Skip to content
2000
Volume 28, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Osteoarthritis (OA) is a chronic progressive joint ailment that is largely predominant worldwide. However, it typically gets worse over time, occurs more frequently, and becomes more crippling.

Objectives

Syringic acid (SA) is a well-known phenolic compound reported to suppress inflammation, cell proliferation, and apoptosis of various cancer cells. Since the role of SA in OA remains unknown, there is a need to hypothesize the anti-inflammatory activities of SA on IL-1β-induced ATDC5 chondrocyte-like cells and to elucidate its protective action against OA.

Methods

The cytotoxicity, inflammatory mediators, mRNA expression of MMPs, ADAMTS, COX-2, and Akt/NF-κB protein expression of SA activity on ATDC5 cells were examined through CCK-8 assay, ELISA, RT-qPCR, and western blot. It was found that SA (10, 20, and 30 µM) did not show any inhibitory effects on the viability of the ATDC5 cells in a concentration-dependent manner.

Results

SA markedly reduced the inflammatory mediators, cytokines, PGE2, MMPs, COX-2, and ADAMTS in a concentration-dependent manner. Likewise, SA expressively attenuated IL-1β-stimulated Akt phosphorylation and NF-κB activation in IL-1β- induced ATDC5 chondrocytes.

Conclusion

This study revealed that SA is a novel candidate applicable for the treatment of OA.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073286384240227053954
2025-05-01
2025-09-16
Loading full text...

Full text loading...

References

  1. WallaceI.J. WorthingtonS. FelsonD.T. JurmainR.D. WrenK.T. MaijanenH. WoodsR.J. LiebermanD.E. Knee osteoarthritis has doubled in prevalence since the mid-20th century.Proc. Natl. Acad. Sci.2017114359332933610.1073/pnas.1703856114 28808025
    [Google Scholar]
  2. MurrayC.J.L. AtkinsonC. BhallaK. BirbeckG. BursteinR. ChouD. DellavalleR. DanaeiG. EzzatiM. FahimiA. FlaxmanD. Foreman; Gabriel, S.; Gakidou, E.; Kassebaum, N.; Khatibzadeh, S.; Lim, S.; Lipshultz, S.E.; London, S.; Lopez; MacIntyre, M.F.; Mokdad, A.H.; Moran, A.; Moran, A.E.; Mozaffarian, D.; Murphy, T.; Naghavi, M.; Pope, C.; Roberts, T.; Salomon, J.; Schwebel, D.C.; Shahraz, S.; Sleet, D.A.; Murray; Abraham, J.; Ali, M.K.; Atkinson, C.; Bartels, D.H.; Bhalla, K.; Birbeck, G.; Burstein, R.; Chen, H.; Criqui, M.H.; Dahodwala; Jarlais; Ding, E.L.; Dorsey, E.R.; Ebel, B.E.; Ezzati, M.; Fahami; Flaxman, S.; Flaxman, A.D.; Gonzalez-Medina, D.; Grant, B.; Hagan, H.; Hoffman, H.; Kassebaum, N.; Khatibzadeh, S.; Leasher, J.L.; Lin, J.; Lipshultz, S.E.; Lozano, R.; Lu, Y.; Mallinger, L.; McDermott, M.M.; Micha, R.; Miller, T.R.; Mokdad, A.A.; Mokdad, A.H.; Mozaffarian, D.; Naghavi, M.; Narayan, K.M.; Omer, S.B.; Pelizzari, P.M.; Phillips, D.; Ranganathan, D.; Rivara, F.P.; Roberts, T.; Sampson, U.; Sanman, E.; Sapkota, A.; Schwebel, D.C.; Sharaz, S.; Shivakoti, R.; Singh, G.M.; Singh, D.; Tavakkoli, M.; Towbin, J.A.; Wilkinson, J.D.; Zabetian, A.; Murray; Abraham, J.; Ali, M.K.; Alvardo, M.; Atkinson, C.; Baddour, L.M.; Benjamin, E.J.; Bhalla, K.; Birbeck, G.; Bolliger, I.; Burstein, R.; Carnahan, E.; Chou, D.; Chugh, S.S.; Cohen, A.; Colson, K.E.; Cooper, L.T.; Couser, W.; Criqui, M.H.; Dabhadkar, K.C.; Dellavalle, R.P.; Jarlais; Dicker, D.; Dorsey, E.R.; Duber, H.; Ebel, B.E.; Engell, R.E.; Ezzati, M.; Felson, D.T.; Finucane, M.M.; Flaxman, S.; Flaxman, A.D.; Fleming, T.; Foreman; Forouzanfar, M.H.; Freedman, G.; Freeman, M.K.; Gakidou, E.; Gillum, R.F.; Gonzalez-Medina, D.; Gosselin, R.; Gutierrez, H.R.; Hagan, H.; Havmoeller, R.; Hoffman, H.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayarman, S.; Johns, N.; Kassebaum, N.; Khatibzadeh, S.; Lan, Q.; Leasher, J.L.; Lim, S.; Lipshultz, S.E.; London, S.; Lopez; Lozano, R.; Lu, Y.; Mallinger, L.; Meltzer, M.; Mensah, G.A.; Michaud, C.; Miller, T.R.; Mock, C.; Moffitt, T.E.; Mokdad, A.A.; Mokdad, A.H.; Moran, A.; Naghavi, M.; Narayan, K.M.; Nelson, R.G.; Olives, C.; Omer, S.B.; Ortblad, K.; Ostro, B.; Pelizzari, P.M.; Phillips, D.; Raju, M.; Razavi, H.; Ritz, B.; Roberts, T.; Sacco, R.L.; Salomon, J.; Sampson, U.; Schwebel, D.C.; Shahraz, S.; Shibuya, K.; Silberberg, D.; Singh, J.A.; Steenland, K.; Taylor, J.A.; Thurston, G.D.; Vavilala, M.S.; Vos, T.; Wagner, G.R.; Weinstock, M.A.; Weisskopf, M.G.; Wulf, S.; Murray, The state of US health, 1990-2010: Burden of diseases, injuries, and risk factors.JAMA2013310659160810.1001/jama.2013.13805 23842577
    [Google Scholar]
  3. LoeserR.F. Molecular mechanisms of cartilage destruction: Mechanics, inflammatory mediators, and aging collide.Arthritis Rheum.20065451357136010.1002/art.21813 16645963
    [Google Scholar]
  4. HeY. WuZ. XuL. XuK. ChenZ. RanJ. WuL. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis.Cell. Mol. Life Sci.202077193729374310.1007/s00018‑020‑03497‑9 32468094
    [Google Scholar]
  5. NeogiT. ZhangY. Epidemiology of osteoarthritis.Rheum. Dis. Clin. North Am.201339111910.1016/j.rdc.2012.10.004 23312408
    [Google Scholar]
  6. BortoluzziA. FuriniF. ScirèC.A. Osteoarthritis and its management: Epidemiology, nutritional aspects and environmental factors.Autoimmun. Rev.201817111097110410.1016/j.autrev.2018.06.002 30213694
    [Google Scholar]
  7. PooleA.R. KobayashiM. YasudaT. LavertyS. MwaleF. KojimaT. Type II collagen degradation and its regulation in articular cartilage in osteoarthritis.Ann. Rheum. Dis.200261788110.1136/ard.61.suppl_2.ii78
    [Google Scholar]
  8. SantangeloK.S. NuovoG.J. BertoneA.L. In vivo reduction or blockade of interleukin-1β in primary osteoarthritis influences expression of mediators implicated in pathogenesis.Osteoarthritis Cartilage201220121610161810.1016/j.joca.2012.08.011 22935786
    [Google Scholar]
  9. KobayashiM. SquiresG.R. MousaA. TanzerM. ZukorD.J. AntoniouJ. FeigeU. PooleA.R. Role of interleukin‐1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage.Arthritis Rheum.200552112813510.1002/art.20776 15641080
    [Google Scholar]
  10. WangM. ShenJ. JinH. ImH.J. SandyJ. ChenD. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis.Ann. N. Y. Acad. Sci.201112401616910.1111/j.1749‑6632.2011.06258.x 22172041
    [Google Scholar]
  11. WangF. WuL. LiL. ChenS. Monotropein exerts protective effects against IL-1β-induced apoptosis and catabolic responses on osteoarthritis chondrocytes.Int. Immunopharmacol.201423257558010.1016/j.intimp.2014.10.007 25466264
    [Google Scholar]
  12. KanevaM.K. KerriganM.J.P. GriecoP. CurleyG.P. LockeI.C. GettingS.J. Chondroprotective and anti‐inflammatory role of melanocortin peptides in TNF‐α activated human C‐20/A4 chondrocytes.Br. J. Pharmacol.20121671677910.1111/j.1476‑5381.2012.01968.x 22471953
    [Google Scholar]
  13. YaoZ.Z. HuA.X. LiuX.S. DUSP19 regulates IL-1β-induced apoptosis and MMPs expression in rat chondrocytes through JAK2/STAT3 signaling pathway.Biomed. Pharmacother.2017961209121510.1016/j.biopha.2017.11.097 29174854
    [Google Scholar]
  14. GoldringS.R. GoldringM.B. The role of cytokines in cartilage matrix degeneration in osteoarthritis.Clin. Orthop. Relat. Res.2004427427Suppl.S27S3610.1097/01.blo.0000144854.66565.8f 15480070
    [Google Scholar]
  15. ZhengG. ZhanY. TangQ. ChenT. ZhengF. Wang, H Monascin inhibits IL-1β induced catabolism in mouse chondrocytes and ameliorates murine osteoarthritis.Food Funct.2018931454146410.1039/C7FO01892D
    [Google Scholar]
  16. ChabaneN. ZayedN. AfifH. Mfuna-EndamL. BenderdourM. BoileauC. Martel-PelletierJ. PelletierJ.P. DuvalN. FahmiH. Histone deacetylase inhibitors suppress interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes.Osteoarthritis Cartilage200816101267127410.1016/j.joca.2008.03.009 18417374
    [Google Scholar]
  17. ItohA. IsodaK. KondohM. KawaseM. KobayashiM. TamesadaM. YagiK. Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury.Biol. Pharm. Bull.20093271215121910.1248/bpb.32.1215 19571388
    [Google Scholar]
  18. GaoY. GuoX. LiuY. FangZ. ZhangM. ZhangR. YouL. LiT. LiuR.H. A full utilization of rice husk to evaluate phytochemical bioactivities and prepare cellulose nanocrystals.Sci. Rep.2018811048210.1038/s41598‑018‑27635‑3 29992951
    [Google Scholar]
  19. ZhouX. HuangS. WangP. LuoQ. HuangX. XuQ. QinJ. LiangC. ChenX. A syringic acid derivative and two iridoid glycosides from the roots of Stachys geobombycis and their antioxidant properties.Nat. Prod. Res.201933568168610.1080/14786419.2017.1405413 29166774
    [Google Scholar]
  20. HamJ.R. LeeH.I. ChoiR.Y. SimM.O. SeoK.I. LeeM.K. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice.Food Funct.20167268969710.1039/C5FO01329A 26838182
    [Google Scholar]
  21. LeeM.H. KangH. LeeK. YangG. HamI. BuY. KimH. ChoiH.Y. The aerial part of Taraxacum coreanum extract has an anti-inflammatory effect on peritoneal macrophages in vitro and increases survival in a mouse model of septic shock.J. Ethnopharmacol.201314611810.1016/j.jep.2012.12.009 23261487
    [Google Scholar]
  22. YanS.L. WangZ.H. YenH.F. LeeY.J. YinM.C. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice.Food Chem. Toxicol.20169811912610.1016/j.fct.2016.10.025
    [Google Scholar]
  23. DingS.K. WangL.X. GuoL.S. LuoP. DuJ.J. ZhaoZ.L. WangG.G. Syringic acid inhibits apoptosis pathways via downregulation of p38MAPK and JNK signaling pathways in H9c2 cardiomyocytes following hypoxia/reoxygenation injury.Mol. Med. Rep.20171622290229410.3892/mmr.2017.6845 28656215
    [Google Scholar]
  24. RasheedaK. BharathyH. Nishad FathimaN. Vanillic acid and syringic acid: Exceptionally robust aromatic moieties for inhibiting in vitro self-assembly of type I collagen.Int. J. Biol. Macromol.201811395296010.1016/j.ijbiomac.2018.03.015 29522822
    [Google Scholar]
  25. TokmakM. SehitogluM.H. YukselY. GuvenM. AkmanT. ArasA.B. AlbayrakS.B. GomleksizC. YakaU. CosarM. The axon protective effects of syringic acid on ischemia/reperfusion injury in a rat sciatic nerve model.Turk Neurosurg.201527112413210.5137/1019‑5149.JTN.14656‑15.5 27593755
    [Google Scholar]
  26. VeluP. VinothkumarV. BabukumarS. RamachandhiranD. Chemopreventive effect of syringic acid on 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis.Toxicol. Mech. Methods201727863164010.1080/15376516.2017.1349227 28671029
    [Google Scholar]
  27. AbazaM.S. Al-AttiyahR. BhardwajR. AbbadiG. KoyippallyM. AfzalM. Syringic acid from Tamarix aucheriana possesses antimitogenic and chemo-sensitizing activities in human colorectal cancer cells.Pharm. Biol.20135191110112410.3109/13880209.2013.781194 23745612
    [Google Scholar]
  28. OrabiK.Y. AbazaM.S. El SayedK.A. ElnagarA.Y. Al-AttiyahR. GuleriR.P. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors.Cancer Cell Int.20131318210.1186/1475‑2867‑13‑82 23958424
    [Google Scholar]
  29. MaH. BellK.N. LokerR.N. qPCR and qRT-PCR analysis: Regulatory points to consider when conducting biodistribution and vector shedding studies.Mol. Ther. Methods Clin. Dev.20212015216810.1016/j.omtm.2020.11.007 33473355
    [Google Scholar]
  30. AtsumiT. IkawaY. MiwaY. KimataK. A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells.Cell Differ. Dev.199030210911610.1016/0922‑3371(90)90079‑C 2201423
    [Google Scholar]
  31. ShiC. SunY. ZhengZ. ZhangX. SongK. JiaZ. ChenY. YangM. LiuX. DongR. XiaX. Antimicrobial activity of syringic acid against Cronobactersakazakii and its effect on cell membrane.Food Chem.201619710010610.1016/j.foodchem.2015.10.100
    [Google Scholar]
  32. XuK. WangX. ZhangQ. LiangA. ZhuH. HuangD. LiC. YeW. Sp1 downregulates proinflammatory cytokine-induced catabolic gene expression in nucleus pulposus cells.Mol. Med. Rep.20161443961396810.3892/mmr.2016.5730 27600876
    [Google Scholar]
  33. YangX. ZhangQ. GaoZ. YuC. ZhangL. Baicalin alleviates IL-1β-induced inflammatory injury via down-regulating miR-126 in chondrocytes.Biomed. Pharmacother.20189918419010.1016/j.biopha.2018.01.041 29331857
    [Google Scholar]
  34. WojdasiewiczP. PoniatowskiŁ.A. SzukiewiczD. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis.Mediators Inflamm.2014201411910.1155/2014/561459 24876674
    [Google Scholar]
  35. AbramsonS.B. Nitric oxide in inflammation and pain associated with osteoarthritis.Arthritis Res. Ther.20081021210.1186/ar2463
    [Google Scholar]
  36. LiY. ZhangL. WangX. wu; Qin, R. Effect of Syringic acid on antioxidant biomarkers and associated inflammatory markers in mice model of asthma.Drug Dev. Res.201980225326110.1002/ddr.21487 30474283
    [Google Scholar]
  37. VermaP. DalalK. ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis.J. Cell. Biochem.2011112123507351410.1002/jcb.23298 21815191
    [Google Scholar]
  38. FengZ. LiX. LinJ. ZhengW. HuZ. XuanJ. NiW. PanX. Oleuropein inhibits the IL-1β-induced expression of inflammatory mediators by suppressing the activation of NF-κB and MAPKs in human osteoarthritis chondrocytes.Food Funct.20178103737374410.1039/C7FO00823F 28952621
    [Google Scholar]
  39. BondesonJ. WainwrightS. HughesC. CatersonB. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: A review.Clin. Exp. Rheumatol.2008261139145 18328163
    [Google Scholar]
  40. NakaoS. OgtataY. ShimizuE. YamazakiM. FuruyamaS. SugiyaH. Tumor necrosis factor alpha (TNF-alpha)-induced prostaglandin E2 release is mediated by the activation of cyclooxygenase-2 (COX-2) transcription via NFkappaB in human gingival fibroblasts.Mol. Cell. Biochem.20022381/2111810.1023/A:1019927616000 12349897
    [Google Scholar]
  41. LiuB. GoodeA.P. CarterT.E. UtturkarG.M. HuebnerJ.L. TaylorD.C. MoormanC.T.III GarrettW.E. KrausV.B. GuilakF. DeFrateL.E. McNultyA.L. Matrix metalloproteinase activity and prostaglandin E2 are elevated in the synovial fluid of meniscus tear patients.Connect. Tissue Res.2017583-430531610.1080/03008207.2016.1256391 27813662
    [Google Scholar]
  42. YangY. WangY. ZhaoM. JiaH. LiB. XingD. Tormentic acid inhibits IL-1β-induced chondrocyte apoptosis by activating the PI3K/Akt signaling pathway.Mol. Med. Rep.20181734753475810.3892/mmr.2018.8425 29328385
    [Google Scholar]
  43. JimiE. HuangF. NakatomiC. NF-κB signaling regulates physiological and pathological chondrogenesis.Int. J. Mol. Sci.20192024627510.3390/ijms20246275 31842396
    [Google Scholar]
  44. ChoiM.C. JoJ. ParkJ. KangH.K. ParkY. NF-B signaling pathways in osteoarthritic cartilage destruction.Cells20198773410.3390/cells8070734 31319599
    [Google Scholar]
  45. MarcuK.B. OteroM. OlivottoE. BorziR.M. GoldringM.B. NF-kappaB signaling: Multiple angles to target OA.Curr. Drug Targets201011559961310.2174/138945010791011938 20199390
    [Google Scholar]
  46. SunK. LuoJ. GuoJ. YaoX. JingX. GuoF. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review.Osteoarthritis Cartilage202028440040910.1016/j.joca.2020.02.027 32081707
    [Google Scholar]
  47. HuangX. PeiW. NiB. ZhangR. YouH. Chondroprotective and antiarthritic effects of galangin in osteoarthritis: An in vitro and in vivo study.Eur. J. Pharmacol.202190617423210.1016/j.ejphar.2021.174232 34090897
    [Google Scholar]
  48. LiY. MuW. RenJ. WuermanbiekeS. WahafuT. JiB. MaH. AmatA. ZhangK. CaoL. Artesunate alleviates interleukin 1β induced inflammatory response and apoptosis by inhibiting the NF κB signaling pathway in chondrocyte like ATDC5 cells, and delays the progression of osteoarthritis in a mouse model.Int. J. Mol. Med.20194441541155110.3892/ijmm.2019.4290 31364719
    [Google Scholar]
  49. GuoX. PanX. WuJ. LiY. NieN. Calycosin prevents IL-1β-induced articular chondrocyte damage in osteoarthritis through regulating the PI3K/AKT/FoxO1 pathway.In Vitro Cell. Dev. Biol. Anim.202258649150210.1007/s11626‑022‑00694‑7 35705795
    [Google Scholar]
  50. XueJ.F. ShiZ.M. ZouJ. LiX.L. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis.Biomed. Pharmacother.2017891252126110.1016/j.biopha.2017.01.130 28320092
    [Google Scholar]
  51. PeiJ. VeluP. ZareianM. FengZ. VijayalakshmiA. Effects of syringic acid on apoptosis, inflammation, and AKT/mTOR signaling pathway in gastric cancer cells.Front. Nutr.2021878892910.3389/fnut.2021.788929 34970579
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073286384240227053954
Loading
/content/journals/cchts/10.2174/0113862073286384240227053954
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Akt/NF-κB; ATDC5 cells; MMPs; osteoarthritis; Syringic acid; treatment of OA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test