Skip to content
2000
Volume 28, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Food supplements such as vitamin D and omega-3 have a significant role in activating the immune system and impacting the diversity of gut microbiota; thus, controlling the growth of invading pathogens indirectly.

Objective

This study aims to evaluate the direct antimicrobial activity of vitamin D3 and omega-3 individually, combined together, and combined with low concentrations of gentamicin or amphotericin B against selected pathogenic microorganisms. In addition, this study hypothesizes the potential antimicrobial mechanism and recommends suitable studies to be conducted.

Methods

Minimum inhibitory concentration of different serial dilutions of vitamin D (0.7 μg/mL-83.3 μg/mL) or omega-3 (0.7 mg/mL-100 mg/mL) or combined (vitamin D3:1.3 μg/mL-83.3 μg/mL and omega-3:1.56 mg/mL-100 mg/mL) with/without antibiotic have been investigated on using check board technique.

Results

The highest concentration of vitamin D (83.3 μg/mL) demonstrated a complete eradication of the tested microorganisms. Conversely, omega-3 had a lower effect on them. The highest concentration of combining vitamin D and omega-3 with/without gentamicin resulted in a complete eradication of the , and with a 6.8 to 7 log reduction. On the other hand, was inhibited when using vitamin D3 (83.3 μg/mL) or when this concentration is combined with 100 mg/mL of omega-3. However, when these two concentrations were added to amphotericin B the log reduction dropped to 0.45 suggesting antagonistic effect.

Conclusion

These findings suggested that, unlike omega 3, vitamin D possesses good antimicrobial effects against pathogenic microorganisms. The combination of the studied food supplement showed enhanced microbial inhibition at high concentration, while they had antagonistic effect when combined with amphotericin B and applied on combined. Further studies on the exact antimicrobial mechanism are still required to understand the measured data here.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073293834240425061327
2025-05-01
2025-09-28
Loading full text...

Full text loading...

References

  1. DongD. NiQ. WangC. ZhangL. LiZ. JiangC. EnqiangMao; Peng, Y. Effects of intestinal colonization by Clostridium difficile and Staphylococcus aureus on microbiota diversity in healthy individuals in China.BMC Infect. Dis.201818120710.1186/s12879‑018‑3111‑z 29724187
    [Google Scholar]
  2. SantanaA.B. SoutoB.S. SantosN.C.M. PereiraJ.A. TagliatiC.A. NovaesR.D. CorsettiP.P. de AlmeidaL.A. Murine response to the opportunistic bacterium Pseudomonas aeruginosa infection in gut dysbiosis caused by 5-fluorouracil chemotherapy-induced mucositis.Life Sci.202230712089010.1016/j.lfs.2022.120890 35988752
    [Google Scholar]
  3. LarcombeS. HuttonM.L. LyrasD. Involvement of bacteria other than Clostridium difficile in antibiotic-associated diarrhoea.Trends Microbiol.201624646347610.1016/j.tim.2016.02.001 26897710
    [Google Scholar]
  4. BrunkwallL. EricsonU. NilssonP.M. Orho-MelanderM. OhlssonB. Self‐reported bowel symptoms are associated with differences in overall gut microbiota composition and enrichment of Blautia in a population‐based cohort.J. Gastroenterol. Hepatol.202136117418010.1111/jgh.15104 32428346
    [Google Scholar]
  5. CritchfieldJ.W. Van HemertS. AshM. MulderL. AshwoodP. The potential role of probiotics in the management of childhood autism spectrum disorders.Gastroenterol. Res. Pract.2011201116135810.1155/2011/161358
    [Google Scholar]
  6. OpazoM.C. Ortega-RochaE.M. Coronado-ArrázolaI. BonifazL.C. BoudinH. NeunlistM. BuenoS.M. KalergisA.M. RiedelC.A. Intestinal microbiota influences non-intestinal related autoimmune diseases.Front. Microbiol.2018943210.3389/fmicb.2018.00432 29593681
    [Google Scholar]
  7. RizzoA. BrandiG. Adjuvant systemic treatment in resected biliary tract cancer: State of the art, controversies, and future directions.Cancer Treat. Res. Commun.20212710033410.1016/j.ctarc.2021.100334 33592563
    [Google Scholar]
  8. LebieckaZ. SkonecznyT. TyburskiE. SamochowiecJ. Kucharska-MazurJ. Is virtual reality cue exposure a promising adjunctive treatment for alcohol use disorder?J. Clin. Med.20211013297210.3390/jcm10132972 34279455
    [Google Scholar]
  9. JasimA.J. AlbukhatyS. SulaimanG.M. Al-KaragolyH. JabirM.S. AbomughayedhA.M. MohammedH.A. AbomughaidM.M. Liposome nanocarriers based on γ oryzanol: Preparation, characterization, and in vivo assessment of toxicity and antioxidant activity.ACS Omega2024 93acsomega.3c0733910.1021/acsomega.3c07339 38284009
    [Google Scholar]
  10. BellerbaF. MuzioV. GnagnarellaP. FacciottiF. ChioccaS. BossiP. CortinovisD. ChiaradonnaF. SerranoD. RaimondiS. ZerbatoB. PaloriniR. CanovaS. GaetaA. GandiniS. The association between vitamin D and gut microbiota: A systematic review of human studies.Nutrients20211310337810.3390/nu13103378 34684379
    [Google Scholar]
  11. InchingoloA.D. InchingoloA.M. BordeaI.R. MalcangiG. XhajankaE. ScaranoA. LorussoF. FarronatoM. TartagliaG.M. IsaccoC.G. MarinelliG. D’OriaM.T. HazballaD. SantacroceL. BalliniA. ContaldoM. InchingoloF. DipalmaG. SARS-CoV-2 disease adjuvant therapies and supplements breakthrough for the infection prevention.Microorganisms20219352510.3390/microorganisms9030525 33806624
    [Google Scholar]
  12. WongK.K. LeeS.W.H. KuaK.P. N-acetylcysteine as adjuvant therapy for COVID-19–a perspective on the current state of the evidence.J. Inflamm. Res.2021142993301310.2147/JIR.S306849 34262324
    [Google Scholar]
  13. HilpertK. Is the gut microbiome a target for adjuvant treatment of COVID-19?Biologics20211328529910.3390/biologics1030017
    [Google Scholar]
  14. MohammedH.A. SulaimanG.M. AlbukhatyS. Al-SaffarA.Z. ElshibaniF.A. RagabE.A. Chrysin, the flavonoid molecule of antioxidant interest.ChemistrySelect2023848e20230330610.1002/slct.202303306
    [Google Scholar]
  15. SarrisJ. Clinical use of nutraceuticals in the adjunctive treatment of depression in mood disorders.Australas. Psychiatry201725436937210.1177/1039856216689533 28135835
    [Google Scholar]
  16. WellingtonV.N.A. SundaramV.L. SinghS. SundaramU. Dietary supplementation with vitamin D, fish oil or resveratrol modulates the gut microbiome in inflammatory bowel disease.Int. J. Mol. Sci.202123120610.3390/ijms23010206 35008631
    [Google Scholar]
  17. CantornaM.T. ZhuY. FroicuM. WittkeA. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system.Am. J. Clin. Nutr.2004806Suppl.1717S1720S10.1093/ajcn/80.6.1717S 15585793
    [Google Scholar]
  18. HahnJ. CookN.R. AlexanderE.K. FriedmanS. WalterJ. BubesV. KotlerG. LeeI.M. MansonJ.E. CostenbaderK.H. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial.BMJ2022376e06645210.1136/bmj‑2021‑066452 35082139
    [Google Scholar]
  19. HussonM.O. LeyD. PortalC. GottrandM. HuesoT. DesseynJ.L. GottrandF. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids.J. Infect.201673652353510.1016/j.jinf.2016.10.001 27746159
    [Google Scholar]
  20. MohammedA.A. JawadK.H. ÇevikS. SulaimanG.M. AlbukhatyS. SasikumarP. Investigating the antimicrobial, antioxidant, and anticancer effects of elettaria cardamomum seed extract conjugated to green synthesized silver nanoparticles by laser ablation.Plasmonics2023811410.1007/s11468‑023‑02067‑6
    [Google Scholar]
  21. SinghP. RawatA. AlwakeelM. SharifE. Al KhodorS. The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals.Sci. Rep.20201012164110.1038/s41598‑020‑77806‑4 33303854
    [Google Scholar]
  22. GentileC.L. WeirT.L. The gut microbiota at the intersection of diet and human health.Science2018362641677678010.1126/science.aau5812 30442802
    [Google Scholar]
  23. Healy-StoffelM. LevantB. N-3 (Omega-3) fatty acids: Effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders.CNS & Neurol. Disord. Drug Targets2018173216232
    [Google Scholar]
  24. LabrousseV.F. LeyrolleQ. AmadieuC. AubertA. SereA. CoutureauE. GrégoireS. BretillonL. PalletV. GressensP. JoffreC. NadjarA. LayéS. Dietary omega-3 deficiency exacerbates inflammation and reveals spatial memory deficits in mice exposed to lipopolysaccharide during gestation.Brain Behav. Immun.20187342744010.1016/j.bbi.2018.06.004 29879442
    [Google Scholar]
  25. FuY. WangY. GaoH. LiD. JiangR. GeL. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity.Mediators Inflamm.20212021887922710.1155/2021/8879227
    [Google Scholar]
  26. RizosE.C. MarkozannesG. TsapasA. MantzorosC.S. NtzaniE.E. Omega-3 supplementation and cardiovascular disease: Formulation-based systematic review and meta-analysis with trial sequential analysis.Heart2021107215015810.1136/heartjnl‑2020‑316780 32820013
    [Google Scholar]
  27. GuinaneC.M. CotterP.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ.Therap. Adv. Gastroenterol.20136429530810.1177/1756283X13482996 23814609
    [Google Scholar]
  28. MujicoJ.R. BaccanG.C. GheorgheA. DíazL.E. MarcosA. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice.Br. J. Nutr.2013110471172010.1017/S0007114512005612 23302605
    [Google Scholar]
  29. RobertsonR.C. Seira OriachC. MurphyK. MoloneyG.M. CryanJ.F. DinanT.G. Paul RossR. StantonC. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood.Brain Behav. Immun.201759213710.1016/j.bbi.2016.07.145 27423492
    [Google Scholar]
  30. SaputoS. FaustoferriR.C. QuiveyR.G. Jr Vitamin D compounds are bactericidal against Streptococcus mutans and target the bacitracin-associated efflux system.Antimicrob. Agents Chemother.2017621e01675e17 29061743
    [Google Scholar]
  31. AlmoudiM.M.M. HusseinA.S. Abu HassanM.I. Al TalibH. KhanH.B.S.G. NazliS.A.B. EffandyN.A.E.B. The antibacterial effects of vitamin D3 against mutans streptococci: An in vitro study.Eur. Oral Res.202155181510.26650/eor.20210119 33937756
    [Google Scholar]
  32. TintinoS.R. Morais-TintinoC.D. CampinaF.F. PereiraR.L. Costa, Mdo.S.; Braga, M.F.; Limaverde, P.W.; Andrade, J.C.; Siqueira-Junior, J.P.; Coutinho, H.D.; Balbino, V.Q.; Leal-Balbino, T.C.; Ribeiro-Filho, J.; Quintans-Júnior, L.J. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps.EXCLI J.201615315322 27298617
    [Google Scholar]
  33. SunM. ZhouZ. DongJ. ZhangJ. XiaY. ShuR. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.Microb. Pathog.20169919620310.1016/j.micpath.2016.08.025 27565090
    [Google Scholar]
  34. SunM. DongJ. XiaY. ShuR. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.Microb. Pathog.201710721221810.1016/j.micpath.2017.03.040 28373143
    [Google Scholar]
  35. DhouiouiM. BoulilaA. JemliM. SchietsF. CasabiancaH. ZinaM.S. Fatty acids composition and antibacterial activity of Aristolochia longa L. and Bryonia dioica Jacq. growing wild in Tunisia.J. Oleo Sci.201665865566110.5650/jos.ess16001 27430383
    [Google Scholar]
  36. KhudierM.A.A. HammadiH.A. AtyiaH.T. Al-KaragolyH. AlbukhatyS. SulaimanG.M. DewirY.H. MahoodH.B. Antibacterial activity of green synthesized selenium nanoparticles using Vaccinium arctostaphylos (L.) fruit extract.Cogent Food Agric.202391224561210.1080/23311932.2023.2245612
    [Google Scholar]
  37. GoldmanE. GreenL.H. Practical handbook of microbiology.CRC press201510.1201/b17871
    [Google Scholar]
  38. BreedR.S. DotterrerW.D. The number of colonies allowable on satisfactory agar plates.J. Bacteriol.19161332133110.1128/jb.1.3.321‑331.1916 16558698
    [Google Scholar]
  39. CannellJ.J. HollisB.W. Use of vitamin D in clinical practice.Altern. Med. Rev.2008131620 18377099
    [Google Scholar]
  40. StoffelsK. OverberghL. GiuliettiA. VerlindenL. BouillonR. MathieuC. Immune regulation of 25-hydroxyvitamin-D3-1α-hydroxylase in human monocytes.J. Bone Miner. Res.2006211374710.1359/JBMR.050908 16355272
    [Google Scholar]
  41. HuangW. ShahS. LongQ. CrankshawA.K. TangprichaV. Improvement of pain, sleep, and quality of life in chronic pain patients with vitamin D supplementation.Clin. J. Pain201329434134710.1097/AJP.0b013e318255655d 22699141
    [Google Scholar]
  42. PludowskiP. HolickM.F. GrantW.B. KonstantynowiczJ. MascarenhasM.R. HaqA. PovoroznyukV. BalatskaN. BarbosaA.P. KaronovaT. RudenkaE. MisiorowskiW. ZakharovaI. RudenkaA. ŁukaszkiewiczJ. Marcinowska-SuchowierskaE. ŁaszczN. AbramowiczP. BhattoaH.P. WimalawansaS.J. Vitamin D supplementation guidelines.J. Steroid Biochem. Mol. Biol.201817512513510.1016/j.jsbmb.2017.01.021 28216084
    [Google Scholar]
  43. WaterhouseM. HopeB. KrauseL. MorrisonM. ProtaniM.M. ZakrzewskiM. NealeR.E. Vitamin D and the gut microbiome: A systematic review of in vivo studies.Eur. J. Nutr.20195872895291010.1007/s00394‑018‑1842‑7 30324342
    [Google Scholar]
  44. CharoenngamN. ShirvaniA. KalajianT.A. SongA. HolickM.F. The effect of various doses of oral vitamin D3 supplementation on gut microbiota in healthy adults: A randomized, double-blinded, dose-response study.Anticancer Res.202040155155610.21873/anticanres.13984 31892611
    [Google Scholar]
  45. StroudM.L. StilgoeS. StottV.E. AlhabianO. SalmanK. Vitamin D a review.Aust. Fam. Physician2008371210021005 19142273
    [Google Scholar]
  46. MocanuV. StittP.A. CostanA.R. VoroniucO. ZbrancaE. LucaV. ViethR. Long-term effects of giving nursing home residents bread fortified with 125 μg (5000 IU) vitamin D3 per daily serving.Am. J. Clin. Nutr.20098941132113710.3945/ajcn.2008.26890 19244376
    [Google Scholar]
  47. KempkerJ.A. HanJ.E. TangprichaV. ZieglerT.R. MartinG.S. Vitamin D and sepsis.Dermatoendocrinol20124210110810.4161/derm.19859 22928065
    [Google Scholar]
  48. BekeleA. GebreselassieN. AshenafiS. KassaE. AseffaG. AmogneW. GetachewM. AseffaA. WorkuA. RaqibR. AgerberthB. HammarU. BergmanP. AderayeG. AnderssonJ. BrighentiS. Daily adjunctive therapy with vitamin D3 and phenylbutyrate supports clinical recovery from pulmonary tuberculosis: A randomized controlled trial in Ethiopia.J. Intern. Med.2018284329230610.1111/joim.12767 29696707
    [Google Scholar]
  49. SainiR.K. KeumY.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance: A review.Life Sci.201820325526710.1016/j.lfs.2018.04.049 29715470
    [Google Scholar]
  50. HeK. Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease eat fish or take fish oil supplement?Prog. Cardiovasc. Dis.20095229511410.1016/j.pcad.2009.06.003 19732603
    [Google Scholar]
  51. MansonJ.E. BassukS.S. LeeI.M. CookN.R. AlbertM.A. GordonD. ZaharrisE. MacFadyenJ.G. DanielsonE. LinJ. ZhangS.M. BuringJ.E. The VITamin D and OmegA-3 TriaL (VITAL): Rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease.Contemp. Clin. Trials201233115917110.1016/j.cct.2011.09.009 21986389
    [Google Scholar]
  52. CostantiniL. MolinariR. FarinonB. MerendinoN. Impact of omega-3 fatty acids on the gut microbiota.Int. J. Mol. Sci.20171812264510.3390/ijms18122645 29215589
    [Google Scholar]
  53. InfanteM. SearsB. RizzoA.M. Mariani CeratiD. CaprioM. RicordiC. FabbriA. Omega-3 PUFAs and vitamin D co-supplementation as a safe-effective therapeutic approach for core symptoms of autism spectrum disorder: Case report and literature review.Nutr. Neurosci.2020231077979010.1080/1028415X.2018.1557385 30545280
    [Google Scholar]
  54. Coraça-HuberD.C. SteixnerS. WurmA. NoglerM. Antibacterial and anti-biofilm activity of omega-3 polyunsaturated fatty acids against periprosthetic joint infections-isolated multi-drug resistant strains.Biomedicines20219433410.3390/biomedicines9040334 33810261
    [Google Scholar]
  55. KannanV. AnandanR. SudalaimaniD.K. SrinivasanS. AthiappanM. Antibacterial and antioxidant activity of metabolites from bioconverted docosahexaenoic acid using gut bacteria. Res.squ.202110.21203/rs.3.rs‑674393/v1
    [Google Scholar]
  56. ShinS.Y. BajpaiV.K. KimH.R. KangS.C. Antibacterial activity of bioconverted eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) against foodborne pathogenic bacteria.Int. J. Food Microbiol.2007113223323610.1016/j.ijfoodmicro.2006.05.020 16860896
    [Google Scholar]
  57. HuangC.B. AlimovaY. MyersT.M. EbersoleJ.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms.Arch. Oral Biol.201156765065410.1016/j.archoralbio.2011.01.011 21333271
    [Google Scholar]
  58. PalA. MetherelA.H. FiabaneL. BuddenbaumN. BazinetR.P. ShaikhS.R. Do eicosapentaenoic acid and docosahexaenoic acid have the potential to compete against each other?Nutrients20201212371810.3390/nu12123718 33276463
    [Google Scholar]
  59. ValenzuelaR Valenzuela, A Overview about lipid structure.Lipid metabolism2013332010.5772/52306
    [Google Scholar]
  60. SebrellW.H. Vitamin D group. The Vitamins, Second EditionSebrell, W.H.; Harris, RS., Eds.; Academic Press1971155301
    [Google Scholar]
  61. HughesD.L. ReamerR.A. BerganJ.J. GrabowskiE.J.J. A mechanistic study of the mitsunobu esterification reaction.J. Am. Chem. Soc.1988110196487649110.1021/ja00227a032
    [Google Scholar]
  62. NeisesB. SteglichW. Simple method for the esterification of carboxylic acids.Angew. Chem. Int. Ed. Engl.197817752252410.1002/anie.197805221
    [Google Scholar]
  63. GuptaR. GuptaN. BindalS. Bacterial cell wall biosynthesis and inhibitors.Fundamentals of Bacterial Physiology and Metabolism.Springer2021819810.1007/978‑981‑16‑0723‑3_3
    [Google Scholar]
  64. ClarkA. MachN. Role of vitamin D in the hygiene hypothesis: the interplay between vitamin D, vitamin D receptors, gut microbiota, and immune response.Front. Immunol.2016762710.3389/fimmu.2016.00627 28066436
    [Google Scholar]
  65. MayerF.L. WilsonD. HubeB. Candida albicans pathogenicity mechanisms.Virulence20134211912810.4161/viru.22913 23302789
    [Google Scholar]
  66. SorgoA.G. HeilmannC.J. BrulS. de KosterC.G. KlisF.M. Beyond the wall: Candida albicans secret(e)s to survive.FEMS Microbiol. Lett.20133381101710.1111/1574‑6968.12049 23170918
    [Google Scholar]
  67. Gil-BonaA. Llama-PalaciosA. ParraC.M. VivancoF. NombelaC. MonteolivaL. GilC. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans.J. Proteome Res.201514114215310.1021/pr5007944 25367658
    [Google Scholar]
  68. JarradA.M. BlaskovichM.A.T. PrasetyoputriA. KaroliT. HansfordK.A. CooperM.A. Detection and investigation of eagle effect resistance to vancomycin in Clostridium difficile With an ATP-Bioluminescence Assay.Front. Microbiol.20189142010.3389/fmicb.2018.01420 30013531
    [Google Scholar]
  69. GoldsteinK. RosdahlV.T. High concentration of ampicillin and the Eagle effect among gram-negative rods.Chemotherapy198127531331710.1159/000237998 7021076
    [Google Scholar]
  70. De VriesT.A. HamiltonM.A. Estimating the Antimicrobial Log Reduction: Part 1. Quantitative Assays.Quant. Microbiol.199911294510.1023/A:1010072226737
    [Google Scholar]
  71. AkimbekovN.S. DigelI. SherelkhanD.K. LutforA.B. RazzaqueM.S. Vitamin D and the host-gut microbiome: A brief overview.Acta Histochem. Cytochem.2020533334210.1267/ahc.20011 32624628
    [Google Scholar]
  72. BattistiniC. BallanR. HerkenhoffM.E. SaadS.M.I. SunJ. Vitamin D modulates intestinal microbiota in inflammatory bowel diseases.Int. J. Mol. Sci.202022136210.3390/ijms22010362 33396382
    [Google Scholar]
  73. TangestaniH. BoroujeniH.K. DjafarianK. EmamatH. Shab-BidarS. Vitamin D and the gut microbiota: A narrative literature review.Clin. Nutr. Res.202110318119110.7762/cnr.2021.10.3.181 34386438
    [Google Scholar]
  74. YoussefD.A. MillerC.W.T. El-AbbassiA.M. CutchinsD.C. CutchinsC. GrantW.B. PeirisA.N. Antimicrobial implications of vitamin D.Dermatoendocrinol20113422022910.4161/derm.3.4.15027 22259647
    [Google Scholar]
  75. HuangF.C. HuangS.C. The cooperation of Bifidobacterium longum and active vitamin d3 on innate immunity in Salmonella colitis mice via vitamin D Receptor.Microorganisms202199180410.3390/microorganisms9091804 34576700
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073293834240425061327
Loading
/content/journals/cchts/10.2174/0113862073293834240425061327
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): amphotericin B; C. albicans; E. coli; gentamicin; omega 3; P. aeruginosa; S. aureus; Vitamin D3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test