Skip to content
2000
Volume 28, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Hepatocellular carcinoma (HCC) is a highly aggressive neoplasm that usually originates from liver cells and is one of the most common malignancies worldwide. To improve the survival rate of HCC patients, specific prognostic markers are essential to guide HCC therapy. CEP55 is a microtubule-bundling protein involved in critical cell functions, including cell growth, transformation, and cytokinesis.

Aims

This study examined gene alterations in HCC tumor tissues through comprehensive analysis, aiming to elucidate their contribution to disease development.

Methods

Bioinformatics tools were employed to investigate the expression, genetic variations, prognostic significance, and clinicopathological relevance of CEP55 across GEO and TCGA datasets. We further explored gene alterations, DNA methylation levels, and immune infiltration of CEP55. To elucidate the potential molecular mechanisms involved, GO and KEGG analysis was performed. Finally, RT-qPCR was also performed on a number of normal and tumoral cell lines , which demonstrated that the expression of the CEP55 was significantly higher in the tumor cell lines.

Results

We observed that CEP55 was upregulated in 16 cancers compared to corresponding normal tissues. CEP55 was found to be related to T stages, pathologic stages, histologic grade, and levels of AFP. K-M analysis demonstrated that CEP55 expression was associated with a worse outcome. ROC curve analysis showed that CEP55 expression accurately distinguished HCC from normal tissue (AUC = 0.954). The area under 1-,3- and 5-year survival ROCs were above 0.6. The HSPA4 genetic alterations in HCC were 0.8%. Among the 15 DNA methylation CpG sites, 6 were related to the prognosis of HCC. HSPA4 was positively related to immune cell infiltration and immune checkpoints in HCC. The KEGG pathway analysis indicated that CEP55 was associated with the cell cycle and presented together with CDK1. HCC cell lines were demonstrated to express high levels of CEP55 compared to normal cells.

Conclusion

As a result of bioinformatic analyses and RT-qPCR validation in HCC, CEP55 increased in HCC tissues and was associated with the stage of the disease and survival rate.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073298525240522104104
2025-05-01
2025-10-31
Loading full text...

Full text loading...

References

  1. YangC. LeeD. ZhangM.S. TseA.P.W. WeiL. BaoM.H.R. WongB.P.Y. ChanC.Y.K. YuenV.W.H. ChenY. WongC.C.L. Genome‐wide CRISPR/Cas9 library screening revealed dietary restriction of glutamine in combination with inhibition of pyruvate metabolism as effective liver cancer treatment.Adv. Sci.2022934220210410.1002/advs.202202104 36310121
    [Google Scholar]
  2. MusunuriB. ShettyS. BhatG. UdupaK. PaiA. Profile of patients with hepatocellular carcinoma: An experience from a tertiary care center in India.Indian J. Gastroenterol.202241212713410.1007/s12664‑021‑01209‑0 35226292
    [Google Scholar]
  3. YangM. HungT. WangC. Nelumbo nuciferaInhibitory Effect of Leaf Extract on 2-Acetylaminofluorene-induced Hepatocarcinogenesis Through Enhancing Antioxidative Potential and Alleviating Inflammation in Rats.Basel, SwitzerlandAntioxidants2019812
    [Google Scholar]
  4. ShangB.B. ChenJ. WangZ.G. LiuH. Significant correlation between HSPA4 and prognosis and immune regulation in hepatocellular carcinoma.PeerJ20219e1231510.7717/peerj.12315 34754620
    [Google Scholar]
  5. LittleJ.N. DwyerN.D. Cep55: Abscission boss or assistant?Trends Cell Biol.2021311078979110.1016/j.tcb.2021.07.006 34400044
    [Google Scholar]
  6. JefferyJ. SinhaD. SrihariS. KalimuthoM. KhannaK.K. Beyond cytokinesis: The emerging roles of CEP55 in tumorigenesis.Oncogene201635668369010.1038/onc.2015.128 25915844
    [Google Scholar]
  7. LiG.S. ZhangW. HuangW.Y. HeR.Q. HuangZ.G. GanX.Y. YangZ. DangY.W. KongJ.L. ZhouH.F. ChenG. CEP55: An immune-related predictive and prognostic molecular biomarker for multiple cancers.BMC Pulm. Med.202323116610.1186/s12890‑023‑02452‑1 37173675
    [Google Scholar]
  8. FanH. ZhangJ. ZouB. HeZ. The role of CEP55 expression in tumor immune response and prognosis of patients with non-small cell lung cancer.Arch. Iran Med.202225743244210.34172/aim.2022.72 36404510
    [Google Scholar]
  9. YangL. HeY. ZhangZ. WangW. Upregulation of CEP55 predicts dismal prognosis in patients with liver cancer.BioMed Res. Int.2020202011710.1155/2020/4139320 32337246
    [Google Scholar]
  10. ZakiM. EldeenM. AbdulsahibW. A Comprehensive Pan-Cancer Analysis Identifies CEP55 as a Potential Oncogene and Novel Therapeutic Target.Basel, SwitzerlandDiagnostics20231322
    [Google Scholar]
  11. ZhangX. XuQ. LiE. CEP55 predicts the poor prognosis and promotes tumorigenesis in endometrial cancer by regulating the Foxo1 signaling.Mol. Cell. Biochem.2022478715611571 36434144
    [Google Scholar]
  12. WangY. WangQ. LiX. LuoG. ShenM. ShiJ. WangX. TangL. Paeoniflorin sensitizes breast cancer cells to tamoxifen by downregulating microRNA-15b via the FOXO1/CCND1/β-catenin axis.Drug Des. Devel. Ther.20211524525710.2147/DDDT.S278002 33519190
    [Google Scholar]
  13. ChaudharyN. KiranmayeeB. Non-receptor type PTPases and their role in controlling pathways related to diabetes and liver cancer signalling.Curr. Pharm. Biotechnol.20242510.2174/0113892010288624240213072415 38424416
    [Google Scholar]
  14. YangL. GaoZ.W. WuX.N. LiuC. ZhangJ. ZhangH.Z. DongK. CD73 blockade alleviated hepatic fibrosis via inhibiting hepatic stellate cells proliferation and activation.Curr. Mol. Pharmacol.2024171e220323214863 36946474
    [Google Scholar]
  15. WangY. HanJ. ZhouH. AiS. WanD. A prognosis marker dynein cytoplasmic 1 heavy chain 1 correlates with EMT and immune signature in liver hepatocellular carcinoma by bioinformatics and experimental analysis.Dis. Markers2022202211810.1155/2022/6304859 35601740
    [Google Scholar]
  16. WangZ. JensenM.A. ZenklusenJ.C. A practical guide to the cancer genome atlas (TCGA).Methods Mol. Biol.2016141811114110.1007/978‑1‑4939‑3578‑9_6 27008012
    [Google Scholar]
  17. VillanuevaA. PortelaA. SayolsS. BattistonC. HoshidaY. Méndez-GonzálezJ. ImbeaudS. LetouzéE. Hernandez-GeaV. CornellaH. PinyolR. SoléM. FusterJ. Zucman-RossiJ. MazzaferroV. EstellerM. LlovetJ.M. DNA methylation‐based prognosis and epidrivers in hepatocellular carcinoma.Hepatology20156161945195610.1002/hep.27732 25645722
    [Google Scholar]
  18. WooH.G. ChoiJ.H. YoonS. JeeB.A. ChoE.J. LeeJ.H. YuS.J. YoonJ.H. YiN.J. LeeK.W. SuhK.S. KimY.J. Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer.Nat. Commun.20178183910.1038/s41467‑017‑00991‑w 29018224
    [Google Scholar]
  19. CaoT. LiQ. HuangY. LiA. plotnineSeqSuite: A Python package for visualizing sequence data using ggplot2 style.BMC Genomics202324158510.1186/s12864‑023‑09677‑8 37789265
    [Google Scholar]
  20. GaoJ. AksoyB.A. DogrusozU. DresdnerG. GrossB. SumerS.O. SunY. JacobsenA. SinhaR. LarssonE. CeramiE. SanderC. SchultzN. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci. Signal.20136269pl110.1126/scisignal.2004088 23550210
    [Google Scholar]
  21. HuangQ. TianC. Visualizing time-varying effect in survival analysis: 5 complementary plots to kaplan-meier curve.Oxid. Med. Cell. Longev.2022202211210.1155/2022/3934901 35391933
    [Google Scholar]
  22. ModhukurV. IljasenkoT. MetsaluT. LokkK. Laisk-PodarT. ViloJ. MethSurv: A web tool to perform multivariable survival analysis using DNA methylation data.Epigenomics201810327728810.2217/epi‑2017‑0118 29264942
    [Google Scholar]
  23. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  24. SunD. WangJ. HanY. DongX. GeJ. ZhengR. ShiX. WangB. LiZ. RenP. SunL. YanY. ZhangP. ZhangF. LiT. WangC. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment.Nucleic Acids Res.202149D1D1420D143010.1093/nar/gkaa1020 33179754
    [Google Scholar]
  25. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  26. KanehisaM. The KEGG database.Novartis Found. Symp.20022479110110.1002/0470857897.ch8
    [Google Scholar]
  27. HanJ. WangY. ZhouH. AiS. WanD. Integrated bioinformatics and experimental analysis identified TRIM28 a potential prognostic biomarker and correlated with immune infiltrates in liver hepatocellular carcinoma.Comput. Math. Methods Med.2022202211710.1155/2022/6267851 36238495
    [Google Scholar]
  28. QiangR. ZhaoZ. TangL. WangQ. WangY. HuangQ. Identification of 5 hub genes related to the early diagnosis, tumour stage, and poor outcomes of hepatitis B virus-related hepatocellular carcinoma by bioinformatics analysis.Comput. Math. Methods Med.2021202112010.1155/2021/9991255 34603487
    [Google Scholar]
  29. BiY. JinS. TangG. PanD. SongX. ZhuX. TanS. Prognostic significance of ZP3 in hepatocellular carcinoma.Comb. Chem. High Throughput Screen.20232691729173610.2174/1386207325666221010112601 36221877
    [Google Scholar]
  30. JiangZ. WangZ. ChenX. SLC17A2 expression correlates with prognosis and immune infiltrates in hepatocellular carcinoma.Comb. Chem. High Throughput Screen.202225122001201510.2174/1386207325666220126104358 35081886
    [Google Scholar]
  31. yang, Z.; shen, X.; wang, Z. The biological function of POLA2 in hepatocellular carcinoma.Comb. Chem. High Throughput Screen.20232610.2174/0113862073254083231002052550 37861044
    [Google Scholar]
  32. WangY. WuB. AiS. WanD. Electroplating of HAp-brushite coating on metallic bioimplants with advanced hemocompatibility and osteocompatibility properties.J. Appl. Biomater. Funct. Mater.20222010.1177/22808000221103970 35946407
    [Google Scholar]
  33. JiyuH. YanhongW. DaqianW. Research progress and development trend of lower extremity exoskeleton rehabilitation robot.J. Shanghai Jiaotong Univ.202242241
    [Google Scholar]
  34. LiangZ. LinP. ZhaoY. LiX. KIAA0101 in malignant pleural mesothelioma: A potential diagnostic and prognostic marker.Comb. Chem. High Throughput Screen.20222591498150610.2174/1386207324666210707105634 34238152
    [Google Scholar]
  35. SongY. SunY. SunT. TangR. Comprehensive bioinformatics analysis identifies tumor microenvironment and immune-related genes in small cell lung cancer.Comb. Chem. High Throughput Screen.202023538139110.2174/1386207323666200407075004 32264809
    [Google Scholar]
  36. TangD. WangG. LiuZ. ZhengY. ShengC. WangB. HouX. ZhangY. YaoM. ZhouZ. Bioinformatics analysis and verification of metabolic abnormalities in esophageal squamous carcinoma.Comb. Chem. High Throughput Screen.2023 37005515
    [Google Scholar]
  37. FanJ.B. WuD. DingY. Bioinformatics analysis of autophagy-related lncRNAs in Esophageal Carcinoma.Comb. Chem. High Throughput Screen.20222581374138410.2174/1386207324666210624143452 34170806
    [Google Scholar]
  38. ZhangL. WuX. FanX. AiH. MUM1L1 as a tumor suppressor and potential biomarker in ovarian cancer: Evidence from bioinformatics analysis and basic experiments.Comb. Chem. High Throughput Screen.202326142487250110.2174/1386207326666230301141912 36856181
    [Google Scholar]
  39. LiM. GaoJ. LiD. YinY. CEP55 promotes cell motility via JAK2–STAT3–MMPs cascade in hepatocellular carcinoma.Cells2018789910.3390/cells7080099 30096813
    [Google Scholar]
  40. HuangR.H. YangW.K. WuC.M. YehC.M. SungW.W. Over-expression of CEP55 predicts favorable prognosis in colorectal cancer patients with lymph node involvement.Anticancer Res.202141154354710.21873/anticanres.14806 33419854
    [Google Scholar]
  41. HuangS. MaL. LanB. LiuN. NongW. HuangZ. Comprehensive analysis of prognostic genes in gastric cancer.Aging20211320236372365110.18632/aging.203638 34686626
    [Google Scholar]
  42. YangC. YangY. WangW. ZhouW. ZhangX. XiaoY. ZhangH. CEP55 3′-UTR promotes epithelial–mesenchymal transition and enhances tumorigenicity of bladder cancer cells by acting as a ceRNA regulating miR-497-5p.Cell. Oncol.20224561217123610.1007/s13402‑022‑00712‑6 36374443
    [Google Scholar]
  43. LanT. LiH. ZhangD. XuL. LiuH. HaoX. YanX. LiaoH. ChenX. XieK. LiJ. LiaoM. HuangJ. YuanK. ZengY. WuH. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3.Mol. Cancer201918118610.1186/s12943‑019‑1106‑z 31856849
    [Google Scholar]
  44. WangY. WangJ. LiX. XiongX. WangJ. ZhouZ. ZhuX. GuY. DominissiniD. HeL. TianY. YiC. FanZ. N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism.Nat. Commun.2021121631410.1038/s41467‑021‑26718‑6 34728628
    [Google Scholar]
  45. KlutsteinM. NejmanD. GreenfieldR. CedarH. DNA methylation in cancer and aging.Cancer Res.201676123446345010.1158/0008‑5472.CAN‑15‑3278 27256564
    [Google Scholar]
  46. NishiyamaA. NakanishiM. Navigating the DNA methylation landscape of cancer.Trends Genet.202137111012102710.1016/j.tig.2021.05.002 34120771
    [Google Scholar]
  47. RufB. HeinrichB. GretenT.F. Immunobiology and immunotherapy of HCC: Spotlight on innate and innate-like immune cells.Cell. Mol. Immunol.202118111212710.1038/s41423‑020‑00572‑w 33235387
    [Google Scholar]
  48. FuY. LiuS. ZengS. ShenH. From bench to bed: The tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma.J. Exp. Clin. Cancer Res.201938139610.1186/s13046‑019‑1396‑4 31500650
    [Google Scholar]
  49. Martínez-LostaoL. AnelA. PardoJ. How do cytotoxic lymphocytes kill cancer cells?Clin. Cancer Res.201521225047505610.1158/1078‑0432.CCR‑15‑0685 26567364
    [Google Scholar]
  50. JiangL. YuZ. LinY. CuiL. YaoS. LvL. LiuJ. Low-molecular-weight polysaccharides from Agaricus blazei Murrill modulate the Th1 response in cancer immunity.Oncol. Lett.201815334293436 29467867
    [Google Scholar]
  51. YuanQ. YaoF. ZhouL. LiangG. SongX. JiangG. ZhouM. ZhangL. Exert anti-angiogenesis effects through the inhibition of TSLP-STAT3 signaling pathways in hepatocellular carcinoma.Evid. Based Complement. Alternat. Med.2019201911610.1155/2019/1947156 31885639
    [Google Scholar]
  52. YamashitaM. TasakiM. MurakamiR. AraiY. NakamuraT. NakaoS. Oncolytic vaccinia virus induces a novel phenotype of CD8+ effector T cells characterized by high ICOS expression.Mol. Ther. Oncolytics20212042243210.1016/j.omto.2021.01.016 33665362
    [Google Scholar]
  53. TongH. LiuX. PengC. ShenB. ZhuZ. Silencing of KNTC1 inhibits hepatocellular carcinoma cells progression via suppressing PI3K/Akt pathway.Cell. Signal.202310111049810.1016/j.cellsig.2022.110498 36273753
    [Google Scholar]
  54. LiT.H. QinC. ZhaoB.B. CaoH.T. YangX.Y. WangY.Y. LiZ.R. ZhouX.T. WangW.B. Identification METTL18 as a potential prognosis biomarker and associated with immune infiltrates in hepatocellular carcinoma.Front. Oncol.20211166519210.3389/fonc.2021.665192 34123827
    [Google Scholar]
  55. NwekeE.E. NaickerP. AronS. StoychevS. DevarJ. TabbD.L. Omoshoro-JonesJ. SmithM. CandyG. SWATH-MS based proteomic profiling of pancreatic ductal adenocarcinoma tumours reveals the interplay between the extracellular matrix and related intracellular pathways.PLoS One20201510e024045310.1371/journal.pone.0240453 33048956
    [Google Scholar]
  56. ShettiD. ZhangB. FanC. MoC. LeeB.H. WeiK. Low dose of paclitaxel combined with XAV939 attenuates metastasis, angiogenesis and growth in breast cancer by suppressing wnt signaling.Cells20198889210.3390/cells8080892 31416135
    [Google Scholar]
  57. YasukawaM. AndoY. YamashitaT. MatsudaY. ShojiS. MoriokaM.S. KawajiH. ShiozawaK. MachitaniM. AbeT. YamadaS. KanekoM.K. KatoY. FurutaY. KondoT. ShirouzuM. HayashizakiY. KanekoS. MasutomiK. CDK1 dependent phosphorylation of hTERT contributes to cancer progression.Nat. Commun.2020111155710.1038/s41467‑020‑15289‑7 32214089
    [Google Scholar]
  58. MaotuanH. FuxiuZ. MingyuanC. LingjuH. WeihongC. XiahenaziA. Feifei, She.; Yanling, C. CEP55 as a promising biomarker and therapeutic target on gallbladder cancer.Front. Oncol.2023131156177
    [Google Scholar]
  59. LinK. ZhuX. LuoC. BuF. ZhuJ. ZhuZ. Data mining combined with experiments to validate CEP55 as a prognostic biomarker in colorectal cancer.Immun. Inflamm. Dis.20219116718210.1002/iid3.375 33190424
    [Google Scholar]
  60. WangmoD. GatesT.J. ZhaoX. SunR. SubramanianS. Centrosomal Protein 55 (CEP55) drives immune exclusion and resistance to immune checkpoint inhibitors in colorectal cancer.Vaccines 20241216310.3390/vaccines12010063 38250876
    [Google Scholar]
  61. LiuL. MeiQ. ZhaoJ. DaiY. FuQ. Suppression of CEP55 reduces cell viability and induces apoptosis in human lung cancer.Oncol. Rep.20163641939194510.3892/or.2016.5059 27633074
    [Google Scholar]
  62. ChaoJ. ZhangYu. YongLi. JiabinLu. QitaoH. RuiXu. High CEP55 expression is associated with poor prognosis in non-small-cell lung cancer.OncoTargets Ther.20181149794990
    [Google Scholar]
  63. MingLi. Yannan, Liu.; Xinglin, J.; Yuanxin, H.; Haiying, W.; Hang, Liu. Inhibition of miR-144-3p exacerbates non-small cell lung cancer progression by targeting CEP55.Acta Biochim. Biophys. Sin.2021531013981407
    [Google Scholar]
  64. LuoJ. PanJ. JinY. LiM. ChenM. MiR-195-5p inhibits proliferation and induces apoptosis of non-small cell lung cancer cells by targeting CEP55.OncoTargets Ther.201912114651147410.2147/OTT.S226921 31920335
    [Google Scholar]
  65. Y-H, Li.; K-C, Xu.; G-M, H.; Zang, H-L.; Chen, M. The function and molecular mechanism of CEP55 in anaplastic thyroid cancer.Eur. Rev. Med. Pharmacol. Sci.2020241895499555
    [Google Scholar]
  66. WangYe. Jin, Tao.; Xueming, Dai.; Junming, Xu.; Chen, M. Lentivirus-mediated knockdown of CEP55 suppresses cell proliferation of breast cancer cells.Biosci. Trends20161016773
    [Google Scholar]
  67. YinY. CaiJ. MengF. SuiC. JiangY. MiR-144 suppresses proliferation, invasion, and migration of breast cancer cells through inhibiting CEP55.Cancer Biol. Ther.201819430631510.1080/15384047.2017.1416934 29561704
    [Google Scholar]
  68. MengQ. ZhangB. ZhangY. WangS. ZhuX. Human bone marrow mesenchymal stem cell‐derived extracellular vesicles impede the progression of cervical cancer via the miR‐144‐3p/CEP55 pathway.J. Cell. Mol. Med.20212541867188310.1111/jcmm.15573 33417281
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073298525240522104104
Loading
/content/journals/cchts/10.2174/0113862073298525240522104104
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bioinformatics; biomarker; CEP55; hepatocellular carcinoma prognosis; immunotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test