Combinatorial Chemistry & High Throughput Screening - Volume 28, Issue 8, 2025
Volume 28, Issue 8, 2025
-
-
The Antimicrobial Activity of Combination of Vitamin D3 and Omega-3 against Pathogenic Microorganisms
BackgroundFood supplements such as vitamin D3 and omega-3 have a significant role in activating the immune system and impacting the diversity of gut microbiota; thus, controlling the growth of invading pathogens indirectly.
ObjectiveThis study aims to evaluate the direct antimicrobial activity of vitamin D3 and omega-3 individually, combined together, and combined with low concentrations of gentamicin or amphotericin B against selected pathogenic microorganisms. In addition, this study hypothesizes the potential antimicrobial mechanism and recommends suitable studies to be conducted.
MethodsMinimum inhibitory concentration of different serial dilutions of vitamin D3 (0.7 μg/mL-83.3 μg/mL) or omega-3 (0.7 mg/mL-100 mg/mL) or combined (vitamin D3:1.3 μg/mL-83.3 μg/mL and omega-3:1.56 mg/mL-100 mg/mL) with/without antibiotic have been investigated on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans using check board technique.
ResultsThe highest concentration of vitamin D3 (83.3 μg/mL) demonstrated a complete eradication of the tested microorganisms. Conversely, omega-3 had a lower effect on them. The highest concentration of combining vitamin D3 and omega-3 with/without gentamicin resulted in a complete eradication of the S. aureus, E. coli and P. aeruginosa with a 6.8 to 7 log reduction. On the other hand, C. albicans was inhibited when using vitamin D3 (83.3 μg/mL) or when this concentration is combined with 100 mg/mL of omega-3. However, when these two concentrations were added to amphotericin B the log reduction dropped to 0.45 suggesting antagonistic effect.
ConclusionThese findings suggested that, unlike omega 3, vitamin D3 possesses good antimicrobial effects against pathogenic microorganisms. The combination of the studied food supplement showed enhanced microbial inhibition at high concentration, while they had antagonistic effect when combined with amphotericin B and applied on C. albicans combined. Further studies on the exact antimicrobial mechanism are still required to understand the measured data here.
-
-
-
Curcumin Mitigates Streptozotocin-Induced Genotoxicity In Vivo by Activating P53 Protein and Inhibiting Oxidative Stress and Chromosomal Aberration
Authors: Alik Saha, Arnob Chakrovorty, Banani Bhattacharjee, Sisir Nandi and Asmita SamadderBackgroundGenotoxins are chemical constituents that damage DNA or chromosomal architecture, leading to alterations in the genetic level. Streptozotocin, a monofunctional nitrosourea derivative, is often utilized to induce diabetes mellitus in laboratory animals because of its detrimental effects on pancreatic cells. The purpose of this work was to investigate possible protective efficacy against the genotoxic effects of Streptozotocin.
ObjectiveThis study examines the potentiality of curcumin, a phytoproduct with anti-genotoxic and anti-diabetic qualities, against streptozotocin-induced chromosomal abnormalities and DNA damage. The study evaluates the possible protective efficacy of curcumin, exploring a variety of biochemical and molecular biology techniques in murine models.
MethodsThe experiment involves a control group, the administration of Streptozotocin (Group S), and a curcumin-pretreated STZ group (Group SC) in mice. The effects of curcumin on DNA damage and chromosomal aberrations were investigated by histopathology, immunofluorescence, evaluation of chromosomal aberrations, detection of Reactive oxygen species, cell viability analysis, and DNA laddering assay.
ResultsThe results demonstrated a significant reduction in DNA damage, chromosomal anomalies, and a decrease in the expression of the p53 protein in the curcumin-treated animals compared to that of STZ-treated mice.
ConclusionThe overall results show that curcumin can reduce chromosomal aberrations and DNA damage by altering the expression of p53 repair proteins. This suggests that curcumin has a promising future as a therapeutic agent, especially when it comes to drug-induced toxicity and the development of novel therapeutics.
-
-
-
Cassia alata: Helminth and Bacteria Fighter
IntroductionThe concurrent presence of helminthiasis and bacterial diseases imposes a dual burden, worsening the challenges associated with each condition independently. This cohabitation intensifies the economic impact, creating a compounding effect on public health and economic well-being.
MethodsPhytochemical analysis of Cassia alata Extract (CAE) using infrared spectroscopy has revealed the presence of various functional groups. In addition, GC mass analysis has confirmed the presence of 26 active compounds. An assessment of the anthelmintic activity of CAE against mature earthworms has demonstrated comparable efficacy to the conventional anthelmintic, albendazole. The optimal dosage of 500 mg/ml has induced a rapid onset of paralysis (2.7 ± 0.5 min) and death (20.1 ± 1.7 min), outperforming albendazole (20 mg/mL) in terms of faster paralysis and death times (21.8 ± 1.1 and 30.14 ± 3.2 min, respectively). Structural modifications induced by CAE have been observed through light microscopy and Scanning Electron Microscopy (SEM). Control worms have exhibited normal body architecture, while CAE-treated worms have displayed size reduction, uniform body wall shrinkage, and increased cuticular thickness. Similar alterations have been observed in albendazole-treated worms.
ResultsThe antibacterial activity of CAE has been evaluated through a broth dilution assay, which has revealed a dose-response effect. At 6.25 mg/ml, CAE has exhibited 100% inhibitory action against both Gram-positive and Gram-negative bacteria. Significant differences in bacterial viability have been noted at lower concentrations, with no significant variation at 0.3906 mg/ml of CAE.
ConclusionThe findings have highlighted the multifaceted bioactivity of CAE, showcasing its potential as an anthelmintic agent and antimicrobial agent against a spectrum of bacterial strains. The observed structural alterations in treated worms have provided insights into the potential mechanisms underlying the anthelmintic effects.
-
-
-
Anthelmintic Activity of Carica papaya Leaf Extracts: Insights from In Vitro and In Silico Investigations
IntroductionHelminthiasis remains a major global health concern. Exploring natural alternatives due to drug resistance and synthetic drug side effects has become increasingly urgent.
MethodsThis study investigates the anthelmintic potential of Carica papaya leaf extracts (CPLE) against Allolobophora caliginosa, along with elucidating the underlying structural alterations and molecular interactions. Carica papaya underwent methanolic extraction. Gas chromatography-mass spectrometry analysis revealed 11 active phytochemical compounds within CPLE. The anthelmintic activity was evaluated against A. caliginosa, with CPLE demonstrating efficacy comparable to albendazole. Light microscopy and scanning electron microscopy depicted structural modifications in worms exposed to CPLE, characterized by reduced size, uniform shrinkage, and increased cuticle thickness.
ResultsMolecular docking studies with proteins Ascaris lumbricoides β-tubulin and Trichuris trichiura β-tubulin revealed potential binding interactions of CPLE compounds, notably Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, and Albendazole oxide.
ConclusionThese findings suggest the anthelmintic efficacy of CPLE and provide insights into its mode of action at the molecular level.
-
-
-
QbD Assisted Development of a Compartment and Sequential Drug Delivery System for Periodontotherapy
Authors: Pooja Jain and Zeenat IqbalPeriodontitis, the burgeoning disease, is at an alarming stage. Although this has triggered dedicated research in this area, as the disease itself demands a multi-component therapy, there is an unmet need for a compartment and sequential drug delivery system to ameliorate disease symptoms completely. The hypothesized work consists of multitherapeutic agents such as an antibiotic, a COX-II inhibitor, an MMP inhibitor, and a bone regenerating agent in an in-situ gel. However, for the development of the system, as mentioned above, a thorough investigation at each stage is necessary; therefore, the quality-by-design approach was adopted.
Furthermore, the current work is a pursuit of studying the quality by design aspects for the fabrication of a compartment system, i.e., in-situ gel for periodontal delivery. The proposed system in-situ gel consists of antibiotic and nano-encapsulating microcapsules. Furthermore, the microcapsules contain a COX-II inhibitor and nanoparticles of MMP inhibitor and bone regenerating agent for complete amelioration of periodontitis. To develop the system as per the QbD approach, the first initial trials and runs were conducted, which helped to decide the quality target product profile (QTPP). However, based on QTPP, critical quality attributes (CQA), critical process parameters (CPP), and critical material attributes (CMAs) were decided for each stage product, i.e., in-situ gel, microcapsules, and nanoparticles. To assess the influence of CPPs and CMAs on CQAs, Pareto charts were constructed, and various risks, along with possible failure modes were studied. In conclusion, the above work will serve as a well-designed scientific mouthpiece for developing a compartment system for periodontotherapy.
-
-
-
Lignans: Advances in Biosynthesis, Bioavailability, and Pharmacological Activity
Authors: Sonia Singh and Shiwangi SharmaLignans, a group of naturally occurring compounds abundant in various plant-based foods, are becoming increasingly popular due to their potential health benefits. The literature suggests that these bioactive substances can reduce the risk of certain types of cancer, such as postmenopausal colon and breast cancer. Moreover, the significance of lignans for improving cardiovascular health has been recognized, as studies have revealed a potential correlation between the intake of lignans and a decreased risk of cardiovascular disease. These complex molecules possess diverse bioactive capabilities, rendering them potential alternatives for preventing chronic diseases. Further research is needed to examine the mechanisms responsible for their beneficial outcomes. Recent research has emphasized the pharmacological properties of lignans as effective substances for human health. Incorporating foods rich in lignans into the diet may be a practical approach to enhancing protection against life-threatening ailments, such as cardiovascular diseases and malignancies.
-
-
-
CEP55: Implications for Immunotherapy and Survival in Hepatocellular Carcinoma
Authors: Yanhong Wang, Long Zhang, Jianhui Tian, Bin Luo, Jialiang Yao and Yun YangBackgroundHepatocellular carcinoma (HCC) is a highly aggressive neoplasm that usually originates from liver cells and is one of the most common malignancies worldwide. To improve the survival rate of HCC patients, specific prognostic markers are essential to guide HCC therapy. CEP55 is a microtubule-bundling protein involved in critical cell functions, including cell growth, transformation, and cytokinesis.
AimsThis study examined gene alterations in HCC tumor tissues through comprehensive analysis, aiming to elucidate their contribution to disease development.
MethodsBioinformatics tools were employed to investigate the expression, genetic variations, prognostic significance, and clinicopathological relevance of CEP55 across GEO and TCGA datasets. We further explored gene alterations, DNA methylation levels, and immune infiltration of CEP55. To elucidate the potential molecular mechanisms involved, GO and KEGG analysis was performed. Finally, RT-qPCR was also performed on a number of normal and tumoral cell lines in vitro, which demonstrated that the expression of the CEP55 was significantly higher in the tumor cell lines.
ResultsWe observed that CEP55 was upregulated in 16 cancers compared to corresponding normal tissues. CEP55 was found to be related to T stages, pathologic stages, histologic grade, and levels of AFP. K-M analysis demonstrated that CEP55 expression was associated with a worse outcome. ROC curve analysis showed that CEP55 expression accurately distinguished HCC from normal tissue (AUC = 0.954). The area under 1-,3- and 5-year survival ROCs were above 0.6. The HSPA4 genetic alterations in HCC were 0.8%. Among the 15 DNA methylation CpG sites, 6 were related to the prognosis of HCC. HSPA4 was positively related to immune cell infiltration and immune checkpoints in HCC. The KEGG pathway analysis indicated that CEP55 was associated with the cell cycle and presented together with CDK1. HCC cell lines were demonstrated to express high levels of CEP55 compared to normal cells.
ConclusionAs a result of bioinformatic analyses and RT-qPCR validation in HCC, CEP55 increased in HCC tissues and was associated with the stage of the disease and survival rate.
-
-
-
Syringic Acid Attenuates the IL-1β-Induced Akt Pathway in Chondrocyte ATDC5 Cells
Authors: Xiao-Feng He, Zhi-Hong Xiong, Qing-Gang Zhao, Yi-Hao Lei, Annamalai Vijayalakshmi and Gang ChengBackgroundOsteoarthritis (OA) is a chronic progressive joint ailment that is largely predominant worldwide. However, it typically gets worse over time, occurs more frequently, and becomes more crippling.
ObjectivesSyringic acid (SA) is a well-known phenolic compound reported to suppress inflammation, cell proliferation, and apoptosis of various cancer cells. Since the role of SA in OA remains unknown, there is a need to hypothesize the anti-inflammatory activities of SA on IL-1β-induced ATDC5 chondrocyte-like cells and to elucidate its protective action against OA.
MethodsThe cytotoxicity, inflammatory mediators, mRNA expression of MMPs, ADAMTS, COX-2, and Akt/NF-κB protein expression of SA activity on ATDC5 cells were examined through CCK-8 assay, ELISA, RT-qPCR, and western blot. It was found that SA (10, 20, and 30 µM) did not show any inhibitory effects on the viability of the ATDC5 cells in a concentration-dependent manner.
ResultsSA markedly reduced the inflammatory mediators, cytokines, PGE2, MMPs, COX-2, and ADAMTS in a concentration-dependent manner. Likewise, SA expressively attenuated IL-1β-stimulated Akt phosphorylation and NF-κB activation in IL-1β- induced ATDC5 chondrocytes.
ConclusionThis study revealed that SA is a novel candidate applicable for the treatment of OA.
-
-
-
Identifying the Crucial Biomarker of MASH-Related HCC
Authors: Haiyang Zhou, Yinjie Zhang, Yuhang Shen, Shuai Chen, Zhen Yang, Zhihuai Wang, Xihu Qin and Chunfu ZhuObjectivesThis study aimed to explore the key oncogenic factor of metabolic-associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC).
MethodsWe utilized four differential GEO datasets (GSE164760, GSE139602, GSE197112, and GSE49541) to identify the key oncogenic factor for MASH-related HCC. The differential genes were analyzed using the GEO2R algorithm online. The GEPIA online website was used to explore the expression of selected four genes (SPP1, GNMT, CLDN11, and THBS2). The genetic alterations in genes were estimated by the cBioPortal website. The Kaplan-Meier Plotter online database was applied to explore the prognostic value of SPP1. Univariate and multivariate Cox analyses were carried out to further confirm the prognostic value of SPP1. The GO and KEGG enrichment analysis exported associated pathways with SPP1 expression. The positively or negatively related immune cells and immune checkpoint expressions were identified through Pearson correlation analysis. The lipogenesis-associated proteins were detected using western blotting and fluorescence. The high-fat diet (HFD) mouse model was constructed, and liver samples were collected.
ResultsSPP1, GNMT, CLDN11, and THBS2 were determined in the transformation process of MASH to liver fibrosis. SPP1 and GNMT were upregulated in the HCC tumor tissue. SPP1, in particular, had the potential to be the prognostic factor through Cox analysis. Remarkably, SPP1 was highly expressed in HCC compared to normal tissues in three independent datasets (GSE121248, GSE14520, and GSE45267). SPP1 is mainly involved in the amplification and deep deletion mutations. SPP1 was found to be strongly correlated with ANXA2 expression, and ANXA2 was also highly expressed in HCC with significant prognostic performance. Moreover, SPP1 was found to participate in the carcinogenic mechanism and correlate with immune cells and immune checkpoint expression. SPP1 knockdown suppressed the SREBP1 and FASN expressions and increased the SIRT1 expression in vitro. Moreover, the HFD model validated the upregulation of SPP1 in the fatty liver in vivo.
ConclusionSPP1 may be the key oncogenic factor for the transformation of MASH to HCC, and it could be a potential immunotherapeutic target in HCC.
-
-
-
Mechanism of Guigan Longmu Decoction in the Treatment of Arrhythmias Based on Network Pharmacology and Untargeted Metabolomics Assays
Authors: Tuo Deng, Sheng Guo, Jie Yang, Xiao-yu Huang, Xiao-bin Lu, Jing Lu, Liang Liu and Ze DuBackgroundGuigan longmu decoction (GGLM), a traditional Chinese medicine compound, has demonstrated efficacy in treating rapid arrhythmia clinically. Nevertheless, its mechanism of action remains elusive. This study aims to elucidate the molecular mechanism underlying the efficacy of GGLM in treating arrhythmia utilizing non-targeted metabolomics, widely-targeted metabolomics, and network pharmacology, subsequently validated through animal experiments.
MethodsInitially, network pharmacology analysis and widely-targeted metabolomics were performed on GGLM. Subsequent to that, rats were administered GGLM intervention, and non-targeted metabolomics assays were utilized to identify metabolites in rat plasma post-administration. The primary signaling pathways, core targets, and key active ingredients of GGLM influencing arrhythmia were identified. Additionally, to validate the therapeutic efficacy of GGLM on arrhythmia rat models, a rat model of rapid arrhythmia was induced via subcutaneous injection of isoproterenol, and alterations in pertinent pathogenic pathways and proteins in the rat model were assessed through qRT-PCR and Western blot following GGLM administration.
ResultsThe results of network pharmacology showed that 99 active ingredients in GGLM acted on 249 targets and 201 signaling pathways, which may be key to treating arrhythmia. Widely-targeted metabolic quantification analysis detected a total of 448 active ingredients in GGLM, while non-targeted metabolomics identified 279 different metabolites and 10 major metabolic pathways in rats. A comprehensive analysis of the above results revealed that the core key active ingredients of GGLM in treating arrhythmia include calycosin, licochalcone B, glabridin, naringenin, medicarpin, formononetin, quercetin, isoliquiritigenin, and resveratrol. These active ingredients mainly act on the relevant molecules and proteins upstream and downstream of the MAPK pathway to delay the onset of arrhythmia. Animal experimental results showed that the heart rate of rats in the model group increased significantly, and the mRNA and protein expression of p38, MAPK, JNK, ERK, NF-kb, IL-1β, and IL-12 in myocardial tissue also increased significantly. However, after intervention with GGLM, the heart rate of rats in the drug group decreased significantly, while the mRNA and protein expression of p38 MAPK, JNK, ERK1, NF-kb, IL-1β, and IL-12 in myocardial tissue decreased significantly.
ConclusionGGLM, as an adjunctive therapy in traditional Chinese medicine, exhibits favorable therapeutic efficacy against arrhythmia. This can be attributed to the abundant presence of bioactive compounds in the formulation, including verminin, glycyrrhizin B, glabridine, naringenin, ononin, quercetin, isorhamnetin, and kaempferol. The metabolites derived from these active ingredients have the potential to mitigate myocardial inflammation and decelerate heart rate by modulating the expression of proteins associated with the MAPK signaling pathway in vivo.
-
-
-
Shuangdong Capsule Activates Insulin Signal Pathway to Improve Urinary Tract Infection in Diabetic Rats
Authors: Cong Zhao, Bin Wang, Qi-xiang Mu, Jun Wu, Zhen-han Cheng, Qing Liu, Hai-song Li and Ji-sheng WangBackground and AimDiabetes and Urinary Tract Infections (UTIs) are both common and serious health problems. Shuangdong capsule, a Chinese patent medicine, has been used to treat these conditions. This study assesses its efficacy and mechanism in treating diabetes combined with UTIs.
MethodsWe induced diabetes in rats using streptozotocin and UTIs with Escherichia coli, dividing the rats into five groups: control, model, levofloxacin, Shuangdong capsule, and levofloxacin + Shuangdong capsule. After two weeks, we measured blood glucose, insulin, infection indicators, and bladder histology. We also detected the expression of insulin receptor substrate 1 (IRS1)-phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt)-C-X-C motif chemokine ligand 2 (CXCL2) signaling pathway by Western Blot and the myeloperoxidase (MPO) levels by Enzyme-Linked Immunosorbent Assay (ELISA). Additionally, we conducted a Mendelian randomization study using genetic variants of the insulin receptor to assess its causal effect on UTI risk.
ResultsShuangdong capsule improved bladder pathology and infection indicators, similar to levofloxacin. It did not affect blood glucose or insulin levels. Moreover, it reversed the suppression of the IRS1-PI3K-Akt-CXCL2 pathway and MPO levels caused by UTI in diabetic rats. The Mendelian randomization study showed that increased insulin receptor expression reduced UTI risk, which was consistent with the results of the animal experiments.
ConclusionThe Shuangdong capsule was effective in treating diabetes with UTIs. It may function by activating the IRS1-PI3K-Akt signaling pathway, thereby increasing CXCL2 and MPO levels, enhancing innate immunity, and promoting bacterial clearance. The Mendelian randomization study provided further evidence supporting the causal role of the insulin receptor in UTI prevention.
-
- Combinatorial Chemistry & High Throughput Screening
-
-
-
Exploring Type II Diabetes Inhibitors from Genus Daphne Plant-species: An Integrated Computational Study
BackgroundPlant species of the genus Daphne clasps a historical background with a potential source of bioactive phytochemicals such as flavonoids and daphnodorins. These compounds manifest a significant chemotaxonomic value in drug discovery. Their flair comprehensive pharmacological, phytochemical, biological, catalytic, and clinical utilities make them exclusively unique. This study was conducted to investigate the optimization and structure-based virtual screening of these peculiar analogues. The majority of the active constituents of medicines are obtained from natural products. Previously, before the invention of virtual screening methods or techniques, almost 80% of drugs were obtained from natural resources. Comparing reported data to drug discovery from 1981 to 2007 signifies that half of the FDA-approved drugs are obtained from natural resources. It has been reported that structures of natural products that have particularities of structural diversity, biochemical specification, and molecular properties make them suitable products for drug discovery. These products basically have unique chiral centers which increase their structural complexity than the synthesized drugs.
MethodsThis work aimed to probe the use of daphnodorins analogs for the first time as antidiabetic inhibitors based on significant features and to determine the potential of daphnodorin analogs as antidiabetic inhibitors through computational analysis and structure-based virtual screening. A dataset of 38 compounds was selected from different databases, including PubChem and ZINC, for computational analysis, and optimized compounds were docked against various co-crystallized structures of inhibitors, antagonists, and receptors which were downloaded from PDB by using AutoDock Vina (by employing Broyden-Fletcher-Goldfarb-Shanno method), Discovery studio visualizer 2020, PYMOL (Schrodinger). Docking results were further validated by Molecular dynamic simulation and MM-GBSA calculation. Quantitative structure-activity relationship (QSAR) was reported by using Gaussian 09W by intimating Density Functional Theory (DFT). Using this combination of multi-approach computational strategy, 14 compounds were selected as potential exclusive lead compounds, which were analyzed through ADMET studies to pin down their drug-like properties and toxicity.
ResultsAt significant phases of drug design approaches regular use of molecular docking has helped to promote the separation of important representatives from 38 pharmaceutically active compounds by setting a threshold docking score of -9.0 kcal/mol which was used for their exposition. Subsequently, by employing a threshold it was recognized that 14 compounds proclaimed this threshold for antidiabetic activity. Further, molecular dynamic simulation, MM-GBSA, ADMET, and DFT results screened out daphnegiralin B4 (36) as a potential lead compound for developing antidiabetic agents.
ConclusionOur analysis took us to the conclusion that daphnegiralin B4 (36) among all ligands comes out to be a lead compound having drug-like properties among 38 ligands being non-carcinogenic and non-cytotoxic which would benefit the medical community by providing significant drugs against diabetes. Pragmatic laboratory investigations identified a new precursor to open new doors for new drug discovery.
-
-
-
-
Exploring the Mechanism of Acupuncture in Improving Ovarian Function in Rats with Poor Ovarian Response Using High-Throughput Sequencing
Authors: Yunzhu Liu, Wanqiu Yang, Rongli Yuan, Zimeng Li, Tianyu Wang, Bin Yang, Zhi Li, Mengjing Wang and Jie WuObjectiveThis study aimed to investigate the possible mechanism through which acupuncture protects ovaries with Poor Ovarian Response (POR) in rats based on microRNA (miRNA).
MethodsThirty-six SPF SD female non-pregnant rats aged 8 weeks were randomly divided into the blank group, model group, and acupuncture group, with 12 rats in each group. According to the group, the rats were given gavage of Tripterygium wilfordii polyglycosides suspension for 14 days to establish the model of POR, and then the rats were treated with acupuncture for 2 weeks, once a day, for 20 minutes.
Afterward, their hormone levels were measured, and HE staining was performed on the ovaries after the intervention. Three rats from each group were randomly selected for ovarian tissue miRNA sequencing, and differential miRNAs were subjected to Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis, and Quantitative Polymerase Chain Reaction (Q-PCR) verification. By using TargetScan to predict the target genes of differential miRNAs, we validated the results with a dual luciferase reporter gene assay.
ResultsCompared with the blank group, the estrus cycle of the model group was significantly prolonged (P<0.01). Anti-Müllerian Hormone (AMH) (P<0.01) and Estrogen (E2) were significantly decreased (P<0.05). Follicle-Stimulating Hormone (FSH) (P<0.05) and Luteinizing Hormone (LH) increased sharply (P<0.01). Compared with the model group, the estrus cycle was significantly shortened in the acupuncture group (P<0.01). AMH and E2 were markedly raised (P<0.05). FSH (P<0.05) and LH (P<0.01) were significantly declined. miRNA sequencing showed that there were 23 miRNAs significantly different between the model group and the blank group (P<0.05), and 30 miRNAs significantly different between the acupuncture group and the model group (P<0.05). GO demonstrated that the network was mainly involved in cellular components, cells, cellular metabolic processes, binding, and single biological processes; KEGG signaling pathway enrichment showed that it was mainly related to MAPK, adhesion junction, calcium signaling pathways, etc. Q-PCR results showed that after modeling, the expression rose, and after acupuncture, the expression of the following miRNA decreased:miR-154-5p (P<0.01), miR-300-5p (P < 0.05), miR-376c-5p (P<0.05). The dual luciferase reporter assay showed that the relative luciferase activity of the miR-300-5p mimics+MAP3K1-WT group was significantly lower than that of the NC+MAP3K1-WT group (P<0.01). HE results demonstrated that the number of primordial follicles and primary follicles in the model group was significantly lower than that in the blank group (P<0.05). Moreover, the morphology was poorer, and the granulosa cell layer was thinner. Compared with the model group, the number of primary follicles in the acupuncture group increased (P<0.05); the morphology and granulosa cell structure of the ovary were improved to different degrees, and mature follicles could be seen.
ConclusionAcupuncture may improve the ovarian responsiveness of POR rats by regulating miR-154-5p,miR-300-5p, and miR-376c-5p. Furthermore, miR-300-5p can specifically bind to the 3'-UTR of MAP3K1, and MAP3K1 may be the target of miR-300-5p.
-
Volumes & issues
-
Volume 28 (2025)
-
Volume 27 (2024)
-
Volume 26 (2023)
-
Volume 25 (2022)
-
Volume 24 (2021)
-
Volume 23 (2020)
-
Volume 22 (2019)
-
Volume 21 (2018)
-
Volume 20 (2017)
-
Volume 19 (2016)
-
Volume 18 (2015)
-
Volume 17 (2014)
-
Volume 16 (2013)
-
Volume 15 (2012)
-
Volume 14 (2011)
-
Volume 13 (2010)
-
Volume 12 (2009)
-
Volume 11 (2008)
-
Volume 10 (2007)
-
Volume 9 (2006)
-
Volume 8 (2005)
-
Volume 7 (2004)
-
Volume 6 (2003)
-
Volume 5 (2002)
-
Volume 4 (2001)
-
Volume 3 (2000)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less