Skip to content
2000
Volume 28, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Lignans, a group of naturally occurring compounds abundant in various plant-based foods, are becoming increasingly popular due to their potential health benefits. The literature suggests that these bioactive substances can reduce the risk of certain types of cancer, such as postmenopausal colon and breast cancer. Moreover, the significance of lignans for improving cardiovascular health has been recognized, as studies have revealed a potential correlation between the intake of lignans and a decreased risk of cardiovascular disease. These complex molecules possess diverse bioactive capabilities, rendering them potential alternatives for preventing chronic diseases. Further research is needed to examine the mechanisms responsible for their beneficial outcomes. Recent research has emphasized the pharmacological properties of lignans as effective substances for human health. Incorporating foods rich in lignans into the diet may be a practical approach to enhancing protection against life-threatening ailments, such as cardiovascular diseases and malignancies.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073316439240515072946
2025-05-01
2025-12-13
Loading full text...

Full text loading...

References

  1. Rodríguez-GarcíaC. Sánchez-QuesadaC. ToledoE. Delgado-RodríguezM. GaforioJ. Naturally lignan-rich foods: A dietary tool for health promotion?Molecules201924591710.3390/molecules24050917 30845651
    [Google Scholar]
  2. SenizzaA. RocchettiG. MoseleJ.I. PatroneV. CallegariM.L. MorelliL. LuciniL. Lignans and gut microbiota: An interplay revealing potential health implications.Molecules20202523570910.3390/molecules25235709 33287261
    [Google Scholar]
  3. AdlercreutzH. Lignans and human health.Crit. Rev. Clin. Lab. Sci.2007445-648352510.1080/10408360701612942 17943494
    [Google Scholar]
  4. IonkovaI. Anticancer lignans--from discovery to biotechnology.Mini Rev. Med. Chem.2011111084385610.2174/138955711796575425 21762103
    [Google Scholar]
  5. PetersonJ. DwyerJ. AdlercreutzH. ScalbertA. JacquesP. McCulloughM.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction.Nutr. Rev.2010681057160310.1111/j.1753‑4887.2010.00319.x 20883417
    [Google Scholar]
  6. MarcotullioM. CuriniM. BecerraJ. An ethnopharmacological, phytochemical and pharmacological review on lignans from Mexican Bursera spp.Molecules2018238197610.3390/molecules23081976 30096772
    [Google Scholar]
  7. XuW.H. ZhaoP. WangM. LiangQ. Naturally occurring furofuran lignans: Structural diversity and biological activities.Nat. Prod. Res.20193391357137310.1080/14786419.2018.1474467 29768037
    [Google Scholar]
  8. LephartE.D. Phytoestrogens (Resveratrol and Equol) for estrogen-deficient skin—controversies/misinformation versus anti-aging in vitro and clinical evidence via nutraceutical-cosmetics.Int. J. Mol. Sci.202122201121810.3390/ijms222011218 34681876
    [Google Scholar]
  9. MagoulasG. PapaioannouD. Bioinspired syntheses of dimeric hydroxycinnamic acids (lignans) and hybrids, using phenol oxidative coupling as key reaction, and medicinal significance thereof.Molecules20141912197691983510.3390/molecules191219769 25460307
    [Google Scholar]
  10. LiY. XieS. YingJ. WeiW. GaoK. Chemical structures of lignans and neolignans isolated from Lauraceae.Molecules20182312316410.3390/molecules23123164 30513687
    [Google Scholar]
  11. PanJ.Y. ChenS.L. YangM.H. WuJ. SinkkonenJ. ZouK. An update on lignans: Natural products and synthesis.Nat. Prod. Rep.200926101251129210.1039/b910940d 19779640
    [Google Scholar]
  12. SuzukiS. UmezawaT. Biosynthesis of lignans and norlignans.J. Wood Sci.200753427328410.1007/s10086‑007‑0892‑x
    [Google Scholar]
  13. SolyomváryA. BeniS. BoldizsarI. Dibenzylbutyrolactone lignans–a review of their structural diversity, biosynthesis, occurrence, identification and importance.Mini Rev. Med. Chem.2017171210531074 27297675
    [Google Scholar]
  14. DurazzoA. ZaccariaM. PolitoA. MaianiG. CarceaM. Lignan content in cereals, buckwheat and derived foods.Foods201321536310.3390/foods2010053 28239096
    [Google Scholar]
  15. DurazzoA. TurfaniV. AzziniE. MaianiG. CarceaM. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours.Food Chem.2013140466667110.1016/j.foodchem.2012.09.062 23692751
    [Google Scholar]
  16. LandeteJ.M. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health.Food Res. Int.201246141042410.1016/j.foodres.2011.12.023
    [Google Scholar]
  17. McCannM.J. GillC.I.R. McGlynnH. RowlandI.R. Role of mammalian lignans in the prevention and treatment of prostate cancer.Nutr. Cancer200552111410.1207/s15327914nc5201_1 16090998
    [Google Scholar]
  18. MarlenS. SibylleA. AndrS. BarbaraN. BirgitP. VolkerB. Dagmar-UlrikeR. Effects of extracts from Linum usitatissimum on cell vitality, proliferation and cytotoxicity in human breast cancer cell lines.J. Med. Plants Res.20148523724510.5897/JMPR2013.5221
    [Google Scholar]
  19. BjörckI. ÖstmanE. KristensenM. Mateo AnsonN. PriceR.K. HaenenG.R.M.M. HavenaarR. Bach KnudsenK.E. FridA. MykkänenH. WelchR.W. RiccardiG. Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the HEALTHGRAIN project.Trends Food Sci. Technol.20122528710010.1016/j.tifs.2011.11.005
    [Google Scholar]
  20. KuijstenA. ArtsI.C.W. VreeT.B. HollmanP.C.H. Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside.J. Nutr.2005135479580110.1093/jn/135.4.795 15795437
    [Google Scholar]
  21. TetensI. TurriniA. TapanainenH. ChristensenT. LampeJ.W. FagtS. HåkanssonN. LundquistA. HallundJ. ValstaL.M. Dietary intake and main sources of plant lignans in five European countries.Food Nutr. Res.20135711980510.3402/fnr.v57i0.19805
    [Google Scholar]
  22. HeinonenS. NurmiT. LiukkonenK. PoutanenK. WähäläK. DeyamaT. NishibeS. AdlercreutzH. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol.J. Agric. Food Chem.20014973178318610.1021/jf010038a 11453749
    [Google Scholar]
  23. SaarinenN.M. ThompsonL.U. Prolonged administration of secoisolariciresinol diglycoside increases lignan excretion and alters lignan tissue distribution in adult male and female rats.Br. J. Nutr.2010104683384110.1017/S0007114510001194 20388250
    [Google Scholar]
  24. MukkerJ.K. SinghR.S.P. MuirA.D. KrolE.S. AlcornJ. Comparative pharmacokinetics of purified flaxseed and associated mammalian lignans in male Wistar rats.Br. J. Nutr.2015113574975710.1017/S0007114514004371 25716060
    [Google Scholar]
  25. LinC. KrolE. AlcornJ. The comparison of rat and human intestinal and hepatic glucuronidation of enterolactone derived from flaxseed lignans.Nat. Prod. J.20133315917110.2174/2210315511303030001
    [Google Scholar]
  26. MurrayT. KangJ. AstheimerL. PriceW.E. Tissue distribution of lignans in rats in response to diet, dose-response, and competition with isoflavones.J. Agric. Food Chem.200755124907491210.1021/jf070266q 17497882
    [Google Scholar]
  27. ThompsonL.U. ChenJ.M. LiT. Strasser-WeipplK. GossP.E. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer.Clin. Cancer Res.200511103828383510.1158/1078‑0432.CCR‑04‑2326 15897583
    [Google Scholar]
  28. ClavelT. DoréJ. BlautM. Bioavailability of lignans in human subjects.Nutr. Res. Rev.200619218719610.1017/S0954422407249704 19079885
    [Google Scholar]
  29. AdlercreutzH. Phyto-oestrogens and cancer.Lancet Oncol.20023636437310.1016/S1470‑2045(02)00777‑5 12107024
    [Google Scholar]
  30. KuijstenA. ArtsI.C.W. van’t VeerP. HollmanP.C.H. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed.J. Nutr.2005135122812281610.1093/jn/135.12.2812 16317125
    [Google Scholar]
  31. LærkeH.N. MortensenM.A. HedemannM.S. Bach KnudsenK.E. PenalvoJ.L. AdlercreutzH. Quantitative aspects of the metabolism of lignans in pigs fed fibre-enriched rye and wheat bread.Br. J. Nutr.2009102798599410.1017/S0007114509344098 19393112
    [Google Scholar]
  32. JohnsonT.W. DressK.R. EdwardsM. Using the Golden Triangle to optimize clearance and oral absorption.Bioorg. Med. Chem. Lett.200919195560556410.1016/j.bmcl.2009.08.045 19720530
    [Google Scholar]
  33. LiJ.J. ChengL. ShenG. QiuL. ShenC.Y. ZhengJ. XuR. YuanH.L. Improved stability and oral bioavailability of Ganneng dropping pills following transforming lignans of herpetospermum caudigerum into nanosuspensions.Chin. J. Nat. Med.2018161708010.1016/S1875‑5364(18)30031‑1 29425592
    [Google Scholar]
  34. RoyR.V. PratheeshkumarP. SonY.O. WangL. HitronJ.A. DivyaS.P. ZhangZ. ShiX. Different roles of ROS and Nrf2 in Cr(VI)-induced inflammatory responses in normal and Cr(VI)-transformed cells.Toxicol. Appl. Pharmacol.2016307819010.1016/j.taap.2016.07.016 27470422
    [Google Scholar]
  35. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.5149 23991888
    [Google Scholar]
  36. JangW.Y. KimM.Y. ChoJ.Y. Antioxidant, anti-inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites.Int. J. Mol. Sci.202223241548210.3390/ijms232415482 36555124
    [Google Scholar]
  37. ChenJ.M. ChenP.Y. LinC.C. HsiehM.C. LinJ.T. Antimetastatic effects of sesamin on human head and neck squamous cell carcinoma through regulation of matrix metalloproteinase-2.Molecules2020259224810.3390/molecules25092248 32397656
    [Google Scholar]
  38. HarikumarK.B. SungB. TharakanS.T. PandeyM.K. JoyB. GuhaS. KrishnanS. AggarwalB.B. Sesamin manifests chemopreventive effects through the suppression of NF-κ B-regulated cell survival, proliferation, invasion, and angiogenic gene products.Mol. Cancer Res.20108575176110.1158/1541‑7786.MCR‑09‑0565 20460401
    [Google Scholar]
  39. MoreeS.S. KavishankarG.B. RajeshaJ. Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats.Phytomedicine2013203-423724510.1016/j.phymed.2012.11.011 23271000
    [Google Scholar]
  40. WangY. BranickyR. NoëA. HekimiS. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.J. Cell Biol.201821761915192810.1083/jcb.201708007 29669742
    [Google Scholar]
  41. GeJ. HaoR. RongX. DouQ.P. TanX. LiG. LiF. LiD. Secoisolariciresinol diglucoside mitigates benzo[a]pyrene-induced liver and kidney toxicity in mice via miR-101a/MKP-1-mediated p38 and ERK pathway.Food Chem. Toxicol.202215911273310.1016/j.fct.2021.112733 34856318
    [Google Scholar]
  42. PietrofesaR.A. ChatterjeeS. KadariyaY. TestaJ.R. AlbeldaS.M. Christofidou-SolomidouM. Synthetic secoisolariciresinol diglucoside (LGM2605) prevents asbestos-induced inflammation and genotoxic cell damage in human mesothelial cells.Int. J. Mol. Sci.202223171008510.3390/ijms231710085 36077483
    [Google Scholar]
  43. Villavicencio TejoF. QuintanillaR.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease.Antioxidants2021107106910.3390/antiox10071069 34356302
    [Google Scholar]
  44. BajpaiV.K. AlamM.B. QuanK.T. KwonK.R. JuM.K. ChoiH.J. LeeJ.S. YoonJ.I. MajumderR. RatherI.A. KimK. LeeS.H. NaM. Antioxidant efficacy and the upregulation of Nrf2-mediated HO-1 expression by (+)-lariciresinol, a lignan isolated from Rubia philippinensis, through the activation of p38.Sci. Rep.2017714603510.1038/srep46035 28378774
    [Google Scholar]
  45. LucafòM. CurciD. FranzinM. DecortiG. StoccoG. Inflammatory bowel disease and risk of colorectal cancer: An overview from pathophysiology to pharmacological prevention.Front. Pharmacol.20211277210110.3389/fphar.2021.772101 34744751
    [Google Scholar]
  46. HoeselB. SchmidJ.A. The complexity of NF-κB signaling in inflammation and cancer.Mol. Cancer20131218610.1186/1476‑4598‑12‑86 23915189
    [Google Scholar]
  47. Cea PisaniL. BalboaE. PueblaC. VargasA. CisternaB. EscamillaR. RegueiraT. SáezJ.C. Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels.Biochim. Biophys. Acta201618621018911899
    [Google Scholar]
  48. BhandariK. VenablesB. Ibuprofen bioconcentration and prostaglandin E2 levels in the bluntnose minnow Pimephales notatus.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2011153225125710.1016/j.cbpc.2010.11.004 21111061
    [Google Scholar]
  49. BanerjeeS. BiehlA. GadinaM. HasniS. SchwartzD.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects.Drugs201777552154610.1007/s40265‑017‑0701‑9 28255960
    [Google Scholar]
  50. JangW.Y. LeeH.P. KimS.A. HuangL. YoonJ.H. ShinC.Y. MitraA. KimH.G. ChoJ.Y. Angiopteris cochinchinensis de vriese ameliorates lps-induced acute lung injury via src inhibition.Plants20221110130610.3390/plants11101306 35631731
    [Google Scholar]
  51. LiL. ChenJ. LinL. PanG. ZhangS. ChenH. ZhangM. XuanY. WangY. YouZ. Quzhou fructus aurantii extract suppresses inflammation via regulation of MAPK, NF-κB, and AMPK signaling pathway.Sci. Rep.2020101159310.1038/s41598‑020‑58566‑7 32005962
    [Google Scholar]
  52. HighamA. SinghD. Dexamethasone and p38 MAPK inhibition of cytokine production from human lung fibroblasts.Fundam. Clin. Pharmacol.202135471472410.1111/fcp.12627 33145838
    [Google Scholar]
  53. SonM. WangA.G. TuH.L. MetzigM.O. PatelP. HusainK. LinJ. MuruganA. HoffmannA. TayS. NF-κB responds to absolute differences in cytokine concentrations.Sci. Signal.202114666eaaz438210.1126/scisignal.aaz4382 34211635
    [Google Scholar]
  54. LiD. LuoF. GuoT. HanS. WangH. LinQ. Targeting NF-κB pathway by dietary lignans in inflammation: Expanding roles of gut microbiota and metabolites.Crit. Rev. Food Sci. Nutr.202363225967598310.1080/10408398.2022.2026871 35068283
    [Google Scholar]
  55. WangZ. ChenT. YangC. BaoT. YangX. HeF. ZhangY. ZhuL. ChenH. RongS. YangS. Secoisolariciresinol diglucoside suppresses Dextran sulfate sodium salt-induced colitis through inhibiting NLRP1 inflammasome.Int. Immunopharmacol.20207810593110.1016/j.intimp.2019.105931 31812068
    [Google Scholar]
  56. YuL. XuQ. WangP. LuoJ. ZhengZ. ZhouJ. ZhangL. SunL. ZuoD. Secoisolariciresinol diglucoside-derived metabolite, enterolactone, attenuates atopic dermatitis by suppressing Th2 immune response.Int. Immunopharmacol.202211110903910.1016/j.intimp.2022.109039 35914449
    [Google Scholar]
  57. ZhangY. LeiY. YaoX. YiJ. FengG. Pinoresinol diglucoside alleviates ischemia/reperfusion‐induced brain injury by modulating neuroinflammation and oxidative stress.Chem. Biol. Drug Des.202198698699610.1111/cbdd.13956 34546621
    [Google Scholar]
  58. YeH. SunL. LiJ. WangY. BaiJ. WuL. HanQ. YangZ. LiL. Sesamin attenuates carrageenan-induced lung inflammation through upregulation of A20 and TAX1BP1 in rats.Int. Immunopharmacol.20208810700910.1016/j.intimp.2020.107009 33182047
    [Google Scholar]
  59. WangH.Q. WanZ. ZhangQ. SuT. YuD. WangF. ZhangC. LiW. XuD. ZhangH. Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl4-induced liver fibrosis by suppressing NF-κB and p38 MAPK pathway.Phytomedicine20229815396010.1016/j.phymed.2022.153960 35121391
    [Google Scholar]
  60. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  61. VannemanM. DranoffG. Combining immunotherapy and targeted therapies in cancer treatment.Nat. Rev. Cancer201212423725110.1038/nrc3237 22437869
    [Google Scholar]
  62. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  63. VelentzisL.S. CantwellM.M. CardwellC. KeshtgarM.R. LeathemA.J. WoodsideJ.V. Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies.Br. J. Cancer200910091492149810.1038/sj.bjc.6605003 19337250
    [Google Scholar]
  64. ScherbakovA.M. StasevichO.V. SalnikovaD.I. AndreevaO.E. MikhaevichE.I. Antiestrogenic and antiproliferative potency of secoisolariciresinol diglucoside derivatives on MCF-7 breast cancer cells.Nat. Prod. Res.202135246099610510.1080/14786419.2020.1826479 33025821
    [Google Scholar]
  65. ArgenzianoM. GigliottiC.L. ClementeN. BoggioE. FerraraB. TrottaF. PizzimentiS. BarreraG. BoldoriniR. BessoneF. DianzaniU. CavalliR. DianzaniC. Improvement in the anti-tumor efficacy of doxorubicin nanosponges in in vitro and in mice bearing breast tumor models.Cancers202012116210.3390/cancers12010162 31936526
    [Google Scholar]
  66. BowersL.W. LinebergerC.G. FordN.A. RossiE.L. PunjalaA. CampK.K. KimlerB.K. FabianC.J. HurstingS.D. The flaxseed lignan secoisolariciresinol diglucoside decreases local inflammation, suppresses NFκB signaling, and inhibits mammary tumor growth.Breast Cancer Res. Treat.2019173354555710.1007/s10549‑018‑5021‑6 30367332
    [Google Scholar]
  67. RattanabureeT. TanawattanasuntornT. ThongpanchangT. TipmaneeV. GraidistP. -(−)-Kusunokinin: A potential anticancer lignan compound against HER2 in breast cancer cell lines?Molecules20212615453710.3390/molecules26154537 34361688
    [Google Scholar]
  68. SriwiriyajanS. SukpondmaY. SrisawatT. MadlaS. GraidistP. (−)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer.Biomed. Pharmacother.20179273274310.1016/j.biopha.2017.05.130 28586745
    [Google Scholar]
  69. Valderrama-TreviñoA.I. Barrera-MeraB. Ceballos-VillalvaJ.C. Montalvo-JavéE.E. Hepatic metastasis from colorectal cancer.Euroasian J. Hepatogastroenterol.20177216617510.5005/jp‑journals‑10018‑1241 29201802
    [Google Scholar]
  70. BuradaF. NicoliE.R. CiureaM.E. UscatuD.C. IoanaM. GheoneaD.I. Autophagy in colorectal cancer: An important switch from physiology to pathology.World J. Gastrointest. Oncol.201571127128410.4251/wjgo.v7.i11.271 26600927
    [Google Scholar]
  71. SainA. KandasamyT. NaskarD. Targeting UNC-51-like kinase 1 and 2 by lignans to modulate autophagy: Possible implications in metastatic colorectal cancer.Mol. Divers.2023271274310.1007/s11030‑022‑10399‑4 35192112
    [Google Scholar]
  72. HuangY. LiuZ. LiL. JiangM. TangY. ZhouL. LiJ. ChenY. Sesamin inhibits hypoxia-stimulated angiogenesis via the NF-κB p65/HIF-1α/VEGFA signaling pathway in human colorectal cancer.Food Funct.202213178989899710.1039/D2FO00345G 35939045
    [Google Scholar]
  73. ÖzgöçmenM. BayramD. Yavuz TürelG. ToğayV.A. Şahin CalapoğluN. Secoisolariciresinol diglucoside induces caspase‐3‐mediated apoptosis in monolayer and spheroid cultures of human colon carcinoma cells.J. Food Biochem.2021455e1371910.1111/jfbc.13719 33778961
    [Google Scholar]
  74. ChenT. WangZ. ZhongJ. ZhangL. ZhangH. ZhangD. XuX. ZhongX. WangJ. LiH. Secoisolariciresinol diglucoside induces pyroptosis by activating caspase‐1 to cleave GSDMD in colorectal cancer cells.Drug Dev. Res.20228351152116610.1002/ddr.21939 35472101
    [Google Scholar]
  75. ZhangL. AltuwaijriS. DengF. ChenL. LalP. BhanotU.K. KoretsR. WenskeS. LiljaH.G. ChangC. ScherH.I. GeraldW.L. NF-kappaB regulates androgen receptor expression and prostate cancer growth.Am. J. Pathol.2009175248949910.2353/ajpath.2009.080727 19628766
    [Google Scholar]
  76. SelvarajD. MuthuS. KothaS. SiddamsettyR.S. AndavarS. JayaramanS. Syringaresinol as a novel androgen receptor antagonist against wild and mutant androgen receptors for the treatment of castration-resistant prostate cancer: Molecular docking, in-vitro and molecular dynamics study.J. Biomol. Struct. Dyn.202139262163410.1080/07391102.2020.1715261 31928160
    [Google Scholar]
  77. MinK. ChungJ.W. HaY.S. LeeJ.N. KimB.S. KimH.T. KimT.H. YooE.S. KwonT.G. ChungS.K. TanakaM. EgawaS. KimuraT. ChoiS.H. Efficacy of androgen deprivation therapy in patients with metastatic castration-resistant prostate cancer receiving docetaxel-based chemotherapy.World J. Mens Health202038222623510.5534/wjmh.190029 31190487
    [Google Scholar]
  78. MengZ. LiuH. ZhangJ. ZhengZ. WangZ. ZhangL. JiaZ. SuiY. Sesamin promotes apoptosis and pyroptosis via autophagy to enhance antitumour effects on murine T-cell lymphoma.J. Pharmacol. Sci.2021147326027010.1016/j.jphs.2021.08.001 34507635
    [Google Scholar]
  79. TannousS. HaykalT. DhainiJ. HodrojM.H. RizkS. The anti-cancer effect of flaxseed lignan derivatives on different acute myeloid leukemia cancer cells.Biomed. Pharmacother.202013211088410.1016/j.biopha.2020.110884 33080470
    [Google Scholar]
  80. KiyamaR. Biological effects induced by estrogenic activity of lignans.Trends Food Sci. Technol.20165418619610.1016/j.tifs.2016.06.007
    [Google Scholar]
  81. YooH.H. ParkJ.H. KwonS.W. An anti-estrogenic lignan glycoside, tracheloside, from seeds of Carthamus tinctorius.Biosci. Biotechnol. Biochem.200670112783278510.1271/bbb.60290 17090940
    [Google Scholar]
  82. PianjingP. ThiantanawatA. RangkadilokN. WatcharasitP. MahidolC. SatayavivadJ. Estrogenic activities of sesame lignans and their metabolites on human breast cancer cells.J. Agric. Food Chem.201159121222110.1021/jf102006w 21141889
    [Google Scholar]
  83. AdolpheJ.L. WhitingS.J. JuurlinkB.H.J. ThorpeL.U. AlcornJ. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside.Br. J. Nutr.2010103792993810.1017/S0007114509992753 20003621
    [Google Scholar]
  84. Guillermo-LagaeR. SanthaS. ThomasM. ZoelleE. StevensJ. KaushikR.S. DwivediC. Antineoplastic effects of honokiol on melanoma.Biomed Res. Int.20172017549639810.1155/2017/5496398
    [Google Scholar]
  85. RaufA. PatelS. ImranM. MaalikA. ArshadM.U. SaeedF. MabkhotY.N. Al-ShowimanS.S. AhmadN. ElsharkawyE. Honokiol: An anticancer lignan.Biomed. Pharmacother.201810755556210.1016/j.biopha.2018.08.054 30114639
    [Google Scholar]
  86. Godoy de LimaR. BarrosM.T. da Silva LaurentizR. Medicinal attributes of Lignans extracted from Piper cubeba: Current developments.ChemistryOpen20187218019110.1002/open.201700182 29435403
    [Google Scholar]
  87. MouraA.F. LimaK.S.B. SousaT.S. Marinho-FilhoJ.D.B. PessoaC. SilveiraE.R. PessoaO.D.L. Costa-LotufoL.V. MoraesM.O. AraújoA.J. In vitro antitumor effect of a lignan isolated from Combretum fruticosum, trachelogenin, in HCT-116 human colon cancer cells.Toxicol. In Vitro 20184712913610.1016/j.tiv.2017.11.014 29174024
    [Google Scholar]
  88. ZálešákF. BonD.J.Y.D. PospíšilJ. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances.Pharmacol. Res.201914610428410.1016/j.phrs.2019.104284 31136813
    [Google Scholar]
  89. NehaB. JannaviR. SukumaranP. Phyto-pharmacological and biological aspects of vitex negundo medicinal plant - A review.J. Pharm. Res. Int.2021173210.9734/jpri/2021/v33i29A31562
    [Google Scholar]
  90. Antúnez-MojicaM. Romero-EstradaA. Hurtado-DíazI. Miranda-MolinaA. AlvarezL. Lignans from Bursera fagaroides: Chemistry, pharmacological effects and molecular mechanism. A current review.Life202111768510.3390/life11070685 34357057
    [Google Scholar]
  91. WangM. JiangS. YuanH. ZafarS. HussainN. JianY. LiB. GongL. PengC. LiuC. WangW. A review of the phytochemistry and pharmacology of Kadsura heteroclita, an important plant in Tujia ethnomedicine.J. Ethnopharmacol.202126811356710.1016/j.jep.2020.113567 33171272
    [Google Scholar]
  92. WenL. MaoW. XuL. CaiB. GuL. Sesamin exerts anti‐tumor activity in esophageal squamous cell carcinoma via inhibition of TRIM44 and NF‐κB signaling.Chem. Biol. Drug Des.202299111812510.1111/cbdd.13937 34411455
    [Google Scholar]
  93. HaradaE. MurataJ. OnoE. ToyonagaH. ShiraishiA. HideshimaK. YamamotoM.P. HorikawaM. (+)‐Sesamin‐oxidising CYP92B14 shapes specialised lignan metabolism in sesame.Plant J.202010441117112810.1111/tpj.14989 32955771
    [Google Scholar]
  94. NingY. FuY.L. ZhangQ.H. ZhangC. ChenY. Inhibition of in vitro and in vivo ovarian cancer cell growth by pinoresinol occurs by way of inducing autophagy, inhibition of cell invasion, loss of mitochondrial membrane potential and inhibition Ras/MEK/ERK signalling pathway.JBUON2019242709714 31128027
    [Google Scholar]
  95. MeagherL.P. BeecherG.R. FlanaganV.P. LiB.W. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal.J. Agric. Food Chem.19994783173318010.1021/jf981359y 10552626
    [Google Scholar]
  96. ZhangX.R. KaundaJ.S. ZhuH.T. WangD. YangC.R. ZhangY.J. The genus Terminalia (Combretaceae): An ethnopharmacological, phytochemical and pharmacological review.Nat. Prod. Bioprospect.20199635739210.1007/s13659‑019‑00222‑3 31696441
    [Google Scholar]
  97. HabtemariamS. Cytotoxic and cytostatic activity of erlangerins from Commiphora erlangeriana.Toxicon200341672372710.1016/S0041‑0101(03)00048‑5 12727276
    [Google Scholar]
  98. DayS.H. LinY.C. TsaiM.L. TsaoL.T. KoH.H. ChungM.I. LeeJ.C. WangJ.P. WonS.J. LinC.N. Potent cytotoxic lignans from Justicia procumbens and their effects on nitric oxide and tumor necrosis factor-α production in mouse macrophages.J. Nat. Prod.200265337938110.1021/np0101651 11908984
    [Google Scholar]
  99. LeeJ.S. KimJ. YuY.U. KimY.C. Inhibition of phospholipase Cγ1 and cancer cell proliferation by lignans and flavans fromMachilus thunbergii.Arch. Pharm. Res.200427101043104710.1007/BF02975429 15554262
    [Google Scholar]
  100. ParkB.Y. MinB.S. KwonO.K. OhS.R. AhnK.S. KimT.J. KimD.Y. BaeK. LeeH.K. Increase of caspase-3 activity by lignans from Machilus thunbergii in HL-60 cells.Biol. Pharm. Bull.20042781305130710.1248/bpb.27.1305 15305043
    [Google Scholar]
  101. LiG. LeeC.S. WooM.H. LeeS.H. ChangH.W. SonJ.K. Lignans from the bark of Machilus thunbergii and their DNA topoisomerases I and II inhibition and cytotoxicity.Biol. Pharm. Bull.20042771147115010.1248/bpb.27.1147 15256759
    [Google Scholar]
  102. TakasakiM. KonoshimaT. KomatsuK. TokudaH. NishinoH. Anti-tumor-promoting activity of lignans from the aerial part of Saussurea medusa.Cancer Lett.20001581535910.1016/S0304‑3835(00)00499‑7 10940509
    [Google Scholar]
  103. HuangD.M. GuhJ.H. ChuehS.C. TengC.M. Modulation of anti‐adhesion molecule MUC‐1 is associated with arctiin‐induced growth inhibition in PC‐3 cells.Prostate200459326026710.1002/pros.10364 15042601
    [Google Scholar]
  104. MageeP. McGlynnH. RowlandI. Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro.Cancer Lett.20042081354110.1016/j.canlet.2003.11.012 15105043
    [Google Scholar]
  105. LinX. SwitzerB.R. Demark-WahnefriedW. Effect of mammalian lignans on the growth of prostate cancer cell lines.Anticancer Res.2001216A39953999 11911282
    [Google Scholar]
  106. ChattopadhyayS.K. KumarT.R.S. MaulikP.R. SrivastavaS. GargA. SharonA. NegiA.S. KhanujaS.P.S. Absolute configuration and anticancer activity of taxiresinol and related lignans of Taxus wallichiana.Bioorg. Med. Chem.200311234945494810.1016/j.bmc.2003.09.010 14604656
    [Google Scholar]
  107. KimJ.H. ParkY.H. ParkS.W. YangE.K. LeeW.J. Lignan from safflower seeds induces apoptosis in human promyelocytic leukemia cells.Prev. Nutr. Food Sci.20038211311810.3746/jfn.2003.8.2.113
    [Google Scholar]
  108. GuJ.Q. ParkE.J. ToturaS. RiswanS. FongH.H.S. PezzutoJ.M. KinghornA.D. Constituents of the twigs of Hernandia ovigera that inhibit the transformation of JB6 murine epidermal cells.J. Nat. Prod.20026571065106810.1021/np020042w 12141878
    [Google Scholar]
  109. ItoC. ItoigawaM. OgataM. MouX.Y. TokudaH. NishinoH. FurukawaH. Lignans as anti-tumor-promoter from the seeds of Hernandia ovigera.Planta Med.200167216616810.1055/s‑2001‑11501 11301868
    [Google Scholar]
  110. RickardS.E. YuanY.V. ThompsonL.U. Plasma insulin-like growth factor I levels in rats are reduced by dietary supplementation of flaxseed or its lignan secoisolariciresinol diglycoside.Cancer Lett.20001611475510.1016/S0304‑3835(00)00592‑9 11078912
    [Google Scholar]
  111. EkaluA. AyoR.G.O. HabilaJ.D. HamisuI. In vitro antimicrobial activity of lignan from the stem bark of Strombosia grandifolia Hook.f. ex Benth.Bull. Natl. Res. Cent.201943111510.1186/s42269‑019‑0159‑x
    [Google Scholar]
  112. XiaoS.J. ZhangM.S. ChenF. DingL.S. ZhouY. Two new lignans from Gymnotheca involucrata.Nat. Prod. Res.202034332933410.1080/14786419.2018.1530997 30587031
    [Google Scholar]
  113. BhaskarA. SekharS. JavaraiahR. Antibiofilm and anti-inflammatory potential of lignans with collegial effect: Secoisolariciresinol diglucoside and sesamin as antimicrobial sources.J. Appl. Biol. Biotechnol.20208044551
    [Google Scholar]
  114. NieH. GuanX.L. LiJ. ZhangY.J. HeR.J. HuangY. LiuB.M. ZhouD.X. DengS.P. ChenH.C. YangR.Y. LiJ. Antimicrobial lignans derived from the roots of Streblus asper.Phytochem. Lett.20161822623110.1016/j.phytol.2016.10.022
    [Google Scholar]
  115. TopcuG. DemirkiranO. Lignans from Taxus species.Bioactive Heterocycles V.2007103144
    [Google Scholar]
  116. ChoJ.Y. ChoiG.J. SonS.W. JangK.S. LimH.K. LeeS.O. SungN.D. ChoK.Y. KimJ.C. Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi.Pest Manag. Sci.200763993594010.1002/ps.1420 17659535
    [Google Scholar]
  117. KawazoeK. YutaniA. TamemotoK. YuasaS. ShibataH. HigutiT. TakaishiY. Phenylnaphthalene compounds from the subterranean part of Vitex rotundifolia and their antibacterial activity against methicillin-resistant Staphylococcus aureus.J. Nat. Prod.200164558859110.1021/np000307b 11374949
    [Google Scholar]
  118. AkiyamaK. YamauchiS. MaruyamaM. SugaharaT. KishidaT. KobaY. Antimicrobial activity of stereoisomers of morinols a and B, tetrahydropyran sesquineolignans.Biosci. Biotechnol. Biochem.200973112913310.1271/bbb.80536 19129639
    [Google Scholar]
  119. HeW.J. ChuH.B. ZhangY.M. HanH.J. YanH. ZengG.Z. FuZ.H. OlubankeO. TanN.H. Antimicrobial, cytotoxic lignans and terpenoids from the twigs of Pseudolarix kaempferi.Planta Med.201177171924193110.1055/s‑0031‑1280020 21728150
    [Google Scholar]
  120. NakataniN. IkedaK. KikuzakiH. KidoM. YamaguchiY. Diaryldimethylbutane lignans from Myristica argentea and their antimicrobial action against Streptococcus mutans.Phytochemistry198827103127312910.1016/0031‑9422(88)80013‑X
    [Google Scholar]
  121. RollingerJ.M. ZidornC. DobnerM.J. EllmererE.P. StuppnerH. Lignans, phenylpropanoids and polyacetylenes from Chaerophyllum aureum L. (Apiaceae).Z. Naturforsch. C J. Biosci.2003587-855355710.1515/znc‑2003‑7‑818 12939043
    [Google Scholar]
  122. Gülçinİ. EliasR. GepdiremenA. BoyerL. Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.).Eur. Food Res. Technol.2006223675976710.1007/s00217‑006‑0265‑5
    [Google Scholar]
  123. GabrA.M.M. MabrokH.B. Abdel-RahimE.A. El-BahrM.K. SmetanskaI. Determination of lignans, phenolic acids and antioxidant capacity in transformed hairy root culture of Linum usitatissimum.Nat. Prod. Res.201832151867187110.1080/14786419.2017.1405405 29156979
    [Google Scholar]
  124. SoleymaniS. HabtemariamS. RahimiR. NabaviS.M. The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects.Trends Food Sci. Technol.202010638239010.1016/j.tifs.2020.10.015
    [Google Scholar]
  125. WangQ. WangX. BaoB. HanJ. AoW. Four lignans from Syringa pinnatifolia and their antioxidant activity.Chem. Nat. Compd.2018541182110.1007/s10600‑018‑2249‑7
    [Google Scholar]
  126. PietarinenS.P. WillförS.M. AhotupaM.O. HemmingJ.E. HolmbomB.R. Knotwood and bark extracts: Strong antioxidants from waste materials.J. Wood Sci.200652543644410.1007/s10086‑005‑0780‑1
    [Google Scholar]
  127. HuangX.X. BaiM. ZhouL. LouL.L. LiuQ.B. ZhangY. LiL.Z. SongS.J. Food byproducts as a new and cheap source of bioactive compounds: lignans with antioxidant and anti-inflammatory properties from Crataegus pinnatifida seeds.J. Agric. Food Chem.201563327252726010.1021/acs.jafc.5b02835 26237121
    [Google Scholar]
  128. BedigianD. SeiglerD.S. HarlanJ.R. Sesamin, sesamolin and the origin of sesame.Biochem. Syst. Ecol.198513213313910.1016/0305‑1978(85)90071‑7
    [Google Scholar]
  129. KatoA. HashimotoY. KidokorM. (+)-Nortrachelogenin, a new pharmacologically active lignan from Wikstroemia indica.J. Nat. Prod.197942215916210.1021/np50002a004
    [Google Scholar]
  130. MirekuE.A. MensahA.Y. MensahM.L. AmponsahI.K. MintahD. Phytochemical constituents and anti-oxidative properties of Landolphia heudelotti roots.Int. J. Pharm. Sci. Res.20178728622866
    [Google Scholar]
  131. JiangK. SongQ.Y. PengS.J. ZhaoQ.Q. LiG.D. LiY. GaoK. New lignans from the roots of Schisandra sphenanthera.Fitoterapia2015103637010.1016/j.fitote.2015.03.015 25796351
    [Google Scholar]
  132. KumarasamyY. NaharL. CoxP.J. DinanL.N. FergusonC.A. FinnieD.A. JasparsM. SarkerS.D. Biological activity of lignans from the seeds of Centaurea scabiosa.Pharm. Biol.200341320320610.1076/phbi.41.3.203.15099
    [Google Scholar]
  133. KimJ.W. YangH. KimH.W. KimH.P. SungS.H. Lignans from Opuntia ficus-indica seeds protect rat primary hepatocytes and HepG2 cells against ethanol-induced oxidative stress.Biosci. Biotechnol. Biochem.201781118118310.1080/09168451.2016.1234930 27885940
    [Google Scholar]
  134. EdziriH. JaziriR. HaddadO. AnthonissenR. AouniM. MastouriM. VerschaeveL. Phytochemical analysis, antioxidant, anticoagulant and in vitro toxicity and genotoxicity testing of methanolic and juice extracts of Beta vulgaris L.S. Afr. J. Bot.201912617017510.1016/j.sajb.2019.01.017
    [Google Scholar]
  135. HamdiA. HorchaniM. JannetH.B. SnoussiM. NoumiE. BoualiN. KadriA. PolitoF. De FeoV. EdziriH. In vitro screening of antimicrobial and anti-coagulant activities, ADMe profiling, and molecular docking study of Citrus limon L. and Citrus paradisi L. cold-pressed volatile oils.Pharmaceuticals20231612166910.3390/ph16121669 38139796
    [Google Scholar]
  136. EdziriH. HaddadO. SaidanaD. ChouchenS. SkhiriF. MastouriM. FlaminiG. Ruscus hypophyllum L. extracts: Chemical composition, antioxidant, anticoagulant, and antimicrobial activity against a wide range of sensitive and multi-resistant bacteria.Environ. Sci. Pollut. Res. Int.20202714170631707110.1007/s11356‑020‑08159‑8 32146666
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073316439240515072946
Loading
/content/journals/cchts/10.2174/0113862073316439240515072946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test