Skip to content
2000
Volume 28, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Guigan longmu decoction (GGLM), a traditional Chinese medicine compound, has demonstrated efficacy in treating rapid arrhythmia clinically. Nevertheless, its mechanism of action remains elusive. This study aims to elucidate the molecular mechanism underlying the efficacy of GGLM in treating arrhythmia utilizing non-targeted metabolomics, widely-targeted metabolomics, and network pharmacology, subsequently validated through animal experiments.

Methods

Initially, network pharmacology analysis and widely-targeted metabolomics were performed on GGLM. Subsequent to that, rats were administered GGLM intervention, and non-targeted metabolomics assays were utilized to identify metabolites in rat plasma post-administration. The primary signaling pathways, core targets, and key active ingredients of GGLM influencing arrhythmia were identified. Additionally, to validate the therapeutic efficacy of GGLM on arrhythmia rat models, a rat model of rapid arrhythmia was induced subcutaneous injection of isoproterenol, and alterations in pertinent pathogenic pathways and proteins in the rat model were assessed through qRT-PCR and Western blot following GGLM administration.

Results

The results of network pharmacology showed that 99 active ingredients in GGLM acted on 249 targets and 201 signaling pathways, which may be key to treating arrhythmia. Widely-targeted metabolic quantification analysis detected a total of 448 active ingredients in GGLM, while non-targeted metabolomics identified 279 different metabolites and 10 major metabolic pathways in rats. A comprehensive analysis of the above results revealed that the core key active ingredients of GGLM in treating arrhythmia include calycosin, licochalcone B, glabridin, naringenin, medicarpin, formononetin, quercetin, isoliquiritigenin, and resveratrol. These active ingredients mainly act on the relevant molecules and proteins upstream and downstream of the MAPK pathway to delay the onset of arrhythmia. Animal experimental results showed that the heart rate of rats in the model group increased significantly, and the mRNA and protein expression of p38, MAPK, JNK, ERK, NF-kb, IL-1β, and IL-12 in myocardial tissue also increased significantly. However, after intervention with GGLM, the heart rate of rats in the drug group decreased significantly, while the mRNA and protein expression of p38 MAPK, JNK, ERK1, NF-kb, IL-1β, and IL-12 in myocardial tissue decreased significantly.

Conclusion

GGLM, as an adjunctive therapy in traditional Chinese medicine, exhibits favorable therapeutic efficacy against arrhythmia. This can be attributed to the abundant presence of bioactive compounds in the formulation, including verminin, glycyrrhizin B, glabridine, naringenin, ononin, quercetin, isorhamnetin, and kaempferol. The metabolites derived from these active ingredients have the potential to mitigate myocardial inflammation and decelerate heart rate by modulating the expression of proteins associated with the MAPK signaling pathway .

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073293313240519161145
2025-05-01
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/cchts/28/8/CCHTS-28-8-11.html?itemId=/content/journals/cchts/10.2174/0113862073293313240519161145&mimeType=html&fmt=ahah

References

  1. BlackwellD.J. SchmeckpeperJ. KnollmannB.C. Animal models to study cardiac arrhythmias.Circ. Res.2022130121926196410.1161/CIRCRESAHA.122.320258 35679367
    [Google Scholar]
  2. KuriachanV.P. SumnerG.L. MitchellL.B. Sudden cardiac death.Curr. Probl. Cardiol.201540413320010.1016/j.cpcardiol.2015.01.002 25813838
    [Google Scholar]
  3. JohnR.M. TedrowU.B. KoplanB.A. AlbertC.M. EpsteinL.M. SweeneyM.O. MillerA.L. MichaudG.F. StevensonW.G. Ventricular arrhythmias and sudden cardiac death.Lancet201238098521520152910.1016/S0140‑6736(12)61413‑5 23101719
    [Google Scholar]
  4. FishmanG.I. ChughS.S. DiMarcoJ.P. AlbertC.M. AndersonM.E. BonowR.O. BuxtonA.E. ChenP.S. EstesM. JouvenX. KwongR. LathropD.A. MascetteA.M. NerbonneJ.M. O’RourkeB. PageR.L. RodenD.M. RosenbaumD.S. SotoodehniaN. TrayanovaN.A. ZhengZ.J. Sudden cardiac death prediction and prevention.Circulation2010122222335234810.1161/CIRCULATIONAHA.110.976092 21147730
    [Google Scholar]
  5. GoldbergerJ.J. BuxtonA.E. CainM. CostantiniO. ExnerD.V. KnightB.P. Lloyd-JonesD. KadishA.H. LeeB. MossA. MyerburgR. OlginJ. PassmanR. RosenbaumD. StevensonW. ZarebaW. ZipesD.P. Risk stratification for arrhythmic sudden cardiac death: Identifying the roadblocks.Circulation2011123212423243010.1161/CIRCULATIONAHA.110.959734
    [Google Scholar]
  6. BrouilletteJ. CyrS. FisetC. Mechanisms of arrhythmia and sudden cardiac death in patients with HIV infection.Can. J. Cardiol.201935331031910.1016/j.cjca.2018.12.015 30825952
    [Google Scholar]
  7. KhurshidS. ChoiS.H. WengL.C. WangE.Y. TrinquartL. BenjaminE.J. EllinorP.T. LubitzS.A. Frequency of cardiac rhythm abnormalities in a half million adults.Circ. Arrhythm. Electrophysiol.2018117e00627310.1161/CIRCEP.118.006273 29954742
    [Google Scholar]
  8. MankadP. KalahastyG. Antiarrhythmic drugs.Med. Clin. North Am.2019103582183410.1016/j.mcna.2019.05.004 31378328
    [Google Scholar]
  9. LeiY. TangY. HuangL. HeP. Systematic review and meta-analysis on efficacy of traditional Chinese medicine for atrial fibrillation through cluster analysis.Ann. Palliat. Med.20211088982899010.21037/apm‑21‑1785 34488385
    [Google Scholar]
  10. NingS. YanL. LiY. CuiZ. WangY. ShiJ. ZhaoY. Efficacy of acupuncture combined with oral Chinese medicine in the treatment of arrhythmia: A meta-analysis.Medicine202310212e3317410.1097/MD.0000000000033174 36961199
    [Google Scholar]
  11. YanZ. ZhongL. ZhuW. ChungS.K. HouP. Chinese herbal medicine for the treatment of cardiovascular diseases: Targeting cardiac ion channels.Pharmacol. Res.202319210676510.1016/j.phrs.2023.106765 37075871
    [Google Scholar]
  12. ZhaoX.X. PengC. ZhangH. QinL.P. Sinomenium acutum: A review of chemistry, pharmacology, pharmacokinetics, and clinical use.Pharm. Biol.20125081053106110.3109/13880209.2012.656847 22775422
    [Google Scholar]
  13. QiaoG. LiS. YangB. LiB. Inhibitory effects of artemisinin on voltage-gated ion channels in intact nodose ganglion neurones of adult rats.Basic Clin. Pharmacol. Toxicol.2007100421722410.1111/j.1742‑7843.2006.00009.x 17371525
    [Google Scholar]
  14. LiuZ. SongL. ZhangP. CaoZ. HaoJ. TianY. LuoA. ZhangP. MaJ. Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting INa and ICaL in rabbit ventricular myocytes.Sci. Rep.2019912042510.1038/s41598‑019‑57010‑9 31892729
    [Google Scholar]
  15. ZhangX. AiX. NakayamaH. ChenB. HarrisD.M. TangM. XieY. SzetoC. LiY. LiY. ZhangH. EckhartA.D. KochW.J. MolkentinJ.D. ChenX. Persistent increases in Ca2+ influx through Cav1.2 shortens action potential and causes Ca2+ overload-induced afterdepolarizations and arrhythmias.Basic Res. Cardiol.20161111410.1007/s00395‑015‑0523‑4 26611208
    [Google Scholar]
  16. HuH.Y. JiZ.C. YuD.D. YangF.W. WangH. ZhengW.K. ZhangJ.H. Network Meta-analysis of randomized controlled trials of Chinese patent medicine for bradyarrhythmia.Zhongguo Zhong Yao Za Zhi20204551149115810.19540/j.cnki.cjcmm.20190802.501
    [Google Scholar]
  17. HeH. HanG. LiX. LanH. LiY. DouX. GuoY. ZhangM. LiuH. Efficacy and safety of chinese medicine in treating arrhythmia: Meta-analysis of randomized controlled trials.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/9960471 34745310
    [Google Scholar]
  18. WangZ.Y. WangX. ZhangD.Y. HuY.J. Li, S Traditional Chinese medicine network pharmacology: Development in new era under guidance of network pharmacology evaluation method guidance.Zhongguo Zhongyao Zazhi202247171710.19540/j.cnki.cjcmm.20210914.702
    [Google Scholar]
  19. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  20. ZhuG. WangS. HuangZ. ZhangS. LiaoQ. ZhangC. LinT. QinM. PengM. YangC. CaoX. HanX. WangX. van der KnaapE. ZhangZ. CuiX. KleeH. FernieA.R. LuoJ. HuangS. Rewiring of the fruit metabolome in tomato breeding.Cell20181721-2249261.e1210.1016/j.cell.2017.12.019 29328914
    [Google Scholar]
  21. ZengC. WenB. HouG. LeiL. MeiZ. JiaX. ChenX. ZhuW. LiJ. KuangY. ZengW. SuJ. LiuS. PengC. ChenX. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis.Gigascience201761011110.1093/gigascience/gix087 29046044
    [Google Scholar]
  22. GuoS. XueY. ZhuX. YangB. ZhouC. Effects and pharmacological mechanism of Zhigancao Decoction on electrical and structural remodeling of the atrium of rabbits induced by rapid atrial pacing.J. Interv. Card. Electrophysiol.202266359760910.1007/s10840‑022‑01356‑0 36098833
    [Google Scholar]
  23. GuoZ. ZhangN. MaK. LeiQ. MaG. DingB. ZhongY. LiangW. LiN. Establishment of a new arrhythmia model in SD rats induced by isoproterenol.Acta Cardiol.202378670371210.1080/00015385.2023.2201726 37103119
    [Google Scholar]
  24. HsinK.Y. GhoshS. KitanoH. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology.PLoS One2013812e8392210.1371/journal.pone.0083922 24391846
    [Google Scholar]
  25. YangK.C. NerbonneJ.M. Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling.Trends Cardiovasc. Med.201626320921810.1016/j.tcm.2015.07.002 26391345
    [Google Scholar]
  26. BurchfieldJ.S. XieM. HillJ.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2.Circulation2013128438840010.1161/CIRCULATIONAHA.113.001878 23877061
    [Google Scholar]
  27. AbramsD. SchillingR. Mechanism and mapping of atrial arrhythmia in the modified Fontan circulation.Heart Rhythm20052101138114410.1016/j.hrthm.2005.07.009 16188597
    [Google Scholar]
  28. CorbanM.T. ToyaT. AhmadA. LermanL.O. LeeH.C. LermanA. Atrial fibrillation and endothelial dysfunction.Mayo Clin. Proc.20219661609162110.1016/j.mayocp.2020.11.005 33775421
    [Google Scholar]
  29. Hammerer-LercherA. NamdarM. VuilleumierN. Emerging biomarkers for cardiac arrhythmias.Clin. Biochem.2020751610.1016/j.clinbiochem.2019.11.012 31786205
    [Google Scholar]
  30. GodoS. ShimokawaH. Endothelial Functions.Arterioscler. Thromb. Vasc. Biol.2017379e108e11410.1161/ATVBAHA.117.309813 28835487
    [Google Scholar]
  31. XieC. Halegoua-DeMarzioD. Role of probiotics in non-alcoholic fatty liver disease: Does gut microbiota matter?Nutrients20191111283710.3390/nu11112837 31752378
    [Google Scholar]
  32. CaiT. YeX. YongH. SongB. ZhengX. CuiB. ZhangF. LuY. MiaoH. DingD. Fecal microbiota transplantation relieve painful diabetic neuropathy.Medicine20189750e1354310.1097/MD.0000000000013543 30558014
    [Google Scholar]
  33. de GrootP. ScheithauerT. BakkerG.J. ProdanA. LevinE. KhanM.T. HerremaH. AckermansM. SerlieM.J.M. de BrauwM. LevelsJ.H.M. SalesA. GerdesV.E. StåhlmanM. SchimmelA.W.M. Dallinga-ThieG. BergmanJ.J.G.H.M. HollemanF. HoekstraJ.B.L. GroenA. BäckhedF. NieuwdorpM. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time.Gut202069350251210.1136/gutjnl‑2019‑318320 31147381
    [Google Scholar]
  34. MonneratG. AlarcónM.L. VasconcellosL.R. Hochman-MendezC. BrasilG. BassaniR.A. CasisO. MalanD. TravassosL.H. SepúlvedaM. BurgosJ.I. Vila-PetroffM. DutraF.F. BozzaM.T. PaivaC.N. CarvalhoA.B. BonomoA. FleischmannB.K. de CarvalhoA.C.C. MedeiE. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice.Nat. Commun.2016711334410.1038/ncomms13344 27882934
    [Google Scholar]
  35. EsfandiareiM. McManusB.M. Molecular biology and pathogenesis of viral myocarditis.Annu. Rev. Pathol.20083112715510.1146/annurev.pathmechdis.3.121806.151534 18039131
    [Google Scholar]
  36. HaradaM. Van WagonerD.R. NattelS. Role of inflammation in atrial fibrillation pathophysiology and management.Circ. J.201579349550210.1253/circj.CJ‑15‑0138 25746525
    [Google Scholar]
  37. GruneJ. YamazoeM. NahrendorfM. Electroimmunology and cardiac arrhythmia.Nat. Rev. Cardiol.202118854756410.1038/s41569‑021‑00520‑9 33654273
    [Google Scholar]
  38. SteeleH. ChengJ. WillicutA. DellG. BreckenridgeJ. CulbersonE. GhastineA. TardifV. HerroR. TNF superfamily control of tissue remodeling and fibrosis.Front. Immunol.202314121990710.3389/fimmu.2023.1219907 37465675
    [Google Scholar]
  39. LiewR. KhairunnisaK. GuY. TeeN. YinN.O. NaylynnT.M. MoeK.T. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate.Circ. J.20137751171117910.1253/circj.CJ‑12‑1155 23370453
    [Google Scholar]
  40. CheungC. LuoH. YanagawaB. LeongH.S. SamarasekeraD. LaiJ.C.K. SuarezA. ZhangJ. McManusB.M. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in coxsackievirus-induced myocarditis.Cardiovasc. Pathol.2006152637410.1016/j.carpath.2005.11.008 16533694
    [Google Scholar]
  41. RolskiF. TkaczK. WęglarczykK. KwiatkowskiG. PelczarP. Jaźwa-KusiorA. BarA. KusterG.M. ChłopickiS. SiedlarM. KaniaG. BłyszczukP. TNF-α protects from exacerbated myocarditis and cardiac death by suppressing expansion of activated heart-reactive CD4+ T cells.Cardiovasc. Res.20241201829410.1093/cvr/cvad158 37879102
    [Google Scholar]
  42. BlytheN.M. MurakiK. LudlowM.J. StylianidisV. GilbertH.T.J. EvansE.L. CuthbertsonK. FosterR. SwiftJ. LiJ. DrinkhillM.J. van NieuwenhovenF.A. PorterK.E. BeechD.J. TurnerN.A. Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion.J. Biol. Chem.201929446173951740810.1074/jbc.RA119.009167 31586031
    [Google Scholar]
  43. MeijlesD.N. CullJ.J. MarkouT. CooperS.T.E. HainesZ.H.R. FullerS.J. O’GaraP. SheppardM.N. HardingS.E. SugdenP.H. ClerkA. Redox regulation of cardiac ASK1 (apoptosis signal-regulating kinase 1) Controls p38-MAPK (mitogen-activated protein kinase) and orchestrates cardiac remodeling to hypertension.Hypertension20207641208121810.1161/HYPERTENSIONAHA.119.14556 32903101
    [Google Scholar]
  44. PetiW. PageR. Molecular basis of MAP kinase regulation.Protein Sci.201322121698171010.1002/pro.2374 24115095
    [Google Scholar]
  45. CorreI. ParisF. HuotJ. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells.Oncotarget2017833556845571410.18632/oncotarget.18264 28903453
    [Google Scholar]
  46. XuS. IlyasI. LittleP.J. LiH. KamatoD. ZhengX. LuoS. LiZ. LiuP. HanJ. HardingI.C. EbongE.E. CameronS.J. StewartA.G. WengJ. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies.Pharmacol. Rev.202173392496710.1124/pharmrev.120.000096 34088867
    [Google Scholar]
  47. ShaX. MengS. LiX. XiH. MaddaloniM. PascualD.W. ShanH. JiangX. WangH. YangX. Interleukin-35 inhibits endothelial cell activation by suppressing MAPK-AP-1 pathway.J. Biol. Chem.201529031193071931810.1074/jbc.M115.663286 26085094
    [Google Scholar]
  48. RouseD. Are you ready for state boards?Nursing1987171708610.1097/00152193‑198701000‑00021 3642357
    [Google Scholar]
  49. YangN. ZouC. LuoW. XuD. WangM. WangY. WuG. ShanP. LiangG. Sclareol attenuates angiotensin II ‐induced cardiac remodeling and inflammation via inhibiting MAPK signaling.Phytother. Res.202337257859110.1002/ptr.7635 36178264
    [Google Scholar]
  50. AhmadF. MarzookH. GuptaA. ArefA. PatilK. KhanA.A. SalehM.A. KochW.J. WoodgettJ.R. QaisarR. GSK-3α aggravates inflammation, metabolic derangement, and cardiac injury post-ischemia/reperfusion.J. Mol. Med.2023101111379139610.1007/s00109‑023‑02373‑w 37707557
    [Google Scholar]
  51. KimM.H. KangH.M. KimC.E. HanS. KimS.W. Ramipril inhibits high glucose-stimulated up-regulation of adhesion molecules via the ERK1/2 MAPK signaling pathway in human umbilical vein endothelial cells.Cell. Mol. Biol. Lett.201520593794710.1515/cmble‑2015‑0053 26636413
    [Google Scholar]
  52. ThamC.L. Hazeera HarithH. Wai LamK. Joong ChongY. Singh CheemaM. Roslan SulaimanM. Hj LajisN. Ahmad IsrafD. The synthetic curcuminoid BHMC restores endotoxin-stimulated HUVEC dysfunction:Specific disruption on enzymatic activity of p38 MAPK.Eur. J. Pharmacol.201574911110.1016/j.ejphar.2014.12.015 25560198
    [Google Scholar]
  53. WangW. YuY. ChenH. SunP. LuL. YanS. LiuX. LuT. LiW. LiuJ. ChenL. Anti-arrhythmia potential of honey-processed licorice in zebrafish model: Antioxidant, histopathological and tissue distribution.J. Ethnopharmacol.202331611672410.1016/j.jep.2023.116724 37308027
    [Google Scholar]
  54. UpadhyayS. ManthaA.K. DhimanM. Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes.J. Ethnopharmacol.202025811269010.1016/j.jep.2020.112690 32105749
    [Google Scholar]
  55. ZhouQ. ZhangS. GengX. JiangH. DaiY. WangP. HuaM. GaoQ. LangS. HouL. ShiD. ZhouM. Antioxidant effects of roasted licorice in a zebrafish model and its mechanisms.Molecules20222722774310.3390/molecules27227743 36431839
    [Google Scholar]
  56. Izumi-NakasekoH. ChibaK. GotoA. KambayashiR. MatsumotoA. TakeiY. KawaiS. SugiyamaA. Electropharmacological characterization of licorice using the human induced pluripotent stem cell-derived cardiomyocytes sheets and the chronic atrioventricular block dogs.Cardiovasc. Toxicol.2023235-620721710.1007/s12012‑023‑09795‑5 37249786
    [Google Scholar]
  57. ChenI.S. YasudaJ. NotomiT. NakamuraT.Y. Licorice metabolite 18β‐glycyrrhetinic acid activates G protein‐gated inwardly rectifying K + channels.Br. J. Pharmacol.2024181344746310.1111/bph.16228 37642133
    [Google Scholar]
  58. BeikA. JoukarS. NajafipourH. A review on plants and herbal components with antiarrhythmic activities and their interaction with current cardiac drugs.J. Tradit. Complement. Med.202010327528710.1016/j.jtcme.2020.03.002 32670823
    [Google Scholar]
  59. PanL. ZhangX.F. WeiW.S. ZhangJ. LiZ.Z. The cardiovascular protective effect and mechanism of calycosin and its derivatives.Chin. J. Nat. Med.2020181290791510.1016/S1875‑5364(20)60034‑6 33357721
    [Google Scholar]
  60. ChenG. XuH. XuT. DingW. ZhangG. HuaY. WuY. HanX. XieL. LiuB. ZhouY. Calycosin reduces myocardial fibrosis and improves cardiac function in post-myocardial infarction mice by suppressing TGFBR1 signaling pathways.Phytomedicine202210415427710.1016/j.phymed.2022.154277 35752078
    [Google Scholar]
  61. DingW. ChenG. DengS. ZengK. LinK. DengB. ZhangS. TanZ.B. XuY. ChenS. ChenJ. ChenT. TanY. ZhouY. ZhangJ. LiuB. Calycosin protects against oxidative stress‐induced cardiomyocyte apoptosis by activating aldehyde dehydrogenase 2.Phytother. Res.2023371354910.1002/ptr.7591 36059198
    [Google Scholar]
  62. XuH. QinJ. QinL. GuoC. YangB. Bioinformatics and In Silico findings uncover bio-targets of calycosin against heart failure and diabetes mellitus.Front. Endocrinol.20221379061910.3389/fendo.2022.790619 35898453
    [Google Scholar]
  63. HanJ. WangD. YuB. WangY. RenH. ZhangB. WangY. ZhengQ. Cardioprotection against ischemia/reperfusion by licochalcone B in isolated rat hearts.Oxid. Med. Cell. Longev.2014201411110.1155/2014/134862 25215172
    [Google Scholar]
  64. FurusawaJ. Funakoshi-TagoM. MashinoT. TagoK. InoueH. SonodaY. KasaharaT. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-κB p65 in LPS signaling pathway.Int. Immunopharmacol.20099449950710.1016/j.intimp.2009.01.031 19291859
    [Google Scholar]
  65. NakagawaT. YokozawaT. KimY.A. KangK.S. TanakaT. Activity of wen-pi-tang, and purified constituents of rhei rhizoma and glycyrrhizae radix against glucose-mediated protein damage.Am. J. Chin. Med.200533581782910.1142/S0192415X05003375 16265994
    [Google Scholar]
  66. KangM.R. ParkK.H. OhS.J. YunJ. LeeC.W. LeeM.Y. HanS.B. KangJ.S. Cardiovascular protective effect of glabridin: Implications in LDL oxidation and inflammation.Int. Immunopharmacol.201529291491810.1016/j.intimp.2015.10.020 26526087
    [Google Scholar]
  67. ZhangJ. WuX. ZhongB. LiaoQ. WangX. XieY. HeX. Review on the diverse biological effects of glabridin.Drug Des. Devel. Ther.202317153710.2147/DDDT.S385981 36647530
    [Google Scholar]
  68. MaK. LiuW. LiuQ. HuP. BaiL. YuM. YangY. Naringenin facilitates M2 macrophage polarization after myocardial ischemia–reperfusion by promoting nuclear translocation of transcription factor EB and inhibiting the NLRP3 inflammasome pathway.Environ. Toxicol.20233861405141910.1002/tox.23774 36988289
    [Google Scholar]
  69. KhaledS.S. SolimanH.A. Abdel-GabbarM. AhmedN.A. AttiaK.A.H.A. MahranH.A. El-NahassE.S. AhmedO.M. The preventive effects of naringin and naringenin against paclitaxel-induced nephrotoxicity and cardiotoxicity in male wistar rats.Evid. Based Complement. Alternat. Med.2022202211110.1155/2022/8739815 36212979
    [Google Scholar]
  70. XuN. LiuS. ZhangY. ChenY. ZuoY. TanX. LiaoB. LiP. FengJ. Oxidative stress signaling in the pathogenesis of diabetic cardiomyopathy and the potential therapeutic role of antioxidant naringenin.Redox Rep.2023281224672010.1080/13510002.2023.2246720 37747066
    [Google Scholar]
  71. LiY. HeB. ZhangC. HeY. XiaT. ZengC. Naringenin attenuates isoprenaline-induced cardiac hypertrophy by suppressing oxidative stress through the AMPK/NOX2/MAPK signaling pathway.Nutrients2023156134010.3390/nu15061340 36986070
    [Google Scholar]
  72. NyaneN.A. TlailaT.B. MalefaneT.G. NdwandweD.E. OwiraP.M.O. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights.Eur. J. Pharmacol.201780310311110.1016/j.ejphar.2017.03.042 28322845
    [Google Scholar]
  73. XuS. WuB. ZhongB. LinL. DingY. JinX. HuangZ. LinM. WuH. XuD. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis.Bioengineered2021122109241093410.1080/21655979.2021.1995994 34699317
    [Google Scholar]
  74. YangY. QiJ. ZhangM. ChenP. LiuY. SunX. ChuL. The cardioprotective effects and mechanisms of naringenin in myocardial ischemia based on network pharmacology and experiment verification.Front. Pharmacol.20221395455510.3389/fphar.2022.954555 36160433
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073293313240519161145
Loading
/content/journals/cchts/10.2174/0113862073293313240519161145
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test