Skip to content
2000
Volume 28, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Plant species of the genus Daphne clasps a historical background with a potential source of bioactive phytochemicals such as flavonoids and daphnodorins. These compounds manifest a significant chemotaxonomic value in drug discovery. Their flair comprehensive pharmacological, phytochemical, biological, catalytic, and clinical utilities make them exclusively unique. This study was conducted to investigate the optimization and structure-based virtual screening of these peculiar analogues. The majority of the active constituents of medicines are obtained from natural products. Previously, before the invention of virtual screening methods or techniques, almost 80% of drugs were obtained from natural resources. Comparing reported data to drug discovery from 1981 to 2007 signifies that half of the FDA-approved drugs are obtained from natural resources. It has been reported that structures of natural products that have particularities of structural diversity, biochemical specification, and molecular properties make them suitable products for drug discovery. These products basically have unique chiral centers which increase their structural complexity than the synthesized drugs.

Methods

This work aimed to probe the use of daphnodorins analogs for the first time as antidiabetic inhibitors based on significant features and to determine the potential of daphnodorin analogs as antidiabetic inhibitors through computational analysis and structure-based virtual screening. A dataset of 38 compounds was selected from different databases, including PubChem and ZINC, for computational analysis, and optimized compounds were docked against various co-crystallized structures of inhibitors, antagonists, and receptors which were downloaded from PDB by using AutoDock Vina (by employing Broyden-Fletcher-Goldfarb-Shanno method), Discovery studio visualizer 2020, PYMOL (Schrodinger). Docking results were further validated by Molecular dynamic simulation and MM-GBSA calculation. Quantitative structure-activity relationship (QSAR) was reported by using Gaussian 09W by intimating Density Functional Theory (DFT). Using this combination of multi-approach computational strategy, 14 compounds were selected as potential exclusive lead compounds, which were analyzed through ADMET studies to pin down their drug-like properties and toxicity.

Results

At significant phases of drug design approaches regular use of molecular docking has helped to promote the separation of important representatives from 38 pharmaceutically active compounds by setting a threshold docking score of -9.0 kcal/mol which was used for their exposition. Subsequently, by employing a threshold it was recognized that 14 compounds proclaimed this threshold for antidiabetic activity. Further, molecular dynamic simulation, MM-GBSA, ADMET, and DFT results screened out daphnegiralin B4 (36) as a potential lead compound for developing antidiabetic agents.

Conclusion

Our analysis took us to the conclusion that daphnegiralin B4 (36) among all ligands comes out to be a lead compound having drug-like properties among 38 ligands being non-carcinogenic and non-cytotoxic which would benefit the medical community by providing significant drugs against diabetes. Pragmatic laboratory investigations identified a new precursor to open new doors for new drug discovery.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073262227231005074024
2025-05-01
2025-11-02
Loading full text...

Full text loading...

References

  1. AlyarS. ŞenT. ÖzmenÜ.Ö. AlyarH. AdemŞ. ŞenC. Synthesis, spectroscopic characterizations, enzyme inhibition, molecular docking study and DFT calculations of new Schiff bases of sulfa drugs.J. Mol. Struct.2019118541642410.1016/j.molstruc.2019.03.002
    [Google Scholar]
  2. JungM. ParkM. LeeH. KangY.H. KangE. KimS. Antidiabetic agents from medicinal plants.Curr. Med. Chem.200613101203121810.2174/092986706776360860 16719780
    [Google Scholar]
  3. PatelD.K. PrasadS.K. KumarR. HemalathaS. An overview on antidiabetic medicinal plants having insulin mimetic property.Asian Pac. J. Trop. Biomed.20122432033010.1016/S2221‑1691(12)60032‑X 23569923
    [Google Scholar]
  4. ChenafaH. MesliF. DaoudI. AchiriR. GhalemS. NeghraA. In silico design of enzyme α-amylase and α-glucosidase inhibitors using molecular docking, molecular dynamic, conceptual DFT investigation and pharmacophore modelling.J. Biomol. Struct. Dyn.2022401463086329 33554773
    [Google Scholar]
  5. YuanE. LiuB. WeiQ. YangJ. ChenL. LiQ. Structure activity relationships of flavonoids as potent α-amylase inhibitors. Natural Product Comm.2014981934578X1400900829
    [Google Scholar]
  6. HanefeldM. SchaperF. The role of alpha-glucosidase inhibitors (acarbose). Pharmacotherapy of Diabetes: New Developments: Improving Life and Prognosis for Diabetic Patients2007143152
    [Google Scholar]
  7. RahmanS.U. AliH.S. JafariB. ZaibS. HameedA. Al-KahramanY.M.S.A. LangerP. IqbalJ. Structure-based virtual screening of dipeptidyl peptidase 4 inhibitors and their in vitro analysis.Comput. Biol. Chem.20219110732610.1016/j.compbiolchem.2020.107326 32739275
    [Google Scholar]
  8. DeaconC.F. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: A comparative review.Diabetes Obes. Metab.201113171810.1111/j.1463‑1326.2010.01306.x 21114598
    [Google Scholar]
  9. KasinaS.V.S.K. BaradhiK.M. Dipeptidyl Peptidase IV (DPP IV).Inhibitors2019
    [Google Scholar]
  10. InzucchiS.E. BergenstalR.M. BuseJ.B. DiamantM. FerranniniE. NauckM. PetersA.L. TsapasA. WenderR. MatthewsD.R. Management of hyperglycaemia in type 2 diabetes, 2015: A patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes.Diabetologia201558342944210.1007/s00125‑014‑3460‑0 25583541
    [Google Scholar]
  11. VárkonyiT. KemplerP. Diabetic neuropathy: New strategies for treatment.Diabetes Obes. Metab.200810299108 17593238
    [Google Scholar]
  12. SteuberH. HeineA. PodjarnyA. KlebeG. Merging the binding sites of aldose and aldehyde reductase for detection of inhibitor selectivity-determining features.J. Mol. Biol.20083795991101610.1016/j.jmb.2008.03.063 18495158
    [Google Scholar]
  13. ZengZ. HuangS.Y. SunT. Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes.Diabetes Ther.202011112521253810.1007/s13300‑020‑00922‑x 32930968
    [Google Scholar]
  14. ValerónP.F. de Pablos-VelascoP.L. Limitations of insulin-dependent drugs in the treatment of type 2 diabetes mellitus.Med. Clin.2013141S2202510.1016/S0025‑7753(13)70059‑9 24444520
    [Google Scholar]
  15. KumarS. BajwaB. KuldeepS. KaliaA. Anti-inflammatory activity of herbal plants: A review.Int. J. Adv. Pharm. Biol. Chem.201322272281
    [Google Scholar]
  16. GhosiaL. AsmaS. KafeelA. JamilaH. Phytochemical screening, antioxidant and antibacterial properties of daphne mucronata.J. Tradit. Chin. Med.2019396764771 32186146
    [Google Scholar]
  17. SovrlićM.M. ManojlovićN.T. Plants from the genus Daphne: A review of its traditional uses, phytochemistry, biological and pharmacological activity.Serb. J. Exp. Clin. Res.2017181698010.1515/sjecr‑2016‑0024
    [Google Scholar]
  18. ZhangW. ShenY.H. LouZ.Y. LiuR.H. ZhangC. FuP. ShanL. ZhangW.D. Two new flavanes and bioactive compounds from Daphne tangutica Maxim.Nat. Prod. Res.200721111021102610.1080/14786410701371603 17691052
    [Google Scholar]
  19. YuanH. BiK.J. LiB. YueR.C. YeJ. ShenY.H. ShanL. JinH.Z. SunQ.Y. ZhangW.D. Construction of 2-substituted-3-functionalized benzofurans via intramolecular Heck coupling: application to enantioselective total synthesis of daphnodorin B.Org. Lett.201315184742474510.1021/ol4021095 24007373
    [Google Scholar]
  20. InamoriY. TakeuchiK. BabaK. KozawaM. Antifungal and insecticidal activities of daphnodorins A, B and C.Chem. Pharm. Bull.19873593931393410.1248/cpb.35.3931 3435989
    [Google Scholar]
  21. ZhangN. HeJ. XiaC.Y. LianW.W. YanY. DingK. ZhangY.Y. XuJ.K. ZhangW.K. Ethnopharmacology, phytochemistry, pharmacology, clinical applications and toxicology of the genus Stellera Linn.: A review.J. Ethnopharmacol.202126411291510.1016/j.jep.2020.112915 32360044
    [Google Scholar]
  22. RatnerL. HeydenN.V. DederaD. Inhibition of HIV and SIV infectivity by blockade of α-glucosidase activity.Virology1991181118019210.1016/0042‑6822(91)90483‑R 1704656
    [Google Scholar]
  23. LiQ. GaoW. CaoJ. BiX. ChenG. ZhangX. XiaX. ZhaoY. New cytotoxic compounds from flowers of Lawsonia inermis L.Fitoterapia20149414815410.1016/j.fitote.2014.02.007 24565962
    [Google Scholar]
  24. MizunoM. NakanishiI. MatsubayashiS. ImaiK. AraiT. MatsumotoK. FukuharaK. Synthesis and antioxidant activity of a procyanidin B3 analogue.Bioorg. Med. Chem. Lett.20172741041104410.1016/j.bmcl.2016.12.067 28082039
    [Google Scholar]
  25. TaniguchiM. FujiwaraA. BabaK. WangN.H. Two biflavonoids from Daphne acutiloba.Phytochemistry199849386386710.1016/S0031‑9422(98)00181‑2
    [Google Scholar]
  26. BabaK. TakeuchiK. DoiM. KozawaM. Chemical studies on the constituents of the thymelaeaceous plants. III. Structure of a novel spiro biflavonoid, daphnodorin C, from Daphne odora Thunb.Chem. Pharm. Bull. 19873551853185910.1248/cpb.35.1853
    [Google Scholar]
  27. SilvaL.B. FerreiraE.F.B. Galantamine based novel acetylcholinesterase enzyme inhibitors: A molecular modeling design approach.Molecules202328310391059 36770705
    [Google Scholar]
  28. UdreaA.M. Gradisteanu PircalabioruG. BobocA.A. MaresC. DinacheA. MerneaM. AvramS. Advanced bioinformatics tools in the pharmacokinetic profiles of natural and synthetic compounds with anti-diabetic activity.Biomolecules20211111169210.3390/biom11111692 34827690
    [Google Scholar]
  29. LahlouM. The success of natural products in drug discovery.Pharm. Pharmacol.20134310.4236/pp.2013.43A003
    [Google Scholar]
  30. HuangS.Y. ZouX. Advances and challenges in protein-ligand docking.Int. J. Mol. Sci.20101183016303410.3390/ijms11083016 21152288
    [Google Scholar]
  31. KousarK. MajeedA. YasminF. HussainW. RasoolN. Phytochemicals from selective plants have promising potential against SARS-CoV-2: Investigation and corroboration through molecular docking, MD simulations, and quantum computations.BioMed Res. Int.202020206237160
    [Google Scholar]
  32. Mosquera-YuquiF. Lopez-GuerraN. Moncayo-PalacioE.A. Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: Molecular docking and molecular dynamics simulations.J. Biomol. Struct. Dyn.20224052010202310.1080/07391102.2020.1835716 33084512
    [Google Scholar]
  33. SethiA. JoshiK. SasikalaK. AlvalaM. Molecular docking in modern drug discovery: Principles and recent applications.Drug Discovery and Development - New Advances.IntechOpen20192739
    [Google Scholar]
  34. SagaamaA. BrandanS.A. Ben IssaT. IssaouiN. Searching potential antiviral candidates for the treatment of the 2019 novel coronavirus based on DFT calculations and molecular docking.Heliyon202068e0464010.1016/j.heliyon.2020.e04640 32802981
    [Google Scholar]
  35. ArshadU. AhmedS. ShafiqN. AhmadZ. HassanA. AkhtarN. ParveenS. MehmoodT. Structure-based designing, solvent less synthesis of 1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives: A combined in vitro and in silico screening approach.Molecules20212615442410.3390/molecules26154424 34361577
    [Google Scholar]
  36. ShafiqN. ArshadU. YaqoobN. KhanJ. KhanA. SaleemK. RashidM. RafiqN. AhmadR. JavaidI. NoreenS. BilalM. Structure-based experimental and theoretical analysis of Ricinus communis for their HepG2 human carcinoma cell line inhibitors.Process Biochem.202110415216010.1016/j.procbio.2021.03.012
    [Google Scholar]
  37. ChoubeyS.K. PrabhuD. NachiappanM. BiswalJ. JeyakanthanJ. Molecular modeling, dynamics studies and density functional theory approaches to identify potential inhibitors of SIRT4 protein from Homo sapiens: A novel target for the treatment of type 2 diabetes.J. Biomol. Struct. Dyn.201735153316332910.1080/07391102.2016.1254117 27800715
    [Google Scholar]
  38. AchesonR.M. Introduction to the chemistry of heterocyclic compounds.J. Chem. Educ.1961386A430
    [Google Scholar]
  39. SorokinaM. MerseburgerP. RajanK. YirikM.A. SteinbeckC. COCONUT online: Collection of open natural products database.J. Cheminform.2021131210.1186/s13321‑020‑00478‑9 33423696
    [Google Scholar]
  40. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2019 update: Improved access to chemical data.Nucleic Acids Res.201947D1D1102D110910.1093/nar/gky1033 30371825
    [Google Scholar]
  41. BanerjeeP. ErehmanJ. GohlkeB.O. WilhelmT. Preiss-nerR. DunkelM. Super natural II—a database of natural products.Nucleic Acids Res.201543D1D935D93910.1093/nar/gku886 25300487
    [Google Scholar]
  42. PatelC.N. JaniS.P. JaiswalD.G. KumarS.P. MangukiaN. ParmarR.M. RawalR.M. PandyaH.A.J.S.r. Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations.Scientific Reports.2021111113
    [Google Scholar]
  43. PatelR. PrajapatiJ. RaoP. RawalR.M. SarafM. GoswamiD. Repurposing the antibacterial drugs for inhibition of SARS-CoV2-PLpro using molecular docking, MD simulation and binding energy calculation.Mol. Divers.202226421892209 34591234
    [Google Scholar]
  44. ZarrenG. ShafiqN. ArshadU. RafiqN. ParveenS. AhmadZ. Copper-catalyzed one-pot relay synthesis of anthraquinone based pyrimidine derivative as a probe for anti-oxidant and antidiabetic activity.J. Mol. Struct.2021122712966810.1016/j.molstruc.2020.129668
    [Google Scholar]
  45. SunQ. WangD. LiF.F. YaoG.D. LiX. LiL.Z. HuangX.X. SongS.J. Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii.Bioorg. Med. Chem. Lett.201626163968397210.1016/j.bmcl.2016.07.002 27400887
    [Google Scholar]
  46. ZhouG.X. JiangR.W. ChengY. YeW.C. ShiJ.G. GongN.B. LuY. Daphnogirins A and B, two biflavones from Daphne giraldii.Chem. Pharm. Bull.20075591287129010.1248/cpb.55.1287 17827749
    [Google Scholar]
  47. LiF.F. SunQ. WangD. LiuS. LinB. LiuC.T. LiL.Z. HuangX.X. SongS.J. Chiral separation of cytotoxic flavan derivatives from Daphne giraldii.J. Nat. Prod.20167992236224210.1021/acs.jnatprod.6b00305 27627130
    [Google Scholar]
  48. Prieto-MartínezF.D. ArciniegaM. Medina-FrancoJ.L. Molecular docking: Current advances and challenges.Artículo de revisión2020810120
    [Google Scholar]
  49. MaurusR. BegumA. WilliamsL.K. FredriksenJ.R. ZhangR. WithersS.G. BrayerG.D. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity.Biochemistry200847113332334410.1021/bi701652t 18284212
    [Google Scholar]
  50. AngadiK.K. GundampatiR.K. JagannadhamM.V. KandruA. Molecular docking studies of guggultetrol from Nymphaea pubescens with target glucokinase (GK) related to type-II Diabetes.J. Appl. Pharm. Sci.201332127
    [Google Scholar]
  51. AanouzI. BelhassanA. El-KhatabiK. LakhlifiT. El-ldrissiM. BouachrineM. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations.J. Biomol. Struct. Dyn.20213982971297910.1080/07391102.2020.1758790 32306860
    [Google Scholar]
  52. ShivanikaC. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.J. Biomol. Struct. Dyn.2022402
    [Google Scholar]
  53. KhayraniA.C. IrdianiR. AditamaR. PratamiD.K. LischerK. AnsariM.J. ChinnathambiA. AlharbiS.A. AlmoallimH.S. SahlanM. Evaluating the potency of Sulawesi propolis compounds as ACE-2 inhibitors through molecular docking for COVID-19 drug discovery preliminary study.J. King Saud Univ. Sci.202133210129710.1016/j.jksus.2020.101297 33519145
    [Google Scholar]
  54. Carmo BastosM.L. Silva-SilvaJ.V. Neves CruzJ. Palheta da SilvaA.R. Bentaberry-RosaA.A. da Costa RamosG. de Sousa SiqueiraJ.E. Coelho-FerreiraM.R. PercárioS. SantanaB.M.P. MarinhoA.M.R. de OliveiraB.M. DolabelaM.F. Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) induce apoptosis by caspase pathway in human gastric cancer cells.Pharmaceuticals202316576577810.3390/ph16050765 37242548
    [Google Scholar]
  55. PilotP. Dassault Systèmes BIOVIA, discovery studio modelling environment.Release2016
    [Google Scholar]
  56. BastosR.S. LimaL.R. NetoM.F.A. Maryam; Yousaf, N.; Cruz, J.N.; Campos, J.M.; Kimani, N.M.; Ramos, R.S.; Santos, C.B.R. Design and identification of inhibitors for the spike-ACE2 target of SARS-CoV-2.Int. J. Mol. Sci.202324108814882510.3390/ijms24108814 37240165
    [Google Scholar]
  57. DhorajiwalaT. HalderS. SamantL. Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against African trypanosomiasis using selected phytochemicals.J. Appl. Biotechno. Rep.20196310110810.29252/JABR.06.03.04
    [Google Scholar]
  58. HosseiniF.S. AmanlouM. Simeprevir, potential candidate to repurpose for coronavirus infection: Virtual screening and molecular docking study.Preprints2020
    [Google Scholar]
  59. FlamanditaD. LischerK. PratamiD.K. AditamaR. SahlanM. In Molecular docking analysis of podophyllotoxin derivatives in Sulawesi propolis as potent inhibitors of protein kinasesAIP Conference ProceedingsAIP Publishing LLC202002001010.1063/5.0002596
    [Google Scholar]
  60. KhareN. MaheshwariS.K. RizviS.M.D. AlbadraniH.M. AlsagabyS.A. AlturaikiW. IqbalD. ZiaQ. VillaC. JhaS.K. JhaN.K. JhaA.K. Homology modelling, molecular docking and molecular dynamics simulation studies of calmh1 against secondary metabolites of Bauhinia variegata to treat Alzheimer’s disease.Brain Sci.202212677010.3390/brainsci12060770 35741655
    [Google Scholar]
  61. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  62. de AlmeidaR.B.M. BarbosaD.B. do BomfimM.R. AmparoJ.A.O. AndradeB.S. CostaS.L. CamposJ.M. CruzJ.N. SantosC.B.R. LeiteF.H.A. BoturaM.B. Identification of a novel dual inhibitor of acetylcholinesterase and butyrylcholinesterase: in vitro and in silico studies.Pharmaceuticals20231619510510.3390/ph16010095 36678592
    [Google Scholar]
  63. SilvaD.F. SouzaJ.L. CostaD.M. JrD.B.C. MoreiraP.O.L. FonsecaA.L. VarottiF.P. Antiplasmodial activity of coumarins isolated fromPolygala boliviensis:in vitro and in silico studies.J. Biomol. Struct. Dyn.202313121 36744465
    [Google Scholar]
  64. IssaR.M. AwadM.K. AtlamF.M. DFT theoretical studies of antipyrine Schiff bases as corrosion inhibitors.Mater. Corros.201061870971410.1002/maco.200905361
    [Google Scholar]
  65. ObotI.B. KayaS. KayaC. TüzünB. Density Functional Theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion.Physica E201680829010.1016/j.physe.2016.01.024
    [Google Scholar]
  66. JoshiT. JoshiT. SharmaP. ChandraS. PandeV. Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase.J. Biomol. Struct. Dyn.202139382384010.1080/07391102.2020.1719200 31965918
    [Google Scholar]
  67. MahnashiM.H. AlyamiB.A. AlqahtaniY.S. JanM.S. RashidU. SadiqA. AlqarniA.O. Phytochemical profiling of bioactive compounds, anti-inflammatory and analgesic potentials of Habenaria digitata Lindl.: Molecular docking based synergistic effect of the identified compounds.J. Ethnopharmacol.202127311397610.1016/j.jep.2021.113976 33647424
    [Google Scholar]
  68. ZothantluangaJ.H. AbdallaM. RudrapalM. TianQ. ChetiaD. LiJ. Computational investigations for identification of bioactive molecules from Baccaurea ramiflora and Bergenia ciliata as inhibitors of SARS-CoV-2 M pro.Polycycl. Aromat. Compd.20234332459248710.1080/10406638.2022.2046613
    [Google Scholar]
  69. KumarA. KumarD. KumarR. SinghP. ChandraR. KumariK. DFT and docking studies of designed conjugates of noscapines & repurposing drugs: promising inhibitors of main protease of SARS-CoV-2 and falcipan-2.J. Biomol. Struct. Dyn.2020121 33140690
    [Google Scholar]
  70. ParveenS. AlnomanR.B. BayazeedA.A. AlqahtaniA.M. Computational insights into the drug repurposing and synergism of fda-approved influenza drugs binding with SARS-CoV-2 protease against COVID-19.Am. J. Microbiol. Res.20208393102
    [Google Scholar]
  71. Abd El-KarimS.S. AnwarM.M. SyamY.M. NaelM.A. AliH.F. MotalebM.A. Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D & 3D QSAR, in vivo radiolabeling and bio distribution studies.Bioorg. Chem.20188148149310.1016/j.bioorg.2018.09.021 30243239
    [Google Scholar]
  72. CelikS. AlbayrakA.T. AkyuzS. OzelA.E. Synthesis, molecular docking and ADMET study of ionic liquid as anti-cancer inhibitors of DNA and COX-2, TOPII enzymes.J. Biomol. Struct. Dyn.20203851354 30955453
    [Google Scholar]
  73. NishaC.M. KumarA. VimalA. BaiB.M. PalD. KumarA. Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor.J. Mol. Graph. Model.20166510010710.1016/j.jmgm.2016.03.001 26967552
    [Google Scholar]
  74. QasaymehR.M. RotondoD. OosthuizenC.B. LallN. SeidelV. Predictive binding affinity of plant-derived natural products towards the protein kinase g enzyme of mycobacterium tuberculosis (mtpkng).Plants201981147710.3390/plants8110477 31698813
    [Google Scholar]
  75. MuddagoniN. BathulaR. DasariM. PotlapallyS.R. Homology modeling, virtual screening, prime-MMGBSA, Auto-Dock-identification of inhibitors of FGR protein.Biointerface Res. Appl. Chem.2021111108811103
    [Google Scholar]
  76. LeãoR.P. CruzJ.V. da CostaG.V. CruzJ.N. FerreiraE.F.B. SilvaR.C. de LimaL.R. BorgesR.S. dos SantosG.B. SantosC.B.R. Identification of new rofecoxib-based cyclooxygenase-2 inhibitors: A bioinformatics approach.Pharmaceuticals202013920910.3390/ph13090209 32858871
    [Google Scholar]
  77. RuswantoR. MardianingrumR. SiswandonoS. KesumaD. Reverse docking, molecular docking, absorption, distribution, and toxicity prediction of artemisinin as an anti-diabetic candidate.Molekul2020152889610.20884/1.jm.2020.15.2.579
    [Google Scholar]
  78. ZrieqR. AhmadI. SnoussiM. NoumiE. IritiM. AlgahtaniF.D. PatelH. SaeedM. TasleemM. SulaimanS. AouadiK. KadriA. Tomatidine and patchouli alcohol as inhibitors of sars-cov-2 enzymes (3CLpro, PLpro and NSP15) by molecular docking and molecular dynamics simulations.Int. J. Mol. Sci.202122191069310.3390/ijms221910693 34639036
    [Google Scholar]
  79. FewS. EdgeP. Save the pies for dessert.Visual business intelligence newsletter2007114
    [Google Scholar]
  80. HorchaniM. HajlaouiA. HarrathA.H. MansourL. Ben JannetH. RomdhaneA. New pyrazolo-triazolo-pyrimidine derivatives as antibacterial agents: Design and synthesis, molecular docking and DFT studies.J. Mol. Struct.2020119912700710.1016/j.molstruc.2019.127007
    [Google Scholar]
  81. YadavM. KumarS. SinhaR.R. BahadurI. EbensoE.E. New pyrimidine derivatives as efficient organic inhibitors on mild steel corrosion in acidic medium: Electrochemical, SEM, EDX, AFM and DFT studies.J. Mol. Liq.201521113514510.1016/j.molliq.2015.06.063
    [Google Scholar]
  82. ShahabS. SheikhiM. AlnajjarR. SaudS.A. KhancheuskiM. StrogovaA. DFT investigation of atazanavir as potential inhibitor for 2019-nCoV coronavirus M protease.J. Mol. Struct.2021122812946110.1016/j.molstruc.2020.129461 33100379
    [Google Scholar]
  83. AzamF. AlabdullahN.H. EhmedatH.M. AbulifaA.R. TabanI. UpadhyayulaS. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer’s disease: An investigation by docking, molecular dynamics, and DFT studies.J. Biomol. Struct. Dyn.20183682099211710.1080/07391102.2017.1338164 28571516
    [Google Scholar]
  84. TouafriL. HellalA. ChafaaS. KhelifaA. KadriA. Synthesis, characterisation and DFT studies of three Schiff bases derived from histamine.J. Mol. Struct.2017114975076010.1016/j.molstruc.2017.08.052
    [Google Scholar]
  85. MaidurS.R. PatilP.S. EkboteA. ChiaT.S. QuahC.K. Molecular structure, second-and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative:(2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene] amino} phenyl) prop-2-en-1-one.Spectrochim. Acta A Mol. Biomol. Spectrosc.201718434235410.1016/j.saa.2017.05.015 28528255
    [Google Scholar]
  86. AlagumuthuM. RajpootS. BaigM.S. Structure-based design of novel peptidomimetics targeting the SARS-CoV-2 spike protein.Cell. Mol. Bioeng.202114217718510.1007/s12195‑020‑00658‑5 33072222
    [Google Scholar]
  87. JawariaR. HussainM. KhalidM. KhanM.U. TahirM.N. NaseerM.M. BragaA.A.C. ShafiqZ. Synthesis, crystal structure analysis, spectral characterization and non-linear optical exploration of potent thiosemicarbazones based compounds: A DFT refine experimental study.Inorg. Chim. Acta201948616217110.1016/j.ica.2018.10.035
    [Google Scholar]
  88. HagarM. AhmedH.A. AljohaniG. AlhaddadO.A. Investigation of Some Antiviral N-Heterocycles as COVID 19 Drug: Molecular Docking and DFT Calculations.Int. J. Mol. Sci.20202111392210.3390/ijms21113922 32486229
    [Google Scholar]
  89. BendjeddouA. AbbazT. GouasmiaA. VilleminD. Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted molecules using DFT (B3LYP) calculations.Int. Res. J. Pure Appl. Chem.20161211910.9734/IRJPAC/2016/27066
    [Google Scholar]
  90. TaslimiP. ErdenY. MamedovS. ZeynalovaL. LadokhinaN. TasR. TuzunB. SujayevA. SadeghianN. AlwaselS.H. GulcinI. The biological activities, molecular docking studies, and anticancer effects of 1-arylsuphonylpyrazole derivatives.J. Biomol. Struct. Dyn.202139933363346 32364008
    [Google Scholar]
  91. AcarM.F. SariS. DalkaraS. Synthesis, in vivo anticonvulsant testing, and molecular modeling studies of new nafimidone derivatives.Drug Dev. Res.201980560661610.1002/ddr.21538 30973979
    [Google Scholar]
  92. van BreemenR.B. LiY. Caco-2 cell permeability assays to measure drug absorption.Expert Opin. Drug Metab. Toxicol.20051217518510.1517/17425255.1.2.175 16922635
    [Google Scholar]
  93. Medsafe (New Zealand Medicines and Medical Devices Safety Authority).1999Available from: http://:www.medsafe.govt.nz/Profs/DataSheet/a
  94. FangH. LiuX. RamírezJ. ChoudhuryN. KuboM. Im, H.K.; Konkashbaev, A.; Cox, N.J.; Ratain, M.J.; Nakamura, Y.; O’Donnell, P.H. Establishment of CYP2D6 reference samples by multiple validated genotyping platforms.Pharmacogenomics J.201414656457210.1038/tpj.2014.27 24980783
    [Google Scholar]
  95. AminM.L. P-glycoprotein inhibition for optimal drug delivery.Drug Target Insights20137S1251910.4137/DTI.S12519
    [Google Scholar]
  96. SağlıkB.N. ÇevikU.A. OsmaniyeD. LeventS. ÇavuşoğluB.K. DemirY. IlgınS. ÖzkayY. KoparalA.S. BeydemirŞ. KaplancıklıZ.A. Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives.Bioorg. Chem.20199110315310.1016/j.bioorg.2019.103153 31382057
    [Google Scholar]
  97. HusainA. AhmadA. KhanS.A. AsifM. BhutaniR. Al-AbbasiF.A. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi.Pharm. J.201624110411410.1016/j.jsps.2015.02.008 26903774
    [Google Scholar]
  98. YaoN. SongA. WangX. DixonS. LamK.S. Synthesis of flavonoid analogues as scaffolds for natural product-based combinatorial libraries.J. Comb. Chem.20079466867610.1021/cc070009y 17487987
    [Google Scholar]
  99. PereiraA.M. CidadeH. TiritanM.E. Stereoselective synthesis of flavonoids: A brief overview.Molecules202328142610.3390/molecules28010426 36615614
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073262227231005074024
Loading
/content/journals/cchts/10.2174/0113862073262227231005074024
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test