Skip to content
2000
Volume 32, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Treatment of cancer, one of the most fatal diseases in the present century, has become a topic of global concern. Unfavorable unintentional effects of chemotherapy and radiation treatments have been the main reasons for the research on the discovery of drugs with a broader spectrum of effectiveness and efficiency, with minimal side effects. Curcumin (diferuloylmethane) is a naturally occurring phenolic structure with anticancer properties through its inhibition of cell multiplication, metastasis, and prolongation of cell cycle suppression of apoptosis in various tumor cells. The primary restriction regarding the use of curcumin in cancer treatment is related to poor bioavailability and unfavorable pharmacokinetic profiles of curcumin due to its poor absorption rate, fast metabolism, and systemic elimination. A variety of ways have been proposed to overcome these limitations. With this background, the present study focuses on providing a comprehensive overview of the anticancer properties of curcumin derivatives and the synthesis of curcumin analogs with application to different types of cancers. The regulation of various target and signaling pathways is considered in various cancers, including breast, gastrointestinal, pancreatic, prostate, skin, and lung cancers. A review of the literature indicates that modifying the structure of curcumin through the substitution of the phenyl group and unsaturated carbon branch around the two main sites of oxygen can result in the improvement of physical and chemical properties, as well as the enhancement of physiological activities of the curcumin molecule and the anti-cancer activities of this polyphenol. Curcumin analogs demonstrate anticancer properties at multiple targets at different cell stages and by various signaling biochemical pathways. These include cytokines, transcription factors, growth factors, and modulation of genes involved in cellular proliferation and apoptosis in breast, gastrointestinal, skin, prostate, and lung cancers, thereby mitigating tumor progression.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673256932231123151626
2024-01-23
2025-10-22
Loading full text...

Full text loading...

References

  1. GuptaA. Anticancer curcumin: Natural analogues and structure-activity relationship. Studies in natural products chemistry.Elsevier2017355401
    [Google Scholar]
  2. AlibeikiF. JafariN. KarimiM. Peeri DogahehH. Potent anti-cancer effects of less polar Curcumin analogues on gastric adenocarcinoma and esophageal squamous cell carcinoma cells.Sci. Rep.201771255910.1038/s41598‑017‑02666‑4 28566729
    [Google Scholar]
  3. GoelA. KunnumakkaraA.B. AggarwalB.B. Curcumin as “Curecumin”: From kitchen to clinic.Biochem. Pharmacol.200875478780910.1016/j.bcp.2007.08.016 17900536
    [Google Scholar]
  4. MohammadiA. BlessoC.N. BarretoG.E. BanachM. MajeedM. SahebkarA. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent.J. Nutri. Biochem.20196611610.1016/j.jnutbio.2018.12.005
    [Google Scholar]
  5. PanahiY. FazlolahzadehO. AtkinS.L. MajeedM. ButlerA.E. JohnstonT.P. SahebkarA. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review.J. Cell. Physiol.201923421165117810.1002/jcp.27096
    [Google Scholar]
  6. KeihanianF. SaeidiniaA. BagheriR.K. JohnstonT.P. SahebkarA. Curcumin, hemostasis, thrombosis, and coagulation.J. Cell. Physiol.201823364497451110.1002/jcp.26249 29052850
    [Google Scholar]
  7. KhayatanD. RazaviS.M. ArabZ.N. NiknejadA.H. NouriK. MomtazS. GumprichtE. JamialT. AbdolghaffariA.H. BarretoG.E. SahebkarA. Protective effects of curcumin against traumatic brain injury.Biomed. Pharmacother.202215411362110.1016/j.biopha.2022.113621 36055110
    [Google Scholar]
  8. Mokhtari-ZaerA. MarefatiN. AtkinS.L. ButlerA.E. SahebkarA. The protective role of curcumin in myocardial ischemia–reperfusion injury.J. Cell. Physiol.2019234121422210.1002/jcp.26848 29968913
    [Google Scholar]
  9. PanahiY. SahebkarA. AmiriM. DavoudiS.M. BeiraghdarF. HoseininejadS.L. KolivandM. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: Results of a randomised, double-blind, placebo-controlled trial.Br. J. Nutri.201210871272127910.1017/S0007114511006544
    [Google Scholar]
  10. SahebkarA. Curcuminoids for the management of hypertriglyceridaemia.Nat. Rev. Cardiology201411212310.1038/nrcardio.2013.140‑c1
    [Google Scholar]
  11. CiceroA.F.G. SahebkarA. FogacciF. BoveM. GiovanniniM. BorghiC. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial.Eur. J. Nutri.202059247748310.1007/s00394‑019‑01916‑7
    [Google Scholar]
  12. HaoM. ChuY. LeiJ. YaoZ. WangP. ChenZ. WangK. SangX. HanX. WangL. CaoG. Pharmacological mechanisms and clinical applications of curcumin: Update.Aging Dis.202314371674910.14336/AD.2022.1101 37191432
    [Google Scholar]
  13. ZengY. LuoY. WangL. ZhangK. PengJ. FanG. Therapeutic effect of curcumin on metabolic diseases: Evidence from clinical studies.Int. J. Mol. Sci.2023244332310.3390/ijms24043323 36834734
    [Google Scholar]
  14. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r 17999464
    [Google Scholar]
  15. AfshariA.R. Jalili-NikM. Abbasinezhad-MoudF. JavidH. KarimiM. MollazadehH. JamialahmadiT. SathyapalanT. SahebkarA. Anti-tumor effects of curcuminoids in glioblastoma multiforme: An updated literature review.Curr. Med. Chem.202128398116813810.2174/1875533XMTExtNDA8x 33176632
    [Google Scholar]
  16. MarjanehR.M. RahmaniF. HassanianS.M. RezaeiN. HashemzehiM. BahramiA. AriakiaF. FiujiH. SahebkarA. AvanA. KhazaeiM. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.26538
    [Google Scholar]
  17. IranshahiM. SahebkarA. HosseiniS.T. TakasakiM. KonoshimaT. TokudaH. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo.Phytomedicine2010173-426927310.1016/j.phymed.2009.05.020 19577457
    [Google Scholar]
  18. MohajeriM. BianconiV. Ávila-RodriguezM.F. BarretoG.E. JamialahmadiT. PirroM. SahebkarA. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system.Pharmacol. Res.202015610476510.1016/j.phrs.2020.104765 32217147
    [Google Scholar]
  19. MohajeriM. SahebkarA. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review.Crit. Rev. Oncol. Hematol.2018122305110.1016/j.critrevonc.2017.12.005 29458788
    [Google Scholar]
  20. Abbas MomtaziA. SahebkarA. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile.Curr. Pharm. Des.201622284386439710.2174/1381612822666160527113501 27229723
    [Google Scholar]
  21. ShafabakhshR. PourhanifehM.H. MirzaeiH.R. SahebkarA. AsemiZ. MirzaeiH. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy.Pharmacol. Res.201914710435310.1016/j.phrs.2019.104353 31306775
    [Google Scholar]
  22. HussainA. KumarA. UttamV. SharmaU. SakK. SainiR.V. SainiA.K. HaqueS. TuliH.S. JainA. SethiG. Application of curcumin nanoformulations to target folic acid receptor in cancer: Recent trends and advances.Environ. Res.202323311647610.1016/j.envres.2023.116476 37348632
    [Google Scholar]
  23. ZhangX. ZhuL. WangX. ZhangH. WangL. XiaL. Basic research on curcumin in cervical cancer: Progress and perspectives.Biomed. Pharmacother.202316211459010.1016/j.biopha.2023.114590 36965256
    [Google Scholar]
  24. AbdallahA.E. EissaS.I. Al WardM.M.S. MabroukR.R. MehanyA.B.M. El-ZahabiM.A. Design, synthesis and molecular modeling of new quinazolin-4(3H)-one based VEGFR-2 kinase inhibitors for potential anticancer evaluation.Bioorg. Chem.202110910469510.1016/j.bioorg.2021.104695 33647743
    [Google Scholar]
  25. PrasadS. GuptaS.C. TyagiA.K. AggarwalB.B. Curcumin, a component of golden spice: From bedside to bench and back.Biotechnol. Adv.20143261053106410.1016/j.biotechadv.2014.04.004 24793420
    [Google Scholar]
  26. Shelash Al-HawaryS.I. Abdalkareem JasimS. M KadhimM. Jaafar SaadoonS. AhmadI. Romero ParraR.M. Hasan HammoodiS. AbulkassimR. M HameedN. K AlkhafajeW. MustafaY.F. Javed AnsariM. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations.Phytother. Res.20233741624163910.1002/ptr.7757 36883769
    [Google Scholar]
  27. KunnumakkaraA.B. BordoloiD. PadmavathiG. MonishaJ. RoyN.K. PrasadS. AggarwalB.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases.Br. J. Pharmacol.2017174111325134810.1111/bph.13621 27638428
    [Google Scholar]
  28. YuX. ZhongJ. YanL. LiJ. WangH. WenY. ZhaoY. Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways.Int. J. Mol. Med.201638386186810.3892/ijmm.2016.2676 27432244
    [Google Scholar]
  29. WangJ. WangY. LiuQ. YangL. ZhuR. YuC. WangS. Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy.ACS Appl. Mater. Interfaces2016840265112652310.1021/acsami.6b08400 27619078
    [Google Scholar]
  30. McGeeS. Understanding metastasis: Current paradigms and therapeutic challenges in breast cancer progression.RCSI Student Med. J.201035660
    [Google Scholar]
  31. NakanishiC. ToiM. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs.Nat. Rev. Cancer20055429730910.1038/nrc1588 15803156
    [Google Scholar]
  32. MohankumarK. SridharanS. PajaniradjeS. SinghV.K. RonsardL. BanerjeaA.C. SomasundaramD.B. CoumarM.S. PeriyasamyL. RajagopalanR. BDMC-A, an analog of curcumin, inhibits markers of invasion, angiogenesis, and metastasis in breast cancer cells via NF-κB pathway-A comparative study with curcumin.Biomed. Pharmacother.20157417818610.1016/j.biopha.2015.07.024 26349982
    [Google Scholar]
  33. KambleS. UtageB. MogleP. KambleR. HeseS. DawaneB. GaccheR. Evaluation of curcumin capped copper nanoparticles as possible inhibitors of human breast cancer cells and angiogenesis: A comparative study with native curcumin.AAPS PharmSciTech20161751030104110.1208/s12249‑015‑0435‑5 26729534
    [Google Scholar]
  34. CondeJ. DoriaG. BaptistaP. Noble metal nanoparticles applications in cancerJ. Drug Deliv.2012201210.1155/2012/751075
    [Google Scholar]
  35. UsmanM. IbrahimN. ShameliK. ZainuddinN. YunusW. Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods.Molecules20121712149281493610.3390/molecules171214928 23242252
    [Google Scholar]
  36. DeD. DasC.K. MandalD. MandalM. PawarN. ChandraA. GuptaA.N. Curcumin complexed with graphene derivative for breast cancer therapy.ACS Appl. Bio Mater.2020396284629610.1021/acsabm.0c00771 35021759
    [Google Scholar]
  37. LuJ. SteegP.S. PriceJ.E. KrishnamurthyS. ManiS.A. ReubenJ. CristofanilliM. DontuG. BidautL. ValeroV. HortobagyiG.N. YuD. Breast cancer metastasis: Challenges and opportunities.Cancer Res.200969124951495310.1158/0008‑5472.CAN‑09‑0099 19470768
    [Google Scholar]
  38. WangR. ChenC. ZhangX. ZhangC. ZhongQ. ChenG. ZhangQ. ZhengS. WangG. ChenQ.H. Structure–activity relationship and pharmacokinetic studies of 1, 5-diheteroarylpenta-1, 4-dien-3-ones: a class of promising curcumin-based anticancer agents.J. Med. Chem.201558114713472610.1021/acs.jmedchem.5b00470 25961334
    [Google Scholar]
  39. Robles-EscajedaE. DasU. OrtegaN.M. ParraK. FranciaG. DimmockJ.R. Varela-RamirezA. AguileraR.J. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells.Cell Oncol. (Dordr.)201639326527710.1007/s13402‑016‑0272‑x 26920032
    [Google Scholar]
  40. HamdyR. ZiedanN.I. AliS. BordoniC. El-SadekM. LashinE. BrancaleA. JonesA.T. WestwellA.D. Synthesis and evaluation of 5-(1 H -indol-3-yl)- N -aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents.Bioorg. Med. Chem. Lett.20172741037104010.1016/j.bmcl.2016.12.061 28087272
    [Google Scholar]
  41. KamathP.R. SunilD. JosephM.M. Abdul SalamA.A. T TS. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential.Eur. J. Med. Chem.201713644245110.1016/j.ejmech.2017.05.032 28525842
    [Google Scholar]
  42. BhuvaneswariK. SivaguruP. LalithaA. Synthesis, biological evaluation and molecular docking of novel curcumin derivatives as bcl‐2 inhibitors targeting human breast cancer mcf‐7 cells.ChemistrySelect2017235115521156010.1002/slct.201702406
    [Google Scholar]
  43. BonaccorsiP.M. LabbozzettaM. BarattucciA. SalernoT.M.G. PomaP. NotarbartoloM. Synthesis of curcumin derivatives and analysis of their antitumor effects in triple negative breast cancer (TNBC) cell lines.Pharmaceuticals201912416110.3390/ph12040161 31717764
    [Google Scholar]
  44. ChiuY.J. TsaiF.J. BauD.T. ChangL.C. HsiehM.T. LuC.C. KuoS.C. YangJ.S. Next generation sequencing analysis reveals that MTH 3, a novel curcuminoid derivative, suppresses the invasion of MDA MB 231 triple negative breast adenocarcinoma cells.Oncol. Rep.202146113310.3892/or.2021.8084 34013378
    [Google Scholar]
  45. BarreiroE.J. FragaC.A.M. MirandaA.L.P. RodriguesC.R. A química medicinal de N-acilidrazonas: Novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos.Quim. Nova200225112914810.1590/S0100‑40422002000100022
    [Google Scholar]
  46. MandalapuD. SainiK.S. GuptaS. SharmaV. Yaseen MalikM. ChaturvediS. BalaV. Hamidullah ThakurS. MaikhuriJ.P. WahajuddinM. KonwarR. GuptaG. SharmaV.L. Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines.Bioorg. Med. Chem. Lett.201626174223423210.1016/j.bmcl.2016.07.053 27496212
    [Google Scholar]
  47. SinhaD. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Seminars in cancer biology.Elsevier201610.1016/j.semcancer.2015.11.001
    [Google Scholar]
  48. HsiehT. HuangY. WuJ.M. Control of prostate cell growth, DNA damage and repair and gene expression by resveratrol analogues, in vitro.Carcinogenesis20113219310110.1093/carcin/bgq230 21045015
    [Google Scholar]
  49. de Freitas SilvaM. CoelhoL.F. GuirelliI.M. PereiraR.M. Ferreira-SilvaG.Á. GraravelliG.Y. HorvathR.O. CaixetaE.S. IontaM. ViegasC. Synthetic resveratrol-curcumin hybrid derivative inhibits mitosis progression in estrogen positive MCF-7 breast cancer cells.Toxicol. In Vitro201850758510.1016/j.tiv.2018.02.020 29501629
    [Google Scholar]
  50. PanieriE. SantoroM. ROS homeostasis and metabolism: A dangerous liaison in cancer cells.Cell Death Dis.20167e2253
    [Google Scholar]
  51. AliN.M. YeapS.K. AbuN. LimK.L. KyH. PauziA.Z.M. HoW.Y. TanS.W. Alan-OngH.K. ZareenS. AlitheenN.B. AkhtarM.N. Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells.Cancer Cell Int.20171713010.1186/s12935‑017‑0400‑3 28239299
    [Google Scholar]
  52. TaylorW.R. StarkG.R. Regulation of the G2/M transition by p53.Oncogene200120151803181510.1038/sj.onc.1204252 11313928
    [Google Scholar]
  53. WangL. WangC. TaoZ. ZhaoL. ZhuZ. WuW. HeY. ChenH. ZhengB. HuangX. YuY. YangL. LiangG. CuiR. ChenT. Curcumin derivative WZ35 inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in breast cancer.J. Exp. Clin. Cancer Res.201938146010.1186/s13046‑019‑1424‑4 31703744
    [Google Scholar]
  54. MeiyantoE. PutriH. Arum LarasatiY. Yudi UtomoR. Istighfari JenieR. IkawatiM. LestariB. Yoneda-KatoN. NakamaeI. KawaichiM. KatoJ.Y. Anti-proliferative and anti-metastatic potential of curcumin analogue, pentagamavunon-1 (pgv-1), toward highly metastatic breast cancer cells in correlation with ROS generation.Adv. Pharm. Bull.20199344545210.15171/apb.2019.053 31592109
    [Google Scholar]
  55. FavoritiP. CarboneG. GrecoM. PirozziF. PirozziR.E.M. CorcioneF. Worldwide burden of colorectal cancer: A review.Updates Surg.201668171110.1007/s13304‑016‑0359‑y 27067591
    [Google Scholar]
  56. SiegelR.L. MillerK.D. Goding SauerA. FedewaS.A. ButterlyL.F. AndersonJ.C. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.21601 32133645
    [Google Scholar]
  57. YoussefK.M. EzzoA.M. El-SayedM.I. HazzaaA.A. EL-MedanyA.H. ArafaM. Chemopreventive effects of curcumin analogs in DMH-Induced colon cancer in albino rats model.Future J. Pharm. Sci.201512577210.1016/j.fjps.2015.11.001
    [Google Scholar]
  58. SiegelR. DeSantisC. JemalA. Colorectal cancer statistics, 2014.CA Cancer J. Clin.201464210411710.3322/caac.21220 24639052
    [Google Scholar]
  59. GermaniA. MatroneA. GrossiV. PesericoA. SaneseP. LiuzziM. PalermoR. MurzilliS. CampeseA.F. IngravalloG. CanettieriG. TezilT. SimoneC. Targeted therapy against chemoresistant colorectal cancers: Inhibition of p38α modulates the effect of cisplatin in vitro and in vivo through the tumor suppressor FoxO3A.Cancer Lett.2014344111011810.1016/j.canlet.2013.10.035 24215867
    [Google Scholar]
  60. UllahM.F. BhatS.H. HusainE. Abu-DuhierF. HadiS.M. SarkarF.H. AhmadA. Pharmacological intervention through dietary nutraceuticals in gastrointestinal neoplasia.Crit. Rev. Food Sci. Nutr.20165691501151810.1080/10408398.2013.772091 25365584
    [Google Scholar]
  61. NagarajuG.P. AleseO.B. LandryJ. DiazR. El-RayesB.F. HSP90 inhibition downregulates thymidylate synthase and sensitizes colorectal cancer cell lines to the effect of 5FU-based chemotherapy.Oncotarget20145209980999110.18632/oncotarget.2484 25296971
    [Google Scholar]
  62. RajithaB. BelalcazarA. NagarajuG.P. ShaibW.L. SnyderJ.P. ShojiM. PattnaikS. AlamA. El-RayesB.F. Inhibition of NF-κB translocation by curcumin analogs induces G0/G1 arrest and downregulates thymidylate synthase in colorectal cancer.Cancer Lett.2016373222723310.1016/j.canlet.2016.01.052 26850372
    [Google Scholar]
  63. ChenD. DaiF. ChenZ. WangS. ChengX. ShengQ. LinJ. ChenW. Dimethoxy curcumin induces apoptosis by suppressing survivin and inhibits invasion by enhancing E-cadherin in colon cancer cells.Med. Sci. Monit.2016223215322210.12659/MSM.900802 27614381
    [Google Scholar]
  64. TamvakopoulosC. DimasK. SofianosZ.D. HatziantoniouS. HanZ. LiuZ.L. WycheJ.H. PantazisP. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin.Clin. Cancer Res.20071341269127710.1158/1078‑0432.CCR‑06‑1839 17317839
    [Google Scholar]
  65. ZhangH. XuF. XieT. JinH. ShiL. β-elemene induces glioma cell apoptosis by downregulating survivin and its interaction with hepatitis B X-interacting protein.Oncol. Rep.20122862083209010.3892/or.2012.2022 22965456
    [Google Scholar]
  66. HeG. FengC. VinothkumarR. ChenW. DaiX. ChenX. YeQ. QiuC. ZhouH. WangY. LiangG. XieY. WuW. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells.Cancer Chemother. Pharmacol.20167861151116110.1007/s00280‑016‑3172‑x 27787644
    [Google Scholar]
  67. MegnaB.W. CarneyP.R. DepkeM.G. NukayaM. McNallyJ. LarsenL. RosengrenR.J. KennedyG.D. The aryl hydrocarbon receptor as an antitumor target of synthetic curcuminoids in colorectal cancer.J. Surg. Res.2017213162410.1016/j.jss.2017.02.010 28601309
    [Google Scholar]
  68. IkutaT. KurosumiM. YatsuokaT. NishimuraY. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression.Exp. Cell Res.2016343212613410.1016/j.yexcr.2016.03.012 26973338
    [Google Scholar]
  69. GandhyS.U. KimK. LarsenL. RosengrenR.J. SafeS. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs.BMC Cancer201212156410.1186/1471‑2407‑12‑564 23194063
    [Google Scholar]
  70. Somers-EdgarT.J. TaurinS. LarsenL. ChandramouliA. NelsonM.A. RosengrenR.J. Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines.Invest. New Drugs2011291879710.1007/s10637‑009‑9339‑0 19816657
    [Google Scholar]
  71. LiangB. LiuZ. CaoY. ZhuC. ZuoY. HuangL. WenG. ShangN. ChenY. YueX. DuJ. LiB. ZhouB. BuX. MC37, a new mono-carbonyl curcumin analog, induces G2/M cell cycle arrest and mitochondria-mediated apoptosis in human colorectal cancer cells.Eur. J. Pharmacol.201779613914810.1016/j.ejphar.2016.12.030 28024945
    [Google Scholar]
  72. LaaliK.K. ZwaryczA.T. BungeS.D. BoroskyG.L. NukayaM. KennedyG.D. Deuterated curcuminoids: Synthesis, structures, computational/docking and comparative cell viability assays against colorectal cancer.ChemMedChem201914121173118410.1002/cmdc.201900179 30995360
    [Google Scholar]
  73. DeWittS.H. MaryanoffB.E. Deuterated drug molecules: Focus on fda-approved deutetrabenazine: Published as part of the Biochemistry series Biochemistry to BedsideACS Publications20185754723
    [Google Scholar]
  74. SharmaS. GuptaM.K. SaxenaA.K. BediP.M.S. Triazole linked mono carbonyl curcumin-isatin bifunctional hybrids as novel anti tubulin agents: Design, synthesis, biological evaluation and molecular modeling studies.Bioorg. Med. Chem.201523227165718010.1016/j.bmc.2015.10.013 26515041
    [Google Scholar]
  75. MurtyM.S.R. PenthalaR. PolepalliS. JainN. Synthesis and biological evaluation of novel resveratrol-oxadiazole hybrid heterocycles as potential antiproliferative agents.Med. Chem. Res.201625462764310.1007/s00044‑016‑1514‑1
    [Google Scholar]
  76. Herrera-RA. CastrillónW. OteroE. RuizE. CardaM. AgutR. NaranjoT. MorenoG. MaldonadoM.E. Cardona-GW. Synthesis and antiproliferative activity of] 3- and 7-styrylcoumarins.Med. Chem. Res.20182781893190510.1007/s00044‑018‑2202‑0
    [Google Scholar]
  77. HernándezC. MorenoG. Herrera-RA. Cardona-GW. New hybrids based on curcumin and resveratrol: Synthesis, cytotoxicity and antiproliferative activity against colorectal cancer cells.Molecules2021269266110.3390/molecules26092661 34062841
    [Google Scholar]
  78. HuangT. SongC. ZhengL. XiaL. LiY. ZhouY. The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy.Mol. Cancer20191816210.1186/s12943‑019‑0967‑5 30925929
    [Google Scholar]
  79. SilvaG. Teixeira LimaF. SebaV. Mendes LourençoA. LucasT. de AndradeB. TorrezanG. PolaquiniC. GarciaM. CoutoL. BestettiR. de Castro FrançaS. FachinA. RegasiniL. MarinsM. Curcumin analog CH-5 suppresses the proliferation, migration, and invasion of the human gastric cancer cell line HGC-27.Molecules201823227910.3390/molecules23020279 29385675
    [Google Scholar]
  80. NohS. JungJ.J. JungM. KimT.S. ParkC.H. LimS.J. JeungH.C. CheolH. ChungH.C. RhaS.Y. MMP-2 as a putative biomarker for carcinomatosis in gastric cancer.Hepatogastroenterology2011581122015201910.5754/hge11209 22024074
    [Google Scholar]
  81. RajamanickamV. YanT. WuL. ZhaoY. XuX. ZhuH. ChenX. WangM. LiuZ. LiuZ. LiangG. WangY. Allylated curcumin analog ca6 inhibits trxr1 and leads to ros-dependent apoptotic cell death in gastric cancer through akt-foxo3a.Cancer Manag. Res.20201224726310.2147/CMAR.S227415 32021440
    [Google Scholar]
  82. SiegelR. MaJ. ZouZ. JemalA. Cancer statistics, 2014.CA Cancer J. Clin.201464192910.3322/caac.21208 24399786
    [Google Scholar]
  83. VincentA. HermanJ. SchulickR. HrubanR.H. GogginsM. Pancreatic cancer.Lancet2011378979160762010.1016/S0140‑6736(10)62307‑0 21620466
    [Google Scholar]
  84. CollocaG. VenturinoA. GuarneriD. Analysis of response-related and time-to-event endpoints in randomized trials of gemcitabine-based treatment versus gemcitabine alone as first-line treatment of patients with advanced pancreatic cancer.Clin. Colorectal Cancer201615326427610.1016/j.clcc.2015.11.006 26776098
    [Google Scholar]
  85. XiangX. ZhangL. LiJ. ZhanZ. FengM. ChenJ. XiongJ.P. A phase II study of biweekly gemcitabine at fixed dose rate infusion plus S1 as first-line chemotherapy in patients with locally advanced or metastatic pancreatic cancer.American Society of Clinical Oncology201635710.1200/jco.2016.34.4_suppl.357
    [Google Scholar]
  86. NagarajuG.P. ZhuS. WenJ. FarrisA.B. AdsayV.N. DiazR. SnyderJ.P. MamoruS. El-RayesB.F. Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer.Cancer Lett.2013341219520310.1016/j.canlet.2013.08.002 23933177
    [Google Scholar]
  87. LiuS. LiuZ. XieZ. PangJ. YuJ. LehmannE. HuynhL. VukosavljevicT. TakekiM. KlisovicR.B. BaiocchiR.A. BlumW. PorcuP. GarzonR. ByrdJ.C. PerrottiD. CaligiuriM.A. ChanK.K. WuL.C. MarcucciG. Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-κB–dependent DNA methyltransferase activity in acute myeloid leukemia.Blood200811142364237310.1182/blood‑2007‑08‑110171 18083845
    [Google Scholar]
  88. ZhouQ. AgostonA.T. AtadjaP. NelsonW.G. DavidsonN.E. Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells.Mol. Cancer Res.20086587388310.1158/1541‑7786.MCR‑07‑0330 18505931
    [Google Scholar]
  89. GundewarC. AnsariD. TangL. WangY. LiangG. RosendahlA.H. SaleemM.A. AnderssonR. Antiproliferative effects of curcumin analog L49H37 in pancreatic stellate cells: A comparative study.Ann. Gastroenterol.2015283391398 26129848
    [Google Scholar]
  90. PrabhuL. MundadeR. KorcM. LoehrerP.J. LuT. Critical role of NF-κB in pancreatic cancer.Oncotarget2014522109691097510.18632/oncotarget.2624 25473891
    [Google Scholar]
  91. AggarwalB.B. SungB. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets.Trends Pharmacol. Sci.2009302859410.1016/j.tips.2008.11.002 19110321
    [Google Scholar]
  92. HoeselB. SchmidJ.A. The complexity of NF-κB signaling in inflammation and cancer.Mol. Cancer20131218610.1186/1476‑4598‑12‑86 23915189
    [Google Scholar]
  93. XieX. TuJ. YouH. HuB. Design, synthesis, and biological evaluation of novel EF24 and EF31 analogs as potential IκB kinase β inhibitors for the treatment of pancreatic cancer.Drug Des. Devel. Ther.2017111439145110.2147/DDDT.S133172 28553074
    [Google Scholar]
  94. HwangJ.M. TingW.J. WuH.C. ChenY.J. TsaiF.J. ChenP.Y. LiuC.Y. ChouL.C. KuoS.C. HuangC.Y. KHC-4 anti-cancer effects on human PC3 prostate cancer cell line.Am. J. Chin. Med.20124051063107110.1142/S0192415X12500784 22928835
    [Google Scholar]
  95. ValencaL.B. SweeneyC.J. PomerantzM.M. Sequencing current therapies in the treatment of metastatic prostate cancer.Cancer Treat. Rev.201541433234010.1016/j.ctrv.2015.02.010 25784591
    [Google Scholar]
  96. KretschmerA. Helping or hurting.2018lmu
    [Google Scholar]
  97. ZhangX. ChenM. ZouP. KanchanaK. WengQ. ChenW. ZhongP. JiJ. ZhouH. HeL. LiangG. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells.BMC Cancer201515186610.1186/s12885‑015‑1851‑3 26546056
    [Google Scholar]
  98. ChenM. ZhouB. ZhongP. RajamanickamV. DaiX. KarvannanK. ZhouH. ZhangX. LiangG. Increased intracellular reactive oxygen species mediates the anti‐cancer effects of wz35 via activating mitochondrial apoptosis pathway in prostate cancer cells.Prostate201777548950410.1002/pros.23287 27990666
    [Google Scholar]
  99. MapoungS. SuzukiS. FujiS. Naiki-ItoA. KatoH. YodkeereeS. OvatlarnpornC. TakahashiS. Limtrakul DejkriengkraikulP. Cyclohexanone curcumin analogs inhibit the progression of castration-resistant prostate cancer in vitro and in vivo.Cancer Sci.2019110259660710.1111/cas.13897 30499149
    [Google Scholar]
  100. TorreL.A. SiegelR.L. WardE.M. JemalA. Global cancer incidence and mortality rates and trends-An update.Cancer Epidemiol. Biomarkers Prev.2016251162710.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  101. TorreL.A. SiegelR.L. JemalA. Lung cancer statistics. Lung cancer and personalized medicine.Springer201611910.1007/978‑3‑319‑24223‑1_1
    [Google Scholar]
  102. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.21262 25651787
    [Google Scholar]
  103. ZhouG.Z. CaoF.K. DuS.W. The apoptotic pathways in the curcumin analog MHMD-induced lung cancer cell death and the essential role of actin polymerization during apoptosis.Biomed. Pharmacother.20157112813410.1016/j.biopha.2015.02.025 25960227
    [Google Scholar]
  104. LiuG.Y. ZhaiQ. ChenJ.Z. ZhangZ.Q. YangJ. 2,2′-Fluorine mono-carbonyl curcumin induce reactive oxygen species-Mediated apoptosis in Human lung cancer NCI-H460 cells.Eur. J. Pharmacol.201678616116810.1016/j.ejphar.2016.06.009 27266668
    [Google Scholar]
  105. FengC. XiaY. ZouP. ShenM. HuJ. YingS. PanJ. LiuZ. DaiX. ZhugeW. LiangG. RuanY. Curcumin analog L48H37 induces apoptosis through ROS‐mediated endoplasmic reticulum stress and STAT3 pathways in human lung cancer cells.Mol. Carcinog.20175671765177710.1002/mc.22633 28218464
    [Google Scholar]
  106. ZhouG.Z. GuoS.S. LiuD.X. ZhangL. SunG.C. Antiproliferative effect and autophagy induction of curcumin derivative ZYX02‐Na on the human lung cancer cells A549.J. Biochem. Mol. Toxicol.20203412e2259210.1002/jbt.22592 33176062
    [Google Scholar]
  107. Van AllenE.M. WagleN. SuckerA. TreacyD.J. JohannessenC.M. GoetzE.M. PlaceC.S. Taylor-WeinerA. WhittakerS. KryukovG.V. HodisE. RosenbergM. McKennaA. CibulskisK. FarlowD. ZimmerL. HillenU. GutzmerR. GoldingerS.M. UgurelS. GogasH.J. EgbertsF. BerkingC. TrefzerU. LoquaiC. WeideB. HasselJ.C. GabrielS.B. CarterS.L. GetzG. GarrawayL.A. SchadendorfD. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma.Cancer Discov.2014419410910.1158/2159‑8290.CD‑13‑0617 24265153
    [Google Scholar]
  108. PisanoM. PalombaA. TancaA. PagnozziD. UzzauS. AddisM.F. DettoriM.A. FabbriD. PalmieriG. RozzoC. Protein expression changes induced in a malignant melanoma cell line by the curcumin analogue compound D6.BMC Cancer201616131710.1186/s12885‑016‑2362‑6 27192978
    [Google Scholar]
  109. OliveiraÉ.A. LimaD.S. CardozoL.E. SouzaG.F. de SouzaN. Alves-FernandesD.K. Faião-FloresF. QuincocesJ.A.P. BarrosS.B.M. NakayaH.I. MonteiroG. Maria-EnglerS.S. Toxicogenomic and bioinformatics platforms to identify key molecular mechanisms of a curcumin-analogue DM-1 toxicity in melanoma cells.Pharmacol. Res.2017125Pt B17818710.1016/j.phrs.2017.08.01828882690
    [Google Scholar]
  110. ParasharK. SoodS. MehaidliA. CurranC. VeghC. NguyenC. PignanelliC. WuJ. LiangG. WangY. PandeyS. Evaluating the anti-cancer efficacy of a synthetic curcumin analog on human melanoma cells and its interaction with standard chemotherapeutics.Molecules20192413248310.3390/molecules24132483 31284561
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673256932231123151626
Loading
/content/journals/cmc/10.2174/0109298673256932231123151626
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): breast cancer; cancer; Curcumin; curcumin synthetic analogs; lung cancer; review
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test