekvamB.F. LægreidT. BertelsenB.I. MorildI. LillengP. LindB. PalmB. VahterM. Mercury in human brain, blood, muscle and toenails in relation to exposure: An autopsy study.Environ. Health2007613010.1186/1476‑069X‑6‑3017931423
    [Google Scholar]
  70. ParkS.H. ArakiS. NakataA. KimY.H. ParkJ.A. TanigawaT. YokoyamaK. SatoH. Effects of occupational metallic mercury vapour exposure on suppressor-inducer (CD4+CD45RA+) T lymphocytes and CD57+CD16+ natural killer cells.Int. Arch. Occup. Environ. Health200073853754210.1007/s00420000017311100948
    [Google Scholar]
  71. KostialK. KelloD. JugoS. RabarI. MaljkovićT. Influence of age on metal metabolism and toxicity.Environ. Health Perspect.197825818610.1289/ehp.782581720306
    [Google Scholar]
  72. ClarksonT.W. GatzyJ. DaltonE. UR-582.Rochester, NY, USADivision of radiation chemistry and toxicology, university of rochester atomic energy project1961
    [Google Scholar]
  73. HoustonM.C. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke.J. Clin. Hypertens.201113862162710.1111/j.1751‑7176.2011.00489.x21806773
    [Google Scholar]
  74. GarnierR. FusterJ.M. ConsoF. DautzenbergB. SorsC. FournierE. [Acute mercury vapour poisoning (author’s transl)].Toxicol. Eur. Res.19813277867245189
    [Google Scholar]
  75. BerglundA. PohlL. OlssonS. BergmanM. Determination of the rate of release of intra-oral mercury vapor from amalgam.J. Dent. Res.19886791235124210.1177/002203458806700917013166008
    [Google Scholar]
  76. Crespo-LópezM.E. MacêdoG.L. PereiraS.I.D. ArrifanoG.P.F. Picanço-DinizD.L.W. NascimentoJ.L.M. HerculanoA.M. Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms.Pharmacol. Res.200960421222010.1016/j.phrs.2009.02.01119446469
    [Google Scholar]
  77. EtoK. Minamata disease.Neuropathology200020s1Suppl.141910.1046/j.1440‑1789.2000.00295.x11037181
    [Google Scholar]
  78. HoustonM.C. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction.Altern. Ther. Health Med.2007132S128S13317405690
    [Google Scholar]
  79. ValeraB. DewaillyE. PoirierP. Impact of mercury exposure on blood pressure and cardiac autonomic activity among Cree adults (James Bay, Quebec, Canada).Environ. Res.201111181265127010.1016/j.envres.2011.09.00121962568
    [Google Scholar]
  80. ThurstonS.W. BovetP. MyersG.J. DavidsonP.W. GeorgerL.A. ShamlayeC. ClarksonT.W. Does prenatal methylmercury exposure from fish consumption affect blood pressure in childhood?Neurotoxicology200728592493010.1016/j.neuro.2007.06.00217659343
    [Google Scholar]
  81. VirtanenJ.K. VoutilainenS. RissanenT.H. MursuJ. TuomainenT.P. KorhonenM.J. ValkonenV.P. SeppänenK. LaukkanenJ.A. SalonenJ.T. Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland.Arterioscler. Thromb. Vasc. Biol.200525122823310.1161/01.ATV.0000150040.20950.6115539625
    [Google Scholar]
  82. FarinaM. AschnerM. RochaJ.B.T. Oxidative stress in MeHg-induced neurotoxicity.Toxicol. Appl. Pharmacol.2011256340541710.1016/j.taap.2011.05.00121601588
    [Google Scholar]
  83. ValkoM. RhodesC.J. MoncolJ. IzakovicM. MazurM. Free radicals, metals and antioxidants in oxidative stress-induced cancer.Chem. Biol. Interact.2006160114010.1016/j.cbi.2005.12.00916430879
    [Google Scholar]
  84. WiggersG.A. PeçanhaF.M. BrionesA.M. Pérez- GirónJ.V. MiguelM. VassalloD.V. CachofeiroV. AlonsoM.J. SalaicesM. Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries.Am. J. Physiol. Heart Circ. Physiol.20082953H1033H104310.1152/ajpheart.00430.200818599595
    [Google Scholar]
  85. OmanwarS. FahimM. Mercury exposure and endothelial dysfunction.Int. J. Toxicol.201534430030710.1177/109158181558976626060268
    [Google Scholar]
  86. OmanwarS. SaidullahB. RaviK. FahimM. Vasorelaxant effects of mercury on rat thoracic aorta.Hum. Exp. Toxicol.201433990491010.1177/096032711351234124347300
    [Google Scholar]
  87. ParkE.J. ParkK. Induction of reactive oxygen species and apoptosis in BEAS-2B cells by mercuric chloride.Toxicol. In vitro200721578979410.1016/j.tiv.2007.01.01917363214
    [Google Scholar]
  88. WojciechowskiJ. KowalskiW. Cardiac and aortic lesions in chronic experimental poisoning with mercury vapors.Pol. Med. Sci. Hist. Bull.19751522552601223826
    [Google Scholar]
  89. GhaniA. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L.Egyptian Acad J Biol Sci.20112915
    [Google Scholar]
  90. DayanA.D. PaineA.J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000.Hum. Exp. Toxicol.200120943945110.1191/09603270168269306211776406
    [Google Scholar]
  91. Agency for toxic substances and disease registry Case Studies in Environmental Medicine (CSEM) Chromium Toxicity Course: WB 1466 Original. 2012Available from: https://www.atsdr.cdc.gov/csem/chromium/docs/chromium.pdf
  92. BokareA.D. ChoiW. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle.Environ. Sci. Technol.201145219332933810.1021/es202170421988604
    [Google Scholar]
  93. ZhangX.H. ZhangX. WangX.C. JinL.F. YangZ.P. JiangC.X. ChenQ. RenX.B. CaoJ.Z. WangQ. ZhuY.M. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers.BMC Public Health201111122410.1186/1471‑2458‑11‑22421481275
    [Google Scholar]
  94. AchmadR. Budiawan AuerkariE. Effects of chromium on human body.Annu. Res. Rev. Biol.20171321810.9734/ARRB/2017/33462
    [Google Scholar]
  95. KalidhasanS. Santhana Krishna KumarA. RajeshV. RajeshN. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective.Coord. Chem. Rev.201631715716610.1016/j.ccr.2016.03.004
    [Google Scholar]
  96. SharmaB.K. SinghalP.C. ChughK.S. Intravascular haemolysis and acute renal failure following potassium dichromate poisoning.Postgrad. Med. J.19785463241441510.1136/pgmj.54.632.414683912
    [Google Scholar]
  97. ReynoldsM. StoddardL. BespalovI. ZhitkovichA. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: Linkage to DNA breaks in G2 phase by mismatch repair.Nucleic Acids Res.200635246547610.1093/nar/gkl106917169990
    [Google Scholar]
  98. AoM. ChenX. DengT. SunS. TangY. MorelJ.L. QiuR. WangS. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review.J. Hazard. Mater.2022424Pt A12723310.1016/j.jhazmat.2021.12723334592592
    [Google Scholar]
  99. GuallarE. JiménezF.J. van ’t VeerP. BodeP. RiemersmaR.A. Gómez-AracenaJ. KarkJ.D. ArabL. KokF.J. Martín-MorenoJ.M. EURAMIC-Heavy Metals and Myocardial Infraction Study Group Low toenail chromium concentration and increased risk of nonfatal myocardial infarction.Am. J. Epidemiol.2005162215716410.1093/aje/kwi18015972934
    [Google Scholar]
  100. ZhuninaO.A. YabbarovN.G. GrechkoA.V. StarodubovaA.V. IvanovaE. NikiforovN.G. OrekhovA.N. The role of mitochondrial dysfunction in vascular disease, tumorigenesis, and diabetes.Front. Mol. Biosci.2021867190810.3389/fmolb.2021.67190834026846
    [Google Scholar]
  101. YangD. YangQ. FuN. LiS. HanB. LiuY. TangY. GuoX. LvZ. ZhangZ. Hexavalent chromium induced heart dysfunction via Sesn2-mediated impairment of mitochondrial function and energy supply.Chemosphere2021264Pt 212854710.1016/j.chemosphere.2020.12854733049514
    [Google Scholar]
  102. LiJ. ZhengX. MaX. XuX. DuY. LvQ. LiX. WuY. SunH. YuL. ZhangZ. Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway.J. Inorg. Biochem.201919711069810.1016/j.jinorgbio.2019.11069831054488
    [Google Scholar]
  103. LuJ. LiuK. QiM. GengH. HaoJ. WangR. ZhaoX. LiuY. LiuJ. Effects of Cr(VI) exposure on electrocardiogram, myocardial enzyme parameters, inflammatory factors, oxidative kinase, and ATPase of the heart in Chinese rural dogs.Environ. Sci. Pollut. Res. Int.20192629304443045110.1007/s11356‑019‑06253‑031440970
    [Google Scholar]
  104. MuñozA. CostaM. Elucidating the mechanisms of nickel compound uptake: A review of particulate and nano-nickel endocytosis and toxicity.Toxicol. Appl. Pharmacol.2012260111610.1016/j.taap.2011.12.01422206756
    [Google Scholar]
  105. SongX. Fiati KenstonS.S. KongL. ZhaoJ. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention.Toxicology2017392475410.1016/j.tox.2017.10.00629032222
    [Google Scholar]
  106. BuxtonS. GarmanE. HeimK.E. Lyons-DardenT. SchlekatC.E. TaylorM.D. OllerA.R. Concise review of nickel human health toxicology and ecotoxicology.Inorganics2019778910.3390/inorganics7070089
    [Google Scholar]
  107. KasprzakK. SundermanF.W.Jr SalnikowK. Nickel carcinogenesis.Mutat. Res.20035331-2679710.1016/j.mrfmmm.2003.08.02114643413
    [Google Scholar]
  108. RezukeW.N. KnightJ.A. SundermanF.W.Jr. Reference values for nickel concentrations in human tissues and bile.Am. J. Ind. Med.198711441942610.1002/ajim.47001104043578294
    [Google Scholar]
  109. ChenQ.Y. BrocatoJ. LaulichtF. CostaM. Mechanisms of nickel carcinogenesis.Essential and Non-Essential metals. MudipalliA. ZelikoffJ.T. Molecular and Integrative Toxicology201718119710.1007/978‑3‑319‑55448‑8_8
    [Google Scholar]
  110. ChiouY.H. WongR.H. ChaoM.R. ChenC.Y. LiouS.H. LeeH. Nickel accumulation in lung tissues is associated with increased risk of p53 mutation in lung cancer patients.Environ. Mol. Mutagen.201455862463210.1002/em.2186724711049
    [Google Scholar]
  111. KongL. GaoX. ZhuJ. ChengK. TangM. Mechanisms involved in reproductive toxicity caused by nickel nanoparticle in female rats.Environ. Toxicol.201631111674168310.1002/tox.2228827257140
    [Google Scholar]
  112. HafezH.S. SelimE.M.N. Kamel EidF.H. TawfikW.A. Al-AshkarE.A. MostafaY.A. Cytotoxicity, genotoxicity, and metal release in patients with fixed orthodontic appliances: A longitudinal in vivo study.Am. J. Orthod. Dentofacial Orthop.2011140329830810.1016/j.ajodo.2010.05.02521889074
    [Google Scholar]
  113. SainiS. NairN. SainiM.R. Embryotoxic and teratogenic effects of nickel in Swiss albino mice during organogenetic period.BioMed Res. Int.201320131910.1155/2013/70143923936836
    [Google Scholar]
  114. KangG.S. GillespieP.A. GunnisonA. MoreiraA.L. Tchou-WongK.M. ChenL.C. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model.Environ. Health Perspect.2011119217618110.1289/ehp.100250820864429
    [Google Scholar]
  115. GermandeO. DucretT. QuignardJ.F. DeweirdtJ. Freund-MichelV. ErreraM.H. CardouatG. VacherP. MullerB. BergerP. GuibertC. BaudrimontM. BaudrimontI. NiONP-induced oxidative stress and mitochondrial impairment in an in vitro pulmonary vascular cell model mimicking endothelial dysfunction.Antioxidants202211584710.3390/antiox1105084735624710
    [Google Scholar]
  116. CheekJ. FoxS.S. LehmlerH.J. TitcombT.J. Environmental nickel exposure and cardiovascular disease in a nationally representative sample of U.S. adults.Expo. Health20231937360515
    [Google Scholar]
  117. ZhangN. ChenM. LiJ. DengY. LiS. GuoY. LiN. LinY. YuP. LiuZ. ZhuJ. Metal nickel exposure increase the risk of congenital heart defects occurrence in offspring.Medicine20199818e1535210.1097/MD.000000000001535231045777
    [Google Scholar]
  118. SmithA.H. LingasE.O. RahmanM. Contamination of drinking-water by arsenic in Bangladesh: A public health emergency.Bull. World Health Organ.20007891093110311019458
    [Google Scholar]
  119. ĎuračkováZ. Some current insights into oxidative stress.Physiol. Res.201059445946910.33549/physiolres.93184419929132
    [Google Scholar]
  120. HussainT. TanB. YinY. BlachierF. TossouM.C.B. RahuN. Oxidative stress and inflammation: What polyphenols can do for us?Oxid. Med. Cell. Longev.201620161910.1155/2016/743279727738491
    [Google Scholar]
  121. YangA.M. LoK. ZhengT.Z. YangJ.L. BaiY.N. FengY.Q. ChengN. LiuS.M. Environmental heavy metals and cardiovascular diseases: Status and future direction.Chronic Dis. Transl. Med.20206425125910.1016/j.cdtm.2020.02.00533336170
    [Google Scholar]
  122. LiuC.M. MaJ.Q. XieW.R. LiuS.S. FengZ.J. ZhengG.H. WangA.M. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway.Food Chem. Toxicol.201582192610.1016/j.fct.2015.05.00125957741
    [Google Scholar]
  123. OsburnW. KenslerT. Nrf2 signaling: An adaptive response pathway for protection against environmental toxic insults.Mutat. Res. Rev. Mutat. Res.20086591-2313910.1016/j.mrrev.2007.11.00618164232
    [Google Scholar]
  124. PaulettoM. TolosiR. GiantinM. GuerraG. BarbarossaA. ZaghiniA. DacastoM. Insights into aflatoxin B1 toxicity in cattle: An in vitro whole-transcriptomic approach.Toxins202012742910.3390/toxins1207042932610656
    [Google Scholar]
  125. YaoJ. ZhangJ. TaiW. DengS. LiT. WuW. PuL. FanD. LeiW. ZhangT. DongZ. High-dose paraquat induces human bronchial 16HBE cell death and aggravates acute lung intoxication in mice by regulating Keap1/p65/Nrf2 signal pathway.Inflammation201942247148410.1007/s10753‑018‑00956‑130734183
    [Google Scholar]
  126. WangX. HanB. WuP. LiS. LvY. LuJ. YangQ. LiJ. ZhuY. ZhangZ. Dibutyl phthalate induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway.Environ. Pollut.202026711556410.1016/j.envpol.2020.11556433254669
    [Google Scholar]
  127. PiJ. DiwanB.A. SunY. LiuJ. QuW. HeY. StybloM. WaalkesM.P. Arsenic-induced malignant transformation of human keratinocytes: Involvement of Nrf2.Free Radic. Biol. Med.200845565165810.1016/j.freeradbiomed.2008.05.02018572023
    [Google Scholar]
  128. AlbarakatiA.J.A. BatyR.S. AljoudiA.M. HabottaO.A. ElmahallawyE.K. KassabR.B. Abdel MoneimA.E. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways.Mol. Biol. Rep.20204742591260310.1007/s11033‑020‑05346‑132144527
    [Google Scholar]
  129. ZhangD.D. HanninkM. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.Mol. Cell. Biol.200323228137815110.1128/MCB.23.22.8137‑8151.200314585973
    [Google Scholar]
  130. HeX. ChenM.G. MaQ. Activation of Nrf2 in defense against cadmium-induced oxidative stress.Chem. Res. Toxicol.20082171375138310.1021/tx800019a18512965
    [Google Scholar]
  131. LiuC. ZhuY. LuZ. GuoW. TumenB. HeY. ChenC. HuS. XuK. WangY. LiL. LiS. Cadmium induces acute liver injury by inhibiting Nrf2 and the role of NF-κB, NLRP3, and MAPKs signaling pathway.Int. J. Environ. Res. Public Health201917113810.3390/ijerph1701013831878134
    [Google Scholar]
  132. WangY. MandalA.K. SonY.O.K. PratheeshkumarP. WiseJ.T.F. WangL. ZhangZ. ShiX. ChenZ. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane.Toxicol. Appl. Pharmacol.2018353233010.1016/j.taap.2018.06.00329885333
    [Google Scholar]
  133. SchmidlinC.J. ZengT. LiuP. WeiY. DodsonM. ChapmanE. ZhangD.D. Chronic arsenic exposure enhances metastatic potential via NRF2-mediated upregulation of SOX9.Toxicol. Appl. Pharmacol.202040211513810.1016/j.taap.2020.11513832682831
    [Google Scholar]
  134. KimH.L. SeoY.R. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage.Oncol. Rep.20122861959196710.3892/or.2012.205723023193
    [Google Scholar]
  135. BuhaA. BaralićK. Djukic-CosicD. BulatZ. TinkovA. PanieriE. SasoL. The role of toxic metals and metalloids in Nrf2 signaling.Antioxidants202110563010.3390/antiox1005063033918986
    [Google Scholar]
  136. AglanH.S. GebremedhnS. Salilew-WondimD. NeuhofC. TholenE. HolkerM. SchellanderK. TesfayeD. Regulation of Nrf2 and NF-κB during lead toxicity in bovine granulosa cells.Cell Tissue Res.2020380364365510.1007/s00441‑020‑03177‑x32185525
    [Google Scholar]
  137. AonoJ. YanagawaT. ItohK. LiB. YoshidaH. KumagaiY. YamamotoM. IshiiT. Activation of Nrf2 and accumulation of ubiquitinated A170 by arsenic in osteoblasts.Biochem. Biophys. Res. Commun.2003305227127710.1016/S0006‑291X(03)00728‑912745069
    [Google Scholar]
  138. LiuW. XuZ. LiH. GuoM. YangT. FengS. XuB. DengY. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation.Hum. Exp. Toxicol.201736994996610.1177/096032711667735527837179
    [Google Scholar]
  139. BaiyunR. LiS. LiuB. LuJ. LvY. XuJ. WuJ. LiJ. LvZ. ZhangZ. Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury.Ecotoxicol. Environ. Saf.201816165566110.1016/j.ecoenv.2018.06.04629933135
    [Google Scholar]
  140. SirasanagandlaS.R. RoobenR.K. Rajkumar NarayananS.N. JettiR. Ascorbic Acid ameliorates nicotine exposure induced impaired spatial memory performances in rats.West Indian Med. J.201463431832425429474
    [Google Scholar]
  141. Rao SirasanagandlaS. Sreedhara Ranganath PaiK. BhatK.M. Preventive role of Emblica offcinalis and Cissus quadrangularis on bone loss in osteoporosis.Int. J. Pharm. Pharm. Sci.20135465470
    [Google Scholar]
  142. LiA.N. LiS. ZhangY.J. XuX.R. ChenY.M. LiH.B. Resources and biological activities of natural polyphenols.Nutrients20146126020604710.3390/nu612602025533011
    [Google Scholar]
  143. MichalakA. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress.Pol. J. Environ. Stud.200615523530
    [Google Scholar]
  144. MaestriD. NepoteV. LamarqueA.L. ZygadloJ. Natural products as antioxidants. Phytochemistry.Adv. Res.20062006105135
    [Google Scholar]
  145. AguilarT. NavarroB. PérezJ. Endogenous Antioxidants: A review of their role in oxidative stress.A Master Regulator of Oxidative Stress - The Transcription Factor Nrf2.InTech2021
    [Google Scholar]
  146. FormanH.J. ZhangH. RinnaA. Glutathione: Overview of its protective roles, measurement, and biosynthesis.Mol. Aspects Med.2009301-211210.1016/j.mam.2008.08.00618796312
    [Google Scholar]
  147. ImaiH. NakagawaY. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells.Free Radic. Biol. Med.200334214516910.1016/S0891‑5849(02)01197‑812521597
    [Google Scholar]
  148. YounusH. Therapeutic potentials of superoxide dismutase.Int. J. Health Sci.2018123889329896077
    [Google Scholar]
  149. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.201854428729310.1016/j.ajme.2017.09.001
    [Google Scholar]
  150. Markiewicz-GórkaI. PawlasK. JaremkówA. JanuszewskaL. PawłowskiP. PawlasN. Alleviating effect of α-lipoic acid and magnesium on cadmium-induced inflammatory processes, oxidative stress and bone metabolism disorders in wistar rats.Int. J. Environ. Res. Public Health20191622448310.3390/ijerph1622448331739465
    [Google Scholar]
  151. PackerL. WittE.H. TritschlerH.J. Alpha-lipoic acid as a biological antioxidant.Free Radic. Biol. Med.199519222725010.1016/0891‑5849(95)00017‑R7649494
    [Google Scholar]
  152. BjørklundG. AasethJ. CrisponiG. RahmanM.M. ChirumboloS. Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology.J. Inorg. Biochem.201919511111910.1016/j.jinorgbio.2019.03.01930939378
    [Google Scholar]
  153. DeoreM.S. SK. NaqviS. KumarA. FloraS.J.S. Alpha-lipoic acid protects co-exposure to lead and zinc oxide nanoparticles induced neuro, immuno and male reproductive toxicity in rats.Front. Pharmacol.20211262623810.3389/fphar.2021.62623834305580
    [Google Scholar]
  154. FloraS.J.S. TandonS.K. Preventive and therapeutic effects of thiamine, ascorbic acid and their combination in lead intoxication.Acta Pharmacol. Toxicol.198658537437810.1111/j.1600‑0773.1986.tb00124.x3739731
    [Google Scholar]
  155. SimonJ.A. HudesE.S. Relationship of ascorbic acid to blood lead levels.JAMA1999281242289229310.1001/jama.281.24.228910386552
    [Google Scholar]
  156. El-SokkaryG.H. AwadallaE.A. The protective role of vitamin C against cerebral and pulmonary damage induced by cadmium chloride in male adult albino rat.Open Neuroendocrinol. J.201141810.2174/1876528901104010001
    [Google Scholar]
  157. DawsonE.B. EvansD.R. HarrisW.A. TeterM.C. McGanityW.J. The effect of ascorbic acid supplementation on the blood lead levels of smokers.J. Am. Coll. Nutr.199918216617010.1080/07315724.1999.1071884510204833
    [Google Scholar]
  158. AliS. AwanZ. MumtazS. ShakirH.A. AhmadF. UlhaqM. TahirH.M. AwanM.S. SharifS. IrfanM. KhanM.A. Cardiac toxicity of heavy metals (cadmium and mercury) and pharmacological intervention by vitamin C in rabbits.Environ. Sci. Pollut. Res. Int.20202723292662927910.1007/s11356‑020‑09011‑932436095
    [Google Scholar]
  159. AjibadeT.O. OyagbemiA.A. OmobowaleT.O. AsenugaE.R. AdigunK.O. Quercetin and vitamin C mitigate cobalt chloride-induced hypertension through reduction in oxidative stress and nuclear factor kappa beta (NF-Kb) expression in experimental rat model.Biol. Trace Elem. Res.2017175234735910.1007/s12011‑016‑0773‑527283837
    [Google Scholar]
  160. OgnjanovićB.I. PavlovićS.Z. MaletićS.D. ŽikićR.V. ŠtajnA.Š. RadojičićR.M. SaičićZ.S. PetrovićV.M. Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium.Physiol. Res.200352556357010.33549/physiolres.93035914535831
    [Google Scholar]
  161. ReddyS.Y. PullakhandamR. Dinesh KumarB. Thiamine reduces tissue lead levels in rats: Mechanism of interaction.Biometals201023224725310.1007/s10534‑009‑9282‑820012160
    [Google Scholar]
  162. Mares-PerlmanJ.A. BradyW.E. KleinR. KleinB.E. BowenP. Stacewicz-SapuntzakisM. PaltaM. Serum antioxidants and age-related macular degeneration in a population-based case-control study.Arch. Ophthalmol.1995113121518152310.1001/archopht.1995.011001200480077487619
    [Google Scholar]
  163. GiovannucciE. ClintonS.K. Tomatoes, lycopene, and prostate cancer.Exp. Biol. Med.1998218212913910.3181/00379727‑218‑442779605211
    [Google Scholar]
  164. ShastriD. KumarM. KumarA. Modulation of lead toxicity by Spirulina fusiformis.Phytother. Res.199913325826010.1002/(SICI)1099‑1573(199905)13:3<258::AID‑PTR438>3.0.CO;2‑210353175
    [Google Scholar]
  165. SharmaM.K. SharmaA. KumarA. KumarM. Evaluation of protective efficacy of Spirulina fusiformis against mercury induced nephrotoxicity in Swiss albino mice.Food Chem. Toxicol.200745687988710.1016/j.fct.2006.11.00917215067
    [Google Scholar]
  166. ParkJ.H. LeeB.M. KimH.S. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress.J. Toxicol. Environ. Health B Crit. Rev.20212439511810.1080/10937404.2020.186084233357071
    [Google Scholar]
  167. BengmarkS. MesaM.D. GilA. Plant-derived health: The effects of turmeric and curcuminoids.Nutr. Hosp.200924327328119721899
    [Google Scholar]
  168. AlizadehM. KheirouriS. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions: A comprehensive meta-analysis of randomized controlled trials.Biomedicine2019942310.1051/bmdcn/201909042331724938
    [Google Scholar]
  169. KukongviriyapanU. PannangpetchP. KukongviriyapanV. DonpunhaW. SompamitK. SurawattanawanP. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice.Nutrients2014631194120810.3390/nu603119424662163
    [Google Scholar]
  170. EyblV. KotyzovaD. KoutenskyJ. Comparative study of natural antioxidants – curcumin, resveratrol and melatonin – in cadmium-induced oxidative damage in mice.Toxicology20062252-315015610.1016/j.tox.2006.05.01116806632
    [Google Scholar]
  171. DanielS. LimsonJ.L. DairamA. WatkinsG.M. DayaS. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain.J. Inorg. Biochem.200498226627510.1016/j.jinorgbio.2003.10.01414729307
    [Google Scholar]
  172. ChenC.H. HoM.L. ChangJ.K. HungS.H. WangG.J. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line.Osteoporos. Int.200516122039204510.1007/s00198‑005‑1995‑016170444
    [Google Scholar]
  173. SunT.L. LiuZ. QiZ.J. HuangY.P. GaoX.Q. ZhangY.Y. (-)-Epigallocatechin-3-gallate (EGCG) attenuates arsenic-induced cardiotoxicity in rats.Food Chem. Toxicol.20169310211010.1016/j.fct.2016.05.00427170490
    [Google Scholar]
  174. ChoiJ.H. RheeI.K. ParkK.Y. ParkK.Y. KimJ.K. RheeS.J. Action of green tea catechin on bone metabolic disorder in chronic cadmium-poisoned rats.Life Sci.200373121479148910.1016/S0024‑3205(03)00433‑812865088
    [Google Scholar]
  175. ChenL. YangX. JiaoH. ZhaoB. Tea catechins protect against lead-induced cytotoxicity, lipid peroxidation, and membrane fluidity in HepG2 cells.Toxicol. Sci.200269114915610.1093/toxsci/69.1.14912215669
    [Google Scholar]
  176. NguyenM.L. SchwartzS.J. Lycopene: Chemical and biological properties.Food Technol.1999533845
    [Google Scholar]
  177. LiN. WuX. ZhuangW. XiaL. ChenY. WuC. RaoZ. DuL. ZhaoR. YiM. WanQ. ZhouY. Tomato and lycopene and multiple health outcomes: Umbrella review.Food Chem.202134312839610.1016/j.foodchem.2020.12839633131949
    [Google Scholar]
  178. MüllerL. Caris-VeyratC. LoweG. BöhmV. Lycopene and its antioxidant role in the prevention of cardiovascular diseases-A critical review.Crit. Rev. Food Sci. Nutr.201656111868187910.1080/10408398.2013.80182725675359
    [Google Scholar]
  179. GoralczykR. SilerU. The role of lycopene in health and disease.Phytochem. Health Dis2004285309
    [Google Scholar]
  180. SharmaS. VijayaP. Cardioprotective effects of lycopene against cadmium induced toxicity in albino mice.Int. J. Health Sci. Res.20155507513
    [Google Scholar]
  181. SharmaS. RaniS. Possible protective role of aqueous tomato extract on hemato-biochemical parameters against sodium arsenite toxicity in albino rats.J. Pharm. Res. Int.2022122210.9734/jpri/2022/v34i14B35662
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673307446240514064253
Loading
/content/journals/cmc/10.2174/0109298673307446240514064253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test