Skip to content
2000
Volume 28, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Genotoxins are chemical constituents that damage DNA or chromosomal architecture, leading to alterations in the genetic level. Streptozotocin, a monofunctional nitrosourea derivative, is often utilized to induce diabetes mellitus in laboratory animals because of its detrimental effects on pancreatic cells. The purpose of this work was to investigate possible protective efficacy against the genotoxic effects of Streptozotocin.

Objective

This study examines the potentiality of curcumin, a phytoproduct with anti-genotoxic and anti-diabetic qualities, against streptozotocin-induced chromosomal abnormalities and DNA damage. The study evaluates the possible protective efficacy of curcumin, exploring a variety of biochemical and molecular biology techniques in murine models.

Methods

The experiment involves a control group, the administration of Streptozotocin (Group S), and a curcumin-pretreated STZ group (Group SC) in mice. The effects of curcumin on DNA damage and chromosomal aberrations were investigated by histopathology, immunofluorescence, evaluation of chromosomal aberrations, detection of Reactive oxygen species, cell viability analysis, and DNA laddering assay.

Results

The results demonstrated a significant reduction in DNA damage, chromosomal anomalies, and a decrease in the expression of the p53 protein in the curcumin-treated animals compared to that of STZ-treated mice.

Conclusion

The overall results show that curcumin can reduce chromosomal aberrations and DNA damage by altering the expression of p53 repair proteins. This suggests that curcumin has a promising future as a therapeutic agent, especially when it comes to drug-induced toxicity and the development of novel therapeutics.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073294446240426112801
2025-05-01
2025-09-28
Loading full text...

Full text loading...

References

  1. GoldenS.H. RobinsonK.A. SaldanhaI. AntonB. LadensonP.W. Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: A comprehensive review.J. Clin. Endocrinol. Metab.20099461853187810.1210/jc.2008‑2291 19494161
    [Google Scholar]
  2. BhattacharjeeB. ChakrovortyA. BiswasM. SamadderA. NandiS. To explore the putative molecular targets of Diabetic Nephropathy and their inhibition utilizing potential phytocompounds.Curr. Med. Chem.202331 37211853
    [Google Scholar]
  3. DeyS. NagpalI. SowP. DeyR. ChakrovortyA. BhattacharjeeB. SahaS. MajumderA. BeraM. SubbaraoN. NandiS. Hossen MollaS. GuptaroyP. AbrahamS.K. Khuda-BukhshA.R. SamadderA. Morroniside interaction with poly (ADP-ribose) polymerase accentuates metabolic mitigation of alloxan-Induced genotoxicity and hyperglycaemia: A molecular docking based in vitro and in vivo experimental therapeutic insight.J. Biomol. Struct. Dyn.202311810.1080/07391102.2023.2246585 37587909
    [Google Scholar]
  4. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.107843 31518657
    [Google Scholar]
  5. SamadderA. DasJ. DasS. DeA. SahaS.K. BhattacharyyaS.S. Khuda-BukhshA.R. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings.Toxicol. Appl. Pharmacol.20132671577310.1016/j.taap.2012.12.018 23276653
    [Google Scholar]
  6. GhoshJ. DasJ. MannaP. SilP.C. The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-Mediated cardiac apoptosis.Biomaterials201132214857486610.1016/j.biomaterials.2011.03.048 21486680
    [Google Scholar]
  7. PapachristoforouE. LambadiariV. MaratouE. MakrilakisK. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications.J. Diabetes Res.2020202011710.1155/2020/7489795 33123598
    [Google Scholar]
  8. ChakrabortyD. SamadderA. DuttaS. Khuda-BukhshA.R. Antihyperglycemic potentials of a threatened plant, Helonias dioica: Antioxidative stress responses and the signaling cascade.Exp. Biol. Med.20122371647610.1258/ebm.2011.011161 22169161
    [Google Scholar]
  9. MaritimA.C. SandersR.A. WatkinsJ.B. III Diabetes, oxidative stress, and antioxidants: A review.J. Biochem. Mol. Toxicol.2003171243810.1002/jbt.10058 12616644
    [Google Scholar]
  10. TejeroJ. ShivaS. GladwinM.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation.Physiol. Rev.201999131137910.1152/physrev.00036.2017 30379623
    [Google Scholar]
  11. SchwabA. SiddiquiA. VazakidouM.E. NapoliF. BöttcherM. MenchicchiB. RazaU. SaatciÖ. KrebsA.M. FerrazziF. RapaI. WildeD.K. WaldnerM.J. EkiciA.B. RasheedS.A.K. MougiakakosD. OefnerP.J. SahinO. VolanteM. GretenF.R. BrabletzT. CeppiP. Polyol pathway links glucose metabolism to the aggressiveness of cancer cells.Cancer Res.20187871604161810.1158/0008‑5472.CAN‑17‑2834 29343522
    [Google Scholar]
  12. IghodaroO.M. Molecular pathways associated with oxidative stress in diabetes mellitus.Biomed. Pharmacother.201810865666210.1016/j.biopha.2018.09.058 30245465
    [Google Scholar]
  13. AragnoM. MastrocolaR. Dietary sugars and endogenous formation of advanced glycation endproducts: Emerging mechanisms of disease.Nutrients20179438510.3390/nu9040385 28420091
    [Google Scholar]
  14. BaoZ. ChenK. KrepelS. TangP. GongW. ZhangM. LiangW. TrivettA. ZhouM. WangJ.M. High glucose promotes human glioblastoma cell growth by increasing the expression and function of chemoattractant and growth factor receptors.Transl. Oncol.20191291155116310.1016/j.tranon.2019.04.016 31207546
    [Google Scholar]
  15. GiaccoF. BrownleeM. Oxidative stress and diabetic complications.Circ. Res.201010791058107010.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  16. JamesL.R. LeC. ScholeyJ.W. Influence of glucosamine on glomerular mesangial cell turnover: Implications for hyperglycemia and hexosamine pathway flux.Am. J. Physiol. Endocrinol. Metab.20102982E210E22110.1152/ajpendo.00232.2009 19903862
    [Google Scholar]
  17. SiesH. JonesD.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.Nat. Rev. Mol. Cell Biol.202021736338310.1038/s41580‑020‑0230‑3 32231263
    [Google Scholar]
  18. DasJ. SilP.C. Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-Related signaling pathways and apoptosis in rats.Amino Acids20124341509152310.1007/s00726‑012‑1225‑y 22302365
    [Google Scholar]
  19. KrystonT.B. GeorgievA.B. PissisP. GeorgakilasA.G. Role of oxidative stress and DNA damage in human carcinogenesis.Mutat. Res.20117111-219320110.1016/j.mrfmmm.2010.12.016 21216256
    [Google Scholar]
  20. YuY. CuiY. NiedernhoferL.J. WangY. Occurrence, biological consequences, and human health relevance of oxidative stress-Induced DNA damage.Chem. Res. Toxicol.201629122008203910.1021/acs.chemrestox.6b00265 27989142
    [Google Scholar]
  21. SouliotisV.L. VlachogiannisN.I. PappaM. ArgyriouA. NtourosP.A. SfikakisP.P. DNA damage response and oxidative stress in systemic autoimmunity.Int. J. Mol. Sci.20192115510.3390/ijms21010055 31861764
    [Google Scholar]
  22. SiedleckaD. MicałW. RomaniukK.E. Streptozotocin - An antibiotic used to induce diabetes on experimental animals.J. Educ. Health Sport202010990690910.12775/JEHS.2020.10.09.110
    [Google Scholar]
  23. XuT. XuX. LiuP.C. MaoH. JuS. Transcriptomic analyses and potential therapeutic targets of pancreatic cancer with concomitant diabetes.Front. Oncol.20201056352710.3389/fonc.2020.563527 33251135
    [Google Scholar]
  24. LenzenS. The mechanisms of alloxan- and streptozotocin-Induced diabetes.Diabetologia200851221622610.1007/s00125‑007‑0886‑7 18087688
    [Google Scholar]
  25. LoC.C. LinS.H. ChangJ.S. ChienY.W. Effects of melatonin on glucose homeostasis, antioxidant ability, and adipokine secretion in ICR mice with NA/STZ-induced hyperglycemia.Nutrients2017911118710.3390/nu9111187 29109369
    [Google Scholar]
  26. StringerD.M. ZahradkaP. TaylorC.G. Glucose transporters: Cellular links to hyperglycemia in insulin resistance and diabetes.Nutr. Rev.201573314015410.1093/nutrit/nuu012 26024537
    [Google Scholar]
  27. OkamotoH. YamamotoH. DNA strand breaks and poly (ADP-ribose) synthetase activation in pancreatic islets—A new aspect to development of insulin-Dependent diabetes and pancreatic B-Cell tumors.Princess Takamatsu Symp.198313297308
    [Google Scholar]
  28. DufraneD. SteenbergheV.M. GuiotY. GoebbelsR.M. SaliezA. GianelloP. Streptozotocin-induced diabetes in large animals (pigs/primates): Role of GLUT2 transporter and β-cell plasticity.Transplantation2006811364510.1097/01.tp.0000189712.74495.82 16421474
    [Google Scholar]
  29. GoyalS.N. ReddyN.M. PatilK.R. NakhateK.T. OjhaS. PatilC.R. AgrawalY.O. Challenges and issues with streptozotocin-induced diabetes – A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics.Chem. Biol. Interact.2016244496310.1016/j.cbi.2015.11.032 26656244
    [Google Scholar]
  30. ZhuB.T. Pathogenic mechanism of autoimmune diabetes mellitus in humans: Potential role of streptozotocin-induced selective autoimmunity against human islet β-cells.Cells202211349210.3390/cells11030492 35159301
    [Google Scholar]
  31. BadrA.M. SharkawyH. FaridA.A. DeebE.S. Curcumin induces regeneration of β cells and suppression of phosphorylated-NF-κB in streptozotocin-induced diabetic mice.J. Basic Appl. Zool.202081115
    [Google Scholar]
  32. ScheinP.S. LoftusS. Streptozotocin: Depression of mouse liver pyridine nucleotides.Cancer Res.196828815011506 4299824
    [Google Scholar]
  33. GreenbergA. Primer on kidney diseases E-book.Elsevier Health Sciences2009
    [Google Scholar]
  34. NolanC.J. DammP. PrentkiM. Type 2 diabetes across generations: From pathophysiology to prevention and management.Lancet2011378978616918110.1016/S0140‑6736(11)60614‑4 21705072
    [Google Scholar]
  35. HassanR.M. ElsayedM. KholiefT.E. HassanenN.H.M. GaferJ.A. AttiaY.A. Mitigating effect of single or combined administration of nanoparticles of zinc oxide, chromium oxide, and selenium on genotoxicity and metabolic insult in fructose/streptozotocin diabetic rat model.Environ. Sci. Pollut. Res. Int.20212835485174853410.1007/s11356‑021‑14089‑w 33907960
    [Google Scholar]
  36. HarishankarM.K. LogeshwaranS. SujeevanS. AruljothiK.N. DannieM.A. DeviA. Genotoxicity evaluation of metformin and glimepiride by micronucleus assay in exfoliated urothelial cells of type 2 diabetes mellitus patients.Food Chem. Toxicol.20158314615010.1016/j.fct.2015.06.013 26115598
    [Google Scholar]
  37. RahimA.E.A.H. ElmoneimA.O.M. HafizN.A. Assessment of antigenotoxic effect of nanoselenium and metformin on diabetic rats.Jordan J. Biol. Sci.2017103159165
    [Google Scholar]
  38. QueirozL.A. AssisJ.B. GuimarãesJ. SousaE.S. MilhomemA.C. SunaharaK.K. NunesS.A. MartinsJ.O. Endangered lymphocytes: The effects of alloxan and streptozotocin on immune cells in type 1 induced diabetes.Mediators Inflamm.20212021994000910.1155/2021/9940009 34712101
    [Google Scholar]
  39. AggarwalB.B. SundaramC. MalaniN. IchikawaH. Curcumin: The Indian solid gold.Adv. Exp. Med. Biol.200759517510.1007/978‑0‑387‑46401‑5_1 17569205
    [Google Scholar]
  40. LinJ. ZhengS. ChenA. Curcumin attenuates the effects of insulin on stimulating hepatic stellate cell activation by interrupting insulin signaling and attenuating oxidative stress.Lab. Invest.200989121397140910.1038/labinvest.2009.115 19841616
    [Google Scholar]
  41. SchraufstätterE. BerntH. Antibacterial action of curcumin and related compounds.Nature1949164416745645710.1038/164456a0 18140450
    [Google Scholar]
  42. SharmaO.P. Antioxidant activity of curcumin and related compounds.Biochem. Pharmacol.197625151811181210.1016/0006‑2952(76)90421‑4 942483
    [Google Scholar]
  43. SamadderA. DasS. DasJ. PaulA. Khuda-BukhshA.R. Ameliorative effects of Syzygium jambolanum extract and its poly (lactic-co-glycolic) acid nano-encapsulated form on arsenic-induced hyperglycemic stress: A multi-Parametric evaluation.J. Acupunct. Meridian Stud.20125631031810.1016/j.jams.2012.09.001 23265083
    [Google Scholar]
  44. AkaberiM. SahebkarA. EmamiS.A. Turmeric and curcumin: From traditional to modern medicine.Adv. Exp. Med. Biol.20212091153910.1007/978‑3‑030‑56153‑6_2
    [Google Scholar]
  45. StanićZ. Curcumin, a compound from natural sources, a true scientific challenge–A review.Plant Foods Hum. Nutr.201772111210.1007/s11130‑016‑0590‑1 27995378
    [Google Scholar]
  46. RadS.J. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. SkocińskaN.K. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. BeyrouthyE.M. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.01021 33041781
    [Google Scholar]
  47. PrasadS. AggarwalB.B. Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine.Herbal Medicine: Biomolecular and Clinical Aspects 2nd ed; Benzie, I.F.F.; Wachtel- Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL201110.1201/b10787‑14
    [Google Scholar]
  48. AggarwalB.B. SungB. Pharmacological basis for the role of curcumin in chronic diseases: An age-Old spice with modern targets.Trends Pharmacol. Sci.2009302859410.1016/j.tips.2008.11.002 19110321
    [Google Scholar]
  49. HatamipourM. JohnstonT.P. SahebkarA. One molecule, many targets and numerous effects: The pleiotropy of curcumin lies in its chemical structure.Curr. Pharm. Des.201824192129213610.2174/1381612824666180522111036 29788873
    [Google Scholar]
  50. ZhangD.W. FuM. GaoS.H. LiuJ.L. Curcumin and diabetes: A systematic review.Evid. Based Complement. Alternat. Med.2013201363605310.1155/2013/636053 24348712
    [Google Scholar]
  51. BoroumandN. SamarghandianS. HashemyS.I. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin.J Herbmed Pharmacol.20187421121910.15171/jhp.2018.33
    [Google Scholar]
  52. FadusM.C. LauC. BikhchandaniJ. LynchH.T. Curcumin: An age-Old anti-inflammatory and anti-Neoplastic agent.J. Tradit. Complement. Med.20177333934610.1016/j.jtcme.2016.08.002 28725630
    [Google Scholar]
  53. AggarwalB.B. KumarA. BhartiA.C. Anticancer potential of curcumin: Preclinical and clinical studies.Anticancer Res.2003231/A363398
    [Google Scholar]
  54. MancíaR.S. TrujilloJ. ChaverriJ.P. Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies.J. Nutr. Intermed. Metab.201814294110.1016/j.jnim.2018.05.001
    [Google Scholar]
  55. SahebkarA. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome?Biofactors201339219720810.1002/biof.1062 23239418
    [Google Scholar]
  56. SinghL. SharmaS. XuS. TewariD. FangJ. Curcumin as a natural remedy for atherosclerosis: A pharmacological review.Molecules20212613403610.3390/molecules26134036 34279384
    [Google Scholar]
  57. ZhengD. HuangC. HuangH. ZhaoY. KhanM.R.U. ZhaoH. HuangL. Antibacterial mechanism of curcumin: A review.Chem. Biodivers.2020178e200017110.1002/cbdv.202000171 32533635
    [Google Scholar]
  58. BarchittaM. MaugeriA. FavaraG. LioM.S.R. EvolaG. AgodiA. BasileG. Nutrition and wound healing: An overview focusing on the beneficial effects of curcumin.Int. J. Mol. Sci.2019205111910.3390/ijms20051119 30841550
    [Google Scholar]
  59. ChakrovortyA. BhattacharjeeB. SaxenaA. SamadderA. NandiS. Current naturopathy to combat alzheimer’s disease.Curr. Neuropharmacol.202321480884110.2174/1570159X20666220927121022 36173068
    [Google Scholar]
  60. RahmaniA. AlsahliM. AlyS. KhanM. AldebasiY. Role of curcumin in disease prevention and treatment.Adv. Biomed. Res.2018713810.4103/abr.abr_147_16 29629341
    [Google Scholar]
  61. KunnumakkaraA.B. HarshaC. BanikK. VikkurthiR. SailoB.L. BordoloiD. GuptaS.C. AggarwalB.B. Is curcumin bioavailability a problem in humans: Lessons from clinical trials.Expert Opin. Drug Metab. Toxicol.201915970573310.1080/17425255.2019.1650914 31361978
    [Google Scholar]
  62. GurzovE.N. GermanoC.M. CunhaD.A. OrtisF. VanderwindenJ.M. MarchettiP. ZhangL. EizirikD.L. p53 up-Regulated modulator of apoptosis (PUMA) activation contributes to pancreatic beta-Cell apoptosis induced by proinflammatory cytokines and endoplasmic reticulum stress.J. Biol. Chem.201028526199101992010.1074/jbc.M110.122374 20421300
    [Google Scholar]
  63. PariL. MuruganP. Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats.Ren. Fail.200729788188910.1080/08860220701540326 17994458
    [Google Scholar]
  64. FurmanB.L. Streptozotocin‐Induced diabetic models in mice and rats.Curr. Protocols Pharmacol.201570147.12010.1002/0471141755.ph0547s70 26331889
    [Google Scholar]
  65. TeschG.H. AllenT.J. Rodent models of streptozotocin‐induced diabetic nephropathy (Methods in Renal Research).Nephrology200712326126610.1111/j.1440‑1797.2007.00796.x 17498121
    [Google Scholar]
  66. EyblV. KotyzováD. BludovskáM. The effect of curcumin on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice.Toxicol. Lett.20041511798510.1016/j.toxlet.2004.02.019 15177643
    [Google Scholar]
  67. SamadderA. ChakrabortyD. DeA. BhattacharyyaS.S. BhadraK. Khuda-BukhshA.R. Possible signaling cascades involved in attenuation of alloxan-induced oxidative stress and hyperglycemia in mice by ethanolic extract of Syzygium jambolanum: Drug-DNA interaction with calf thymus DNA as target.Eur. J. Pharm. Sci.201144320721710.1016/j.ejps.2011.07.012 21839831
    [Google Scholar]
  68. SamadderA. DeyS. SowP. DasR. NandiS. DasJ. BhattacharjeeB. ChakrovortyA. BiswasM. GuptaroyP. Phyto-chlorophyllin prevents food additive induced genotoxicity and mitochondrial dysfunction via cytochrome c mediated pathway in mice model.Comb. Chem. High Throughput Screen.202124101618162710.2174/1386207323666201230093510 33380297
    [Google Scholar]
  69. SamadderA. AbrahamS.K. BukhshK.A.R. Nanopharmaceutical approach using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53.Environ. Toxicol. Pharmacol.201643273710.1016/j.etap.2016.02.010 26943895
    [Google Scholar]
  70. DasS. DasJ. PaulA. SamadderA. Khuda-BukhshA.R. Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage.J. Acupunct. Meridian Stud.20136525226210.1016/j.jams.2013.07.002 24139463
    [Google Scholar]
  71. Khuda-BukhshA.R. DasJ. SamadderA. DasS. PaulA. Nanopharmaceutical approach for enhanced anti-cancer activity of betulinic acid in lung-cancer treatment via activation of PARP: Interaction with dna as a target:-Anti-cancer potential of nano-Betulinic acid in lung cancer.J. Pharmacopuncture2016191374410.3831/KPI.2016.19.005 27280048
    [Google Scholar]
  72. FilimonovD.A. LaguninA.A. GloriozovaT.A. RudikA.V. DruzhilovskiiD.S. PogodinP.V. PoroikovV.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource.Chem. Heterocycl. Compd.201450344445710.1007/s10593‑014‑1496‑1
    [Google Scholar]
  73. DasJ. SamadderA. MondalJ. AbrahamS.K. Khuda-BukhshA.R. Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction.Environ. Toxicol. Pharmacol.20164614715710.1016/j.etap.2016.07.006 27458703
    [Google Scholar]
  74. BhattacharyyaS.S. PaulS. DeA. DasD. SamadderA. BoujedainiN. Khuda-BukhshA.R. Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: Cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target.Toxicol. Appl. Pharmacol.2011253327028110.1016/j.taap.2011.04.010 21549736
    [Google Scholar]
  75. SamadderA. BhattacharjeeB. DeyS. ChakrovortyA. DeyR. SowP. TarafdarD. BiswasM. NandiS. Enhanced drug carriage efficiency of curcumin-loaded PLGA nanoparticles in combating Diabetic Nephropathy via mitigation of renal apoptosis.J. Pharmacopuncture2024
    [Google Scholar]
  76. SowP. DeyS. DeyR. MajumderA. NandiS. BeraM. SamadderA. Poly lactide-co-glycolide encapsulated nano-curcumin promoting antagonistic interactions between HSP 90 and XRCC1 proteins to prevent cypermethrin-induced toxicity: An in silico predicted in vitro and in vivo approach.Colloids Surf. B Biointerfaces202222011290510.1016/j.colsurfb.2022.112905 36283184
    [Google Scholar]
  77. MeghanaK. SanjeevG. RameshB. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: A prophylactic and protective role.Eur. J. Pharmacol.20075771-318319110.1016/j.ejphar.2007.09.002 17900558
    [Google Scholar]
  78. KhattabH.A. AmoudiA.N.S. FalehA.A.A. Effect of ginger, curcumin and their mixture on blood glucose and lipids in diabetic rats.Life Sci. J.2013104428442
    [Google Scholar]
  79. RashidK. SilP.C. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats.Toxicol. Appl. Pharmacol.2015282329731010.1016/j.taap.2014.12.003 25541178
    [Google Scholar]
  80. RagunathanI. PanneerselvamN. Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa.J. Zhejiang Univ. Sci. B20078747047510.1631/jzus.2007.B0470 17610326
    [Google Scholar]
  81. ShahediA. TalebiA.R. MirjaliliA. PourentezariM. Protective effects of curcumin on chromatin quality, sperm parameters, and apoptosis following testicular torsion-detorsion in mice.Clin. Exp. Reprod. Med.2021481273310.5653/cerm.2020.03853 33648042
    [Google Scholar]
  82. SreejayanN. RaoM.N. Free radical scavenging activity of curcuminoids.Arzneimittelforschung1996462169171 8720307
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073294446240426112801
Loading
/content/journals/cchts/10.2174/0113862073294446240426112801
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Curcumin; DNA damage; genotoxicity; hepatocytes; hyperglycemia; ROS; streptozotocin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test