Skip to content
2000
Volume 32, Issue 17
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Neglected Tropical Diseases (NTD) are chronic infectious conditions that primarily affect marginalized populations. The chemotherapeutic arsenal available for treating NTD is limited and outdated, which poses a challenge in controlling and eradicating these diseases. This is exacerbated by the pharmaceutical industry's lack of interest in funding the development of new therapeutic alternatives. In addition, a considerable number of drugs used in NTD therapy have low aqueous solubility. To address this issue, solubility enhancement strategies, such as the use of inclusion complexes with cyclodextrins (CD) can be employed.

Objective

Therefore, this systematic review aims to present the application of CD in complexing with drugs and chemotherapeutic compounds used in the therapy of some of the most prevalent NTD worldwide and how these complexes can enhance the treatment of these diseases.

Methods

Two bibliographic databases, Science Direct and PubMed, were used to conduct the search. The selection of studies and the writing of this systematic review followed the criteria outlined by the PRISMA guidelines.

Results

From a total of 978 articles, 23 were selected after applying the exclusion criteria. All the studies selected were consistent with the use of CD as a strategy to increase the solubility of therapeutic agents used in NTD.

Conclusion

The results indicate that CD can enhance the solubility of chemotherapeutic agents for the treatment of Neglected Tropical Diseases (NTD). This review presents data that clearly highlights the potential use of CD in the development of new treatments for neglected tropical diseases. It can assist in the formulation of future treatments that are more effective and safer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673318410240627031819
2024-07-03
2025-09-04
Loading full text...

Full text loading...

References

  1. WeldE.D. WaittC. BarnesK. Garcia BournissenF. Twice neglected? Neglected diseases in neglected populations.Br. J. Clin. Pharmacol.202288236737310.1111/bcp.1514834888909
    [Google Scholar]
  2. JB. MB.M. ChandaK. An overview on the therapeutics of neglected infectious diseases-leishmaniasis and chagas diseases.Front Chem.2021962228610.3389/fchem.2021.62228633777895
    [Google Scholar]
  3. SripaB. LeonardoL. HongS.J. ItoA. BrattigN.W. Status and perspective of asian neglected tropical diseases.Acta Trop.202222510621210.1016/j.actatropica.2021.10621234687645
    [Google Scholar]
  4. World Health Organization, Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030. 2020. Available from: https://www.who.int/publications/i/item/9789240 052932 (accessed on 13-6-2024)
  5. World Health OrganizationNeglected tropical diseases.2021https://www.who.int/health-topics/neglected-tropical-diseases
    [Google Scholar]
  6. FerrazL.R.M. SilvaL.C.P.B.B. SouzaM.L. AlvesL.P. SalesV.A.W. BarbosaI.N.G. AndradeM.C. SantosW.M. RolimL.A. Rolim-NetoP.J. Drug associations as alternative and complementary therapy for neglected tropical diseases.Acta Trop.202222510621010.1016/j.actatropica.2021.10621034687644
    [Google Scholar]
  7. VerrestL. DorloT.P.C. Lack of clinical pharmacokinetic studies to optimize the treatment of neglected tropical diseases: a systematic review.Clin. Pharmacokinet.201756658360610.1007/s40262‑016‑0467‑327744580
    [Google Scholar]
  8. SanchezM.C. CupitP.M. BuL. CunninghamC. Transcriptomic analysis of reduced sensitivity to praziquantel in Schistosoma mansoni.Mol. Biochem. Parasitol.201922861510.1016/j.molbiopara.2018.12.00530658180
    [Google Scholar]
  9. OliveiraN.F. SilvaC.L.M. Unveiling the potential of purinergic signaling in schistosomiasis treatment.Curr. Top. Med. Chem.202121319320410.2174/156802662066620092411511332972342
    [Google Scholar]
  10. AldasoroE. PosadaE. Requena-MéndezA. Calvo- CanoA. SerretN. CasellasA. SanzS. SoyD. PinazoM.J. GasconJ. What to expect and when: benznidazole toxicity in chronic Chagas’ disease treatment.J. Antimicrob. Chemother.20187341060106710.1093/jac/dkx51629351667
    [Google Scholar]
  11. MaguireJ.H. Treatment of chagas’ disease - time is running out.N. Engl. J. Med.2015373141369137010.1056/NEJMe151017026323936
    [Google Scholar]
  12. MengardaA.C. IlesB. F LongoJ.P. de MoraesJ. Recent trends in praziquantel nanoformulations for helminthiasis treatment.Expert Opin. Drug Deliv.202219438339310.1080/17425247.2022.205147735264036
    [Google Scholar]
  13. MaheshwariK.K. BandyopadhyayD. Heterocycles in the treatment of neglected tropical diseases.Curr. Med. Chem.202128347249510.2174/092986732766620021914165232072886
    [Google Scholar]
  14. OliveraM.J. CucunubáZ.M. Valencia-HernándezC.A. HerazoR. Agreda-RudenkoD. FlórezC. DuqueS. NichollsR.S. Risk factors for treatment interruption and severe adverse effects to benznidazole in adult patients with Chagas disease.PLoS One2017129e018503310.1371/journal.pone.018503328949997
    [Google Scholar]
  15. da SilvaV.B.R. CamposB.R.K.L. de OliveiraJ.F. DecoutJ.L. do Carmo Alves de LimaM. Medicinal chemistry of antischistosomal drugs: Praziquantel and oxamniquine.Bioorg. Med. Chem.201725133259327710.1016/j.bmc.2017.04.03128495384
    [Google Scholar]
  16. JoshiG. QuadirS.S. YadavK.S. Road map to the treatment of neglected tropical diseases: Nanocarriers interventions.J. Control. Release2021339517410.1016/j.jconrel.2021.09.02034555491
    [Google Scholar]
  17. ZhaoF. YinH. LiJ. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug.Biomaterials20143531050106210.1016/j.biomaterials.2013.10.04424189097
    [Google Scholar]
  18. JansookP. OgawaN. LoftssonT. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications.Int. J. Pharm.20185351-227228410.1016/j.ijpharm.2017.11.01829138045
    [Google Scholar]
  19. TianB. HuaS. LiuJ. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review.Carbohydr. Polym.202023211580510.1016/j.carbpol.2019.11580531952603
    [Google Scholar]
  20. ArrúaE.C. FerreiraM.J.G. SalomonC.J. NunesT.G. Elucidating the guest-host interactions and complex formation of praziquantel and cyclodextrin derivatives by 13 C and 15 N solid-state NMR spectroscopy.Int. J. Pharm.2015496281282110.1016/j.ijpharm.2015.11.02626602291
    [Google Scholar]
  21. SaokhamP. MuankaewC. JansookP. LoftssonT. Solubility of cyclodextrins and drug/cyclodextrin complexes.Molecules2018235116110.3390/molecules2305116129751694
    [Google Scholar]
  22. MuankaewC. LoftssonT. Cyclodextrin-based formulations: a non-invasive platform for targeted drug delivery.Basic Clin. Pharmacol. Toxicol.20181221465510.1111/bcpt.1291729024354
    [Google Scholar]
  23. SchwarzD.H. EngelkeA. WenzG. Solubilizing steroidal drugs by β-cyclodextrin derivatives.Int. J. Pharm.2017531255956710.1016/j.ijpharm.2017.07.04628743551
    [Google Scholar]
  24. PopielecA. LoftssonT. Effects of cyclodextrins on the chemical stability of drugs.Int. J. Pharm.2017531253254210.1016/j.ijpharm.2017.06.00928596139
    [Google Scholar]
  25. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.BMJ2021372n7110.1136/bmj.n7133782057
    [Google Scholar]
  26. OuzzaniM. HammadyH. FedorowiczZ. ElmagarmidA. Rayyan-a web and mobile app for systematic reviews.Syst. Rev.20165121010.1186/s13643‑016‑0384‑427919275
    [Google Scholar]
  27. de SouzaM.L. de Albuquerque Wanderley SalesV. AlvesL.P. dos SantosW.M. de Moura FerrazL.R. de Andrade LimaG.S. dos Santos MendesL.M. RolimL.A. NetoP.J.R. A systematic review of functionalized polymeric nanoparticles to improve intestinal permeability of drugs and biological products.Curr. Pharm. Des.202228541042610.2174/138161282766621080410420534348618
    [Google Scholar]
  28. SchneiderK. SchwarzM. BurkholderI. Kopp-SchneiderA. EdlerL. Kinsner-OvaskainenA. HartungT. HoffmannS. “ToxRTool”, a new tool to assess the reliability of toxicological data.Toxicol. Lett.2009189213814410.1016/j.toxlet.2009.05.01319477248
    [Google Scholar]
  29. LachowiczM. StańczakA. KołodziejczykM. Characteristic of cyclodextrins: their role and use in the pharmaceutical technology.Curr. Drug Targets202021141495151010.2174/138945012166620061515003932538725
    [Google Scholar]
  30. BurzaS. CroftS.L. BoelaertM. Leishmaniasis.Lancet20183921015195197010.1016/S0140‑6736(18)31204‑230126638
    [Google Scholar]
  31. Drugs for neglected diseases initiative, leishmaniasis. 2018. Available from: https://dndi.org/wp- content/uploads/2018/12/Factsheet2018_Leishmaniasis.pdf (accessed on 13-6-2024).
  32. World Health Organization, Leishmaniasis.2022Available from: https://www.who.int/data/gho/data/themes/topics/gho-ntd-leishmaniasis#:~:text=Out%20of%20200%20countries%20and,are%20endemic%20for%20CL%20only.(accessed on 13-6-2024)
  33. DepaquitJ. GayF. KaltenbachM.L. Leishmaniasis.Lancet20193931017487187210.1016/S0140‑6736(18)33077‑030837139
    [Google Scholar]
  34. AkhoundiM. KuhlsK. CannetA. VotýpkaJ. MartyP. DelaunayP. SerenoD. A historical overview of the classification, evolution, and dispersion of leishmania parasites and sandflies.PLoS Negl. Trop. Dis.2016103e000434910.1371/journal.pntd.000434926937644
    [Google Scholar]
  35. BatesP.A. Revising leishmania’s life cycle.Nat. Microbiol.20183552953010.1038/s41564‑018‑0154‑229693656
    [Google Scholar]
  36. Manual of procedures for leishmaniases surveillance and control in the Americas.IRIS PahoWashington2019187
    [Google Scholar]
  37. Control of the leishmaniases: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases.GenevaWHO Press2010186
    [Google Scholar]
  38. GhorbaniM. FarhoudiR. Leishmaniasis in humans: drug or vaccine therapy?Drug Des. Devel. Ther.201712254010.2147/DDDT.S14652129317800
    [Google Scholar]
  39. HomayunB. LinX. ChoiH.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals.Pharmaceutics201911312910.3390/pharmaceutics1103012930893852
    [Google Scholar]
  40. XuY. ShresthaN. PréatV. BeloquiA. Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems.J. Control. Release202032248650810.1016/j.jconrel.2020.04.00632276004
    [Google Scholar]
  41. BhattacharyaP. MondalS. BasakS. DasP. SahaA. BeraT. In Vitro susceptibilities of wild and drug resistant Leishmania donovani amastigotes to piperolactam A loaded hydroxypropyl-β-cyclodextrin nanoparticles.Acta Trop.20161589710610.1016/j.actatropica.2016.02.01726940000
    [Google Scholar]
  42. De PaulaE.E.B. De SousaF.B. Da SilvaJ.C.C. FernandesF.R. MeloM.N. FrézardF. GrazulR.M. SinisterraR.D. MachadoF.C. Insights into the multi-equilibrium, superstructure system based on β-cyclodextrin and a highly water soluble guest.Int. J. Pharm.20124391-220721510.1016/j.ijpharm.2012.09.03923022296
    [Google Scholar]
  43. ParvezS. YadagiriG. GeddaM.R. SinghA. SinghO.P. VermaA. SundarS. MudavathS.L. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis.Sci. Rep.20201011224310.1038/s41598‑020‑69276‑532699361
    [Google Scholar]
  44. Parvez, S.; Yadagiri, G.; Arora, K. Coalition of biological agent (melatonin) with chemotherapeutic agent (amphotericin B) for combating visceral leishmaniasis via oral administration of modified solid lipid nanoparticles. ACS Biomater. Sci. Eng., 2021.10.1021/ACSBIOMATERIALS.1C0085934463477
  45. BalaramanK. VieiraN.C. MoussaF. VacusJ. CojeanS. PomelS. BoriesC. FigadèreB. KesavanV. LoiseauP.M. In vitro and in vivo antileishmanial properties of a 2-n-propylquinoline hydroxypropyl β-cyclodextrin formulation and pharmacokinetics via intravenous route.Biomed. Pharmacother.20157612713310.1016/j.biopha.2015.10.02826653559
    [Google Scholar]
  46. PintoL.M.A. AdeoyeO. ThomasiS.S. FranciscoA.P. CarvalheiroM.C. Cabral-MarquesH. Preparation and characterization of a synthetic curcumin analog inclusion complex and preliminary evaluation of in vitro antileishmanial activity.Int. J. Pharm.202058911976410.1016/j.ijpharm.2020.11976432858130
    [Google Scholar]
  47. PetersenA.L.O.A. CamposT.A. DantasD.A.S. RebouçasJ.S. da SilvaJ.C. de MenezesJ.P.B. FormigaF.R. de MeloJ.V. MachadoG. VerasP.S.T. Encapsulation of the HSP-90 chaperone inhibitor 17-AAG in stable liposome allow increasing the therapeutic index as assessed, in vitro, on Leishmania (L) amazonensis amastigotes-hosted in mouse CBA macrophages.Front. Cell. Infect. Microbiol.2018830310.3389/fcimb.2018.0030330214897
    [Google Scholar]
  48. CarvalhoS.G. SiqueiraL.A. ZaniniM.S. dos Santos MatosA.P. QuaresmaC.H. da SilvaL.M. de AndradeS.F. SeveriJ.A. VillanovaJ.C.O. Physicochemical and in vitro biological evaluations of furazolidone-based β-cyclodextrin complexes in Leishmania amazonensis.Res. Vet. Sci.201811914315310.1016/j.rvsc.2018.06.01329935407
    [Google Scholar]
  49. CarvalhoS.G. CiprianoD.F. de FreitasJ.C.C. JuniorM.Â.S. OcarisE.R.Y. TelesC.B.G. de Jesus GouveiaA. RodriguesR.P. ZaniniM.S. VillanovaJ.C.O. Physicochemical characterization and in vitro biological evaluation of solid compounds from furazolidone-based cyclodextrins for use as leishmanicidal agents.Drug Deliv. Transl. Res.20201061788180910.1007/s13346‑020‑00841‑132803562
    [Google Scholar]
  50. RuizH.K. SerranoD.R. Dea-AyuelaM.A. Bilbao-RamosP.E. Bolás-FernándezF. TorradoJ.J. MoleroG. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int. J. Pharm.20144731-214815710.1016/j.ijpharm.2014.07.00424998510
    [Google Scholar]
  51. AbpeikarZ. SafaeiM. Akbar AlizadehA. GoodarziA. HatamG. The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis.Int. J. Pharm.202363312261510.1016/j.ijpharm.2023.12261536657555
    [Google Scholar]
  52. AfonsoR.C. YienR.M.K. de SiqueiraL.B.O. SimasN.K. dos Santos MatosA.P. Ricci-JúniorE. Promising natural products for the treatment of cutaneous leishmaniasis: A review of in vitro and in vivo studies.Exp. Parasitol.202325110855410.1016/j.exppara.2023.10855437268108
    [Google Scholar]
  53. Maza VegaD. Di MeglioM. AlonsoS.V. AlviraF. MontanariJ. Nanomaterials for diagnosis, treatment, and prevention of human cutaneous leishmaniasis: A review.OpenNano20231210015810.1016/j.onano.2023.100158
    [Google Scholar]
  54. Pan American Health Organization, Chagas disease. 2022. Available from: https://www.paho.org/en/topics/chagas- disease
  55. NavarroM. RegueroL. SubiràC. Blázquez-PérezA. Requena-MéndezA. Estimating chagas disease prevalence and number of underdiagnosed, and undertreated individuals in Spain.Travel Med. Infect. Dis.20224710228410.1016/j.tmaid.2022.10228435245657
    [Google Scholar]
  56. Lozada-YavinaR. MarchantC. Cancino-FaureB. Hernández-RodríguezE.W. Córdova-LepeF. A description of the epidemiological dynamics of Chagas disease via mathematical modeling.Acta Trop.202324310693010.1016/j.actatropica.2023.10693037098356
    [Google Scholar]
  57. TylerK.M. EngmanD.M. The life cycle of Trypanosoma cruzi revisited.Int. J. Parasitol.2001315-647248110.1016/S0020‑7519(01)00153‑911334932
    [Google Scholar]
  58. Pérez-MolinaJ.A. MolinaI. Chagas disease.Lancet201839110115829410.1016/S0140‑6736(17)31612‑428673423
    [Google Scholar]
  59. García-HuertasP. Cardona-CastroN. Advances in the treatment of Chagas disease: Promising new drugs, plants and targets.Biomed. Pharmacother.202114211202010.1016/j.biopha.2021.11202034392087
    [Google Scholar]
  60. RassiA.Jr RassiA. Marcondes de RezendeJ. American trypanosomiasis (Chagas disease).Infect. Dis. Clin. North Am.201226227529110.1016/j.idc.2012.03.00222632639
    [Google Scholar]
  61. MoroniA.B. CalvoN.L. KaufmanT.S. Selected aspects of the analytical and pharmaceutical profiles of nifurtimox.J. Pharm. Sci.2023112615231538https://doi.org/doi.org/10.1016/j.xphs.2023.02.01510.1016/j.xphs.2023.02.01536822273
    [Google Scholar]
  62. VinuesaT. OliverL. ElizondoE. AcarreguiA. EsquisabelA. ViñasM. PedrazJ.L. VecianaJ. VentosaN. HerráezR. Benznidazole nanoformulates: a chance to improve therapeutics for chagas disease.Am. J. Trop. Med. Hyg.20179751469147610.4269/ajtmh.17‑004429016287
    [Google Scholar]
  63. BarbosaJ.M.C. NicolettiC.D. da SilvaP.B. MeloT.G. FuturoD.O. FerreiraV.F. SalomãoK. Characterization and trypanocidal activity of a β-lapachone-containing drug carrier.PLoS One2021163e024681110.1371/journal.pone.024681133661933
    [Google Scholar]
  64. Guilhon-SimplicioF. SerrãoC.K.R. PintoA.C.S. PachecoP.A.F. FariaR.X. da RochaD.R. FerreiraV.F. Pereira-JuniorR.C. MatheeussenA. BaánA. KiekensF. de Meneses PereiraM. LimaE.S. WinterH.D. CosP. Semisynthetic triterpenes led to the generation of selective antitrypanosomal lead compounds.Chem. Biol. Drug Des.202299686888310.1111/cbdd.1404035313075
    [Google Scholar]
  65. Rojas-AguirreY. CastilloI. HernándezD.J. Nogueda-TorresB. Márquez-NavarroA. VillalobosJ.C. Sánchez-BartézF. Sánchez-TorresL. Gracia-MoraI. CastilloR. Hernández-LuisF. Diversity in the supramolecular interactions of 5,6-dichloro-2-(trifluoromethyl)-1H-benzimidazole with modified cyclodextrins: Implications for physicochemical properties and antiparasitic activity.Carbohydr. Polym.201287147147910.1016/j.carbpol.2011.08.00934662992
    [Google Scholar]
  66. Pozo-MartínezJ. SalgadoF. LiempiA. KemmerlingU. Mera-AdasmeR. Olea-AzarC. Moncada-BasualtoM. BorgesF. UriarteE. MatosM.J. Synthesis and study of the trypanocidal activity of catechol-containing 3-arylcoumarins, inclusion in β-cyclodextrin complexes and combination with benznidazole.Arab. J. Chem.202215310364110.1016/j.arabjc.2021.103641
    [Google Scholar]
  67. Moncada-BasualtoM. MatsuhiroB. MansillaA. LapierM. MayaJ.D. Olea-AzarC. Supramolecular hydrogels of β-cyclodextrin linked to calcium homopoly-l-guluronate for release of coumarins with trypanocidal activity.Carbohydr. Polym.201920417018110.1016/j.carbpol.2018.10.01030366529
    [Google Scholar]
  68. NascimentoI.J.S. CavalcantiM.A.T. de MouraR.O. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases.Eur. J. Med. Chem.202325811555010.1016/j.ejmech.2023.11555037336067
    [Google Scholar]
  69. SánchezK.E. SpencerL.M. Pregnancy-associated malaria: Effects of cytokine and chemokine expression.Travel Med. Infect. Dis.20224710228210.1016/j.tmaid.2022.10228235314344
    [Google Scholar]
  70. TournoyT.K. Rosanas-UrgellA. Van EsbroeckM. BottieauE. HuitsR. Plasmodium malariae after successful treatment of P. falciparum malaria with artemether-lumefantrine.Int. J. Infect. Dis.2022119565810.1016/j.ijid.2022.03.04535358721
    [Google Scholar]
  71. World Health Organization (2021) Word Malaria Report 2021.2021Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021(accessed on 13-6-2024)
  72. RaghavendraK. RahiM. VermaV. VelamuriP.S. KamarajuD. BaruahK. Chhibber-GoelJ. SharmaA. Insecticide resistance status of malaria vectors in the malaria endemic states of India: implications and way forward for malaria elimination.Heliyon2022812e1190210.1016/j.heliyon.2022.e1190236506377
    [Google Scholar]
  73. RaiM. IngleA.P. ParalikarP. GuptaI. MediciS. SantosC.A. Recent advances in use of silver nanoparticles as antimalarial agents.Int. J. Pharm.20175261-225427010.1016/j.ijpharm.2017.04.04228450172
    [Google Scholar]
  74. RagavanK.V. KumarS. SwarajS. NeethirajanS. Advances in biosensors and optical assays for diagnosis and detection of malaria.Biosens. Bioelectron.201810518821010.1016/j.bios.2018.01.03729412944
    [Google Scholar]
  75. NateZ. GillA.A.S. ChauhanR. KarpoormathR. Recent progress in electrochemical sensors for detection and quantification of malaria.Anal. Biochem.202264311459210.1016/j.ab.2022.11459235131233
    [Google Scholar]
  76. LaceyM-S. WalterW.T. Plasmodium Vivax Malaria.StatPearls2022
    [Google Scholar]
  77. DjoufounnaJ. MayiM.P.A. BamouR. 2022High Prevalence of Asymptomatic Plasmodium Falciparum Malaria in Makenene, a Locality in the Forest-Savannah Transition Zone, Centre Region of Cameroon.SSRN Electron J10.2139/ssrn.4175851
    [Google Scholar]
  78. OkaguI.U. AguchemR.N. EzemaC.A. EzeorbaT.P.C. EjeO.E. NdefoJ.C. Molecular mechanisms of hematological and biochemical alterations in malaria: A review.Mol. Biochem. Parasitol.202224711144610.1016/j.molbiopara.2021.11144634953384
    [Google Scholar]
  79. RuivoM.T.G. VeraI.M. Sales-DiasJ. MeirelesP. GuralN. BhatiaS.N. MotaM.M. Mancio-SilvaL. Host AMPK Is a Modulator of Plasmodium Liver Infection.Cell Rep.201616102539254510.1016/j.celrep.2016.08.00127568570
    [Google Scholar]
  80. PerkinsD.J. WereT. DavenportG.C. KempaiahP. HittnerJ.B. Ong’echaJ.M. Severe malarial anemia: innate immunity and pathogenesis.Int. J. Biol. Sci.2011791427144210.7150/ijbs.7.142722110393
    [Google Scholar]
  81. ClarkR.L. Safety of treating malaria with artemisinin-based combination therapy in the first trimester of pregnancy.Reprod. Toxicol.202211120421010.1016/j.reprotox.2022.05.01635667524
    [Google Scholar]
  82. KotepuiM. KotepuiK.U. De Jesus MilanezG. MasangkayF.R. Plasmodium spp. mixed infection leading to severe malaria: a systematic review and meta-analysis.Sci. Rep.20201011106810.1038/s41598‑020‑68082‑332632180
    [Google Scholar]
  83. LiG. YuanY. ZhengS. LuC. LiM. TanR. ZhangH. SilaiR. LiuR. AbdallahK.S. BacarA. XuQ. SongJ. WuW. DengC. Artemisinin-piperaquine versus artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Grande Comore island: an open-label, non-randomised controlled trial.Int. J. Antimicrob. Agents202260410665810.1016/j.ijantimicag.2022.10665835988664
    [Google Scholar]
  84. YaméogoJ.B.G. GèzeA. ChoisnardL. PutauxJ.L. GansanéA. SirimaS.B. SemdéR. WouessidjeweD. Self-assembled biotransesterified cyclodextrins as Artemisinin nanocarriers – I: Formulation, lyoavailability and in vitro antimalarial activity assessment.Eur. J. Pharm. Biopharm.201280350851710.1016/j.ejpb.2011.12.00722226681
    [Google Scholar]
  85. ZhuW. LvY. YangQ. ZuY. ZhaoX. Artemisinin hydroxypropyl-β-cyclodextrin inclusion complex loaded with porous starch for enhanced bioavailability.Int. J. Biol. Macromol.202221120721710.1016/j.ijbiomac.2022.04.17035490765
    [Google Scholar]
  86. PawarS. ShendeP. Dual drug delivery of cyclodextrin cross-linked artemether and lumefantrine nanosponges for synergistic action using 23 full factorial designs.Colloids Surf. A Physicochem. Eng. Asp.202060212504910.1016/j.colsurfa.2020.125049
    [Google Scholar]
  87. PongsamartK. LimwikrantW. RuktanonchaiU.R. CharoenthaiN. PuttipipatkhachornS. Preparation, characterization and antimalarial activity of dihydroartemisinin / β-cyclodextrin spray-dried powder.J. Drug Deliv. Sci. Technol.20227310343410.1016/j.jddst.2022.103434
    [Google Scholar]
  88. QueirozL.S. FerreiraE.A. MengardaA.C. AlmeidaA.C. PintoP.F. CoimbraE.S. de MoraesJ. DenadaiÂ.M.L. Da Silva FilhoA.A. In vitro and in vivo evaluation of cnicin from blessed thistle (Centaurea benedicta) and its inclusion complexes with cyclodextrins against Schistosoma mansoni.Parasitol. Res.202112041321133310.1007/s00436‑020‑06963‑233164156
    [Google Scholar]
  89. LiuM. ChenP. BücheleB. DongS. HuangD. RenC. ZhangY. HouX. SimmetT. ShenJ. A boswellic acid-containing extract attenuates hepatic granuloma in C57BL/6 mice infected with Schistosoma japonicum.Parasitol. Res.201311231105111110.1007/s00436‑012‑3237‑723271565
    [Google Scholar]
  90. CowanN. YaremenkoI.A. KrylovI.B. Terent’evA.O. KeiserJ. Elucidation of the in vitro and in vivo activities of bridged 1,2,4-trioxolanes, bridged 1,2,4,5-tetraoxanes, tricyclic monoperoxides, silyl peroxides, and hydroxylamine derivatives against Schistosoma mansoni.Bioorg. Med. Chem.201523165175518110.1016/j.bmc.2015.02.01025744189
    [Google Scholar]
  91. IrieT. OtagiriM. SunadaM. UekamaK. OhtaniY. YamadaY. SugiyamaY. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro.J. Pharmacobiodyn.19825974174410.1248/bpb1978.5.7417153847
    [Google Scholar]
  92. JacobS. NairA.B. Cyclodextrin complexes: Perspective from drug delivery and formulation.Drug Dev. Res.201879520121710.1002/ddr.2145230188584
    [Google Scholar]
  93. ZarmpiP. FlanaganT. MeehanE. MannJ. FotakiN. Biopharmaceutical aspects and implications of excipient variability in drug product performance.Eur. J. Pharm. Biopharm.201711111510.1016/j.ejpb.2016.11.00427845182
    [Google Scholar]
  94. GaoH. HeQ. The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior.Expert Opin. Drug Deliv.201411340942010.1517/17425247.2014.87744224397260
    [Google Scholar]
  95. World Health Organization, Schistosomiasis. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
  96. World Health Organization, Schistosomiasis and soil-transmitted helminthiase: progress report, 2020. 2021. Available from: https://www.who.int/publications/i/item/who-wer9748-621-632 (accessed on 13-6-2024).
  97. DeolA.K. FlemingF.M. Calvo-UrbanoB. WalkerM. BucumiV. GnandouI. TukahebwaE.M. JemuS. MwingiraU.J. AlkohlaniA. TraoréM. RuberanzizaE. TouréS. BasáñezM.G. FrenchM.D. WebsterJ.P. Schistosomiasis - assessing progress toward the 2020 and 2025 global goals.N. Engl. J. Med.2019381262519252810.1056/NEJMoa181216531881138
    [Google Scholar]
  98. LiY.L. DangH. GuoS.Y. ZhangL.J. FengY. DingS.J. ShanX.W. LiG.P. YuanM. XuJ. LiS.Z. Molecular evidence on the presence of Schistosoma japonicum infection in snails along the Yangtze River, 2015–2019.Infect. Dis. Poverty20221117010.1186/s40249‑022‑00995‑935717331
    [Google Scholar]
  99. McManusD.P. DunneD.W. SackoM. UtzingerJ. VennervaldB.J. ZhouX.N. Schistosomiasis.Nat. Rev. Dis. Primers2018411310.1038/s41572‑018‑0013‑830093684
    [Google Scholar]
  100. BarnettR. Case histories schistosomiasis.The Lancet201839210163P2431
    [Google Scholar]
  101. NogueiraR.A. LiraM.G.S. LicáI.C.L. FrazãoG.C.C.G. dos SantosV.A.F. FilhoA.C.C.M. RodriguesJ.G.M. MirandaG.S. CarvalhoR.C. NascimentoF.R.F. Praziquantel: An update on the mechanism of its action against schistosomiasis and new therapeutic perspectives.Mol. Biochem. Parasitol.202225211153110.1016/j.molbiopara.2022.11153136375598
    [Google Scholar]
  102. DinoraG-E. JulioR. NellyC. LilianY-M. CookH.J. In vitro characterization of some biopharmaceutical properties of praziquantel.Int. J. Pharm.20052951-2939910.1016/j.ijpharm.2005.01.03315847994
    [Google Scholar]
  103. Borrego-SánchezA. Sánchez-EspejoR. García-VillénF. ViserasC. Sainz-DíazC.I. Praziquantel–clays as accelerated release systems to enhance the low solubility of the drug.Pharmaceutics2020121091410.3390/pharmaceutics1210091432987673
    [Google Scholar]
  104. MtemeliF.L. NdlovuJ. MugumbateG. MakwikwiT. ShokoR. Advances in schistosomiasis drug discovery based on natural products.All Life202215160862310.1080/26895293.2022.2080281
    [Google Scholar]
  105. SiqueiraL.P. FontesD.A.F. AguileraC.S.B. TimóteoT.R.R. ÂngelosM.A. SilvaL.C.P.B.B. de MeloC.G. RolimL.A. da SilvaR.M.F. NetoP.J.R. Schistosomiasis: Drugs used and treatment strategies.Acta Trop.201717617918710.1016/j.actatropica.2017.08.00228803725
    [Google Scholar]
  106. WangH. SyrovetsT. KessD. BücheleB. HainzlH. LunovO. WeissJ.M. Scharffetter-KochanekK. SimmetT. Targeting NF-κ B with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis.J. Immunol.200918374755476310.4049/jimmunol.090052119752240
    [Google Scholar]
  107. Montenegro RabelloM. RolimL.A. Rolim NetoP.J. HernandesM.Z. CycloMolder software: building theoretical cyclodextrin derivatives models and evaluating their host:guest interactions.J. Incl. Phenom. Macrocycl. Chem.2019933-430130810.1007/s10847‑019‑00880‑3
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673318410240627031819
Loading
/content/journals/cmc/10.2174/0109298673318410240627031819
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test