Skip to content
2000
Volume 28, Issue 8
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Introduction

The concurrent presence of helminthiasis and bacterial diseases imposes a dual burden, worsening the challenges associated with each condition independently. This cohabitation intensifies the economic impact, creating a compounding effect on public health and economic well-being.

Methods

Phytochemical analysis of Extract (CAE) using infrared spectroscopy has revealed the presence of various functional groups. In addition, GC mass analysis has confirmed the presence of 26 active compounds. An assessment of the anthelmintic activity of CAE against mature earthworms has demonstrated comparable efficacy to the conventional anthelmintic, albendazole. The optimal dosage of 500 mg/ml has induced a rapid onset of paralysis (2.7 ± 0.5 min) and death (20.1 ± 1.7 min), outperforming albendazole (20 mg/mL) in terms of faster paralysis and death times (21.8 ± 1.1 and 30.14 ± 3.2 min, respectively). Structural modifications induced by CAE have been observed through light microscopy and Scanning Electron Microscopy (SEM). Control worms have exhibited normal body architecture, while CAE-treated worms have displayed size reduction, uniform body wall shrinkage, and increased cuticular thickness. Similar alterations have been observed in albendazole-treated worms.

Results

The antibacterial activity of CAE has been evaluated through a broth dilution assay, which has revealed a dose-response effect. At 6.25 mg/ml, CAE has exhibited 100% inhibitory action against both Gram-positive and Gram-negative bacteria. Significant differences in bacterial viability have been noted at lower concentrations, with no significant variation at 0.3906 mg/ml of CAE.

Conclusion

The findings have highlighted the multifaceted bioactivity of CAE, showcasing its potential as an anthelmintic agent and antimicrobial agent against a spectrum of bacterial strains. The observed structural alterations in treated worms have provided insights into the potential mechanisms underlying the anthelmintic effects.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073317626240911164733
2025-05-01
2025-09-27
Loading full text...

Full text loading...

References

  1. ReynoldsL.A. FinlayB.B. MaizelsR.M. Cohabitation in the intestine: Interactions among helminth parasites, bacterial microbiota, and host immunity.J. Immunol.201519594059406610.4049/jimmunol.1501432 26477048
    [Google Scholar]
  2. McSorleyH.J. MaizelsR.M. Helminth infections and host immune regulation.Clin. Microbiol. Rev.201225458560810.1128/CMR.05040‑11 23034321
    [Google Scholar]
  3. ChenH. CaoZ. LiuM. DiamondM.S. JinX. The impact of helminth-induced immunity on infection with bacteria or viruses.Vet. Res.20235418710.1186/s13567‑023‑01216‑3 37789420
    [Google Scholar]
  4. RussellS. The economic burden of illness for households in developing countries: A review of studies focusing on malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome.Am. J. Trop. Med. Hyg.2004712Suppl.14715510.4269/ajtmh.2004.71.147 15331831
    [Google Scholar]
  5. DoronS. GorbachS.L. Bacterial Infections: Overview.Elsevier2008273282
    [Google Scholar]
  6. ChenS. KuhnM. PrettnerK. BloomD.E. The macroeconomic burden of noncommunicable diseases in the United States: Estimates and projections.PLoS One20181311e020670210.1371/journal.pone.0206702 30383802
    [Google Scholar]
  7. World Health Organization. Immunization as an essential health service: Guiding principles for immunization activities during the COVID-19 pandemic and other times of severe disruption.2020Available from https://www.who.int/publications/i/item/immunization-as-an-essential-health-service-guiding-principles-for-immunization-activities-during-the-covid-19-pandemic-and-other-times-of-severe-disruption
  8. WolickiS.B. NuzzoJ.B. BlazesD.L. PittsD.L. IskanderJ.K. TapperoJ.W. Public health surveillance: At the core of the global health security agenda.Health Secur.201614318518810.1089/hs.2016.0002 27314658
    [Google Scholar]
  9. AkterK.N. KarmakarP. DasA. AnonnaS.N. ShomaS.A. SattarM.M. Evaluation of antibacterial and anthelmintic activities with total phenolic contents of Piper betel leaves.DOAJ201445320329
    [Google Scholar]
  10. ChaiJ.Y. JungB.K. HongS.J. Albendazole and Mebendazole as Anti-Parasitic and Anti-Cancer Agents: An Update.Korean J. Parasitol.202159318922510.3347/kjp.2021.59.3.189 34218593
    [Google Scholar]
  11. JayawardeneK.L.T.D. PalomboE.A. BoagP.R. Natural products are a promising source for anthelmintic drug discovery.Biomolecules20211110145710.3390/biom11101457 34680090
    [Google Scholar]
  12. RanasingheS. ArmsonA. LymberyA.J. ZahediA. AshA. Medicinal plants as a source of antiparasitics: An overview of experimental studies.Pathog. Glob. Health2023117653555310.1080/20477724.2023.2179454 36805662
    [Google Scholar]
  13. PandeyA. TripathiS. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug.J. Pharmacogn. Phytochem.201425115119
    [Google Scholar]
  14. EsheteM.A. MollaE.L. Cultural significance of medicinal plants in healing human ailments among Guji semi-pastoralist people, Suro Barguda District, Ethiopia.J. Ethnobiol. Ethnomed.20211716110.1186/s13002‑021‑00487‑4 34663365
    [Google Scholar]
  15. OlarteE.I. HerreraA.A. VillaseñorI.M. JacintoS.D. In vitro antitumor properties of an isolate from leaves of Cassia alata L.Asian Pac. J. Cancer Prev.20131453191319610.7314/APJCP.2013.14.5.3191 23803103
    [Google Scholar]
  16. KunduS. RoyS. LyndemL.M. Cassia alata L: potential role as anthelmintic agent against Hymenolepis diminuta.Parasitol. Res.201211131187119210.1007/s00436‑012‑2950‑6 22576858
    [Google Scholar]
  17. OttoR.B.D. AmesoS. OnegiB. Assessment of antibacterial activity of crude leaf and root extracts of Cassia alata against Neisseria gonorrhea.Afr. Health Sci.201514484084810.4314/ahs.v14i4.11 25834492
    [Google Scholar]
  18. SagniaB. FedeliD. CasettiR. MontesanoC. FalcioniG. ColizziV. Antioxidant and anti-inflammatory activities of extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva medicinal plants collected in Cameroon.PLoS One201498e10399910.1371/journal.pone.0103999 25090613
    [Google Scholar]
  19. AmerO.S.O. DkhilM.A. HikalW.M. Al-QuraishyS. Antioxidant and anti-inflammatory activities of pomegranate (Punica granatum) on Eimeria papillata-induced infection in mice.BioMed Res. Int.201520151710.1155/2015/219670 25654088
    [Google Scholar]
  20. Al-QuraishyS. QasemM.A.A. Al-ShaebiE.M. MurshedM. MaresM.M. DkhilM.A. Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella.J. King Saud Univ. Sci.20203232207221110.1016/j.jksus.2020.02.034
    [Google Scholar]
  21. KanthalL. DeyA. SatyavathiK. BhojarajuP. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC.Pharmacognosy Res.201461586110.4103/0974‑8490.122919 24497744
    [Google Scholar]
  22. AjaiyeobaE.O. OnochaP.A. OlarenwajuO.T. In vitro Anthelmintic Properties of Buchholzia coriaceae and Gynandropsis gynandra Extracts.Pharm. Biol.200139321722010.1076/phbi.39.3.217.5936
    [Google Scholar]
  23. DkhilM.A. Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract.Parasitol. Res.201311272639264610.1007/s00436‑013‑3430‑3 23609599
    [Google Scholar]
  24. RoyB. TandonV. Usefulness of tetramethylsilane in the preparation of helminths parasites for scanning electron microscopy.Riv. Parassitol.1991523207215
    [Google Scholar]
  25. AlqahtaniM.A. Al OthmanM.R. MohammedA.E. Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens.Sci. Rep.20201011678110.1038/s41598‑020‑73683‑z 33033304
    [Google Scholar]
  26. WainwrightC.L. TeixeiraM.M. AdelsonD.L. BragaF.C. BuenzE.J. CampanaP.R.V. DavidB. GlaserK.B. Harata-LeeY. HowesM-J.R. IzzoA.A. MaffiaP. MayerA.M.S. MazarsC. NewmanD.J. Nic LughadhaE. PáduaR.M. PimentaA.M.C. ParraJ.A.A. QuZ. ShenH. SpeddingM. WolfenderJ-L. Future directions for the discovery of natural product-derived immunomodulating drugs: an IUPHAR positional review.Pharmacol. Res.202217710607610.1016/j.phrs.2022.106076 35074524
    [Google Scholar]
  27. GhoshA.K. DasS.S. DeyM. Determination of anthelmintic activity of the leaf and bark extract of Tamarindus Indica linn.Indian J. Pharm. Sci.201173110410710.4103/0250‑474X.89768 22131633
    [Google Scholar]
  28. AnbuJ. MuraliA. SathiyaR. SaraswathyG.R. AzamthullaM. In vitro anthelmintic activity of leaf ethanolic extract of Cassia alata and Typha angustifolia.Sastech J.20151424144
    [Google Scholar]
  29. SomchitM.N. ReezalI. NurI.E. MutalibA.R. In vitro antimicrobial activity of ethanol and water extracts of Cassia alata.J. Ethnopharmacol.20038411410.1016/S0378‑8741(02)00146‑0 12499068
    [Google Scholar]
  30. WikaningtyasP. SukandarE.Y. The antibacterial activity of selected plants towards resistant bacteria isolated from clinical specimens.Asian Pac. J. Trop. Biomed.201661161910.1016/j.apjtb.2015.08.003
    [Google Scholar]
  31. TatsimoS.J.N. TamokouJ.D. TsagueV.T. LamshoftM. SarkarP. BagP.K. SpitellerM. Antibacterial-guided isolation of constituents from Senna alata leaves with a particular reference against Multi-Drug-Resistant Vibrio cholerae and Shigella flexneri.Int. J. Biol. Chem. Sci.2017111465310.4314/ijbcs.v11i1.4
    [Google Scholar]
  32. AlamM.T. KarimM.M. KhanS.N. Antibacterial activity of different organic extracts of achyranthes aspera and Cassia alata.J. Scienti. Res.20091239339810.3329/jsr.v1i2.2298
    [Google Scholar]
  33. El-MahmoodA.M. DoughariJ.H. Phytochemical screening and antibacterial evaluation of the leaf and root extracts of Cassia alata Linn.Afr. J. Pharm. Pharmacol.200827124129
    [Google Scholar]
  34. YonJ.A.L. LeeS.K. KengJ.W. ChowS-C. LiewK-B. TeoS-S. Shaik MossadeqW.M. MarriottP.J. AkowuahG.A. MingL.C. GohB.H. ChewY-L. Cassia alata (Linnaeus) Roxburgh for Skin: Natural Remedies for Atopic Dermatitis in Asia and Their Pharmacological Activities.Cosmetics2022101510.3390/cosmetics10010005
    [Google Scholar]
  35. YangD. WangT. LongM. LiP. Quercetin: Its main pharmacological activity and potential application in clinical medicine.Oxid. Med. Cell. Longev.2020202011310.1155/2020/8825387 33488935
    [Google Scholar]
  36. VidyadharS. SaiduluM. GopalT.K. ChamundeeswariD. RaoU. BanjiD. In vitro anthelmintic activity of the whole plant of Enicostemma littorale by using various extracts.Int. J. Appl. Biol. Pharm. Technol.20101311191125
    [Google Scholar]
  37. WangJ. LiC. WangE. Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network.Proc. Natl. Acad. Sci. USA2010107188195820010.1073/pnas.0910331107 20393126
    [Google Scholar]
  38. WahyuniS. SunarsoS. PrasetiyonoB. SatrijaF. Exploration of anthelmintic activity of Cassia spp. extracts on gastrointestinal nematodes of sheep.J. Adv. Vet. Anim. Res.20196213610.5455/javar.2019.f338 31453197
    [Google Scholar]
  39. AdnaikR.S. BhagwatD.A. RautI.D. MohiteS.K. MagdumC.S. Laxative and anthelmintic potential of Cassia alata flower extract.Res. J. Pharm. Technolo.20114198100
    [Google Scholar]
  40. SarojA. KumarA. SaeedS.T. SamadA. AlamM. First Report of Tagetes erecta Damping Off Caused by Ceratobasidium sp. from India.Plant Dis.2013979125110.1094/PDIS‑02‑13‑0145‑PDN 30722437
    [Google Scholar]
  41. SousaJ.P.A. SousaJ.M.S. RodriguesR.R.L. NunesT.A.L. MachadoY.A.A. AraujoA.C. da SilvaI.G.M. Barros-CordeiroK.B. BáoS.N. AlvesM.M.M. Mendonça-JuniorF.J.B. RodriguesK.A.F. Antileishmanial activity of 2-amino-thiophene derivative SB-200.Int. Immunopharmacol.202312311075010.1016/j.intimp.2023.110750 37536181
    [Google Scholar]
  42. LimK.S. KamP.C.A. Chlorhexidine--pharmacology and clinical applications.Anaesth. Intensive Care200836450251210.1177/0310057X0803600404 18714617
    [Google Scholar]
  43. TrousilJ. MatějkováJ. DaiY.S. UrbánekT. ŠloufM. ŠkoričM. NejedlýT. HrubýM. FangJ.Y. Nanocrystalline chloroxine possesses broad-spectrum antimicrobial activities and excellent skin tolerability in mice.Nanomedicine (Lond.)202217313714910.2217/nnm‑2021‑0323 35012369
    [Google Scholar]
  44. FarhanM. YounisA. Synthesis of new compounds of (5E,5‘E)-5,5’-([1,1′-biphenyl]-4,4′-diylbis(azanylylidene))bis (3,3-dimethylcyclohexan-1-one) in new laboratory methods.Egypt. J. Chem.2022651051552210.21608/ejchem.2022.120507.5404
    [Google Scholar]
  45. LeeJ.H. LeeJ. Indole as an intercellular signal in microbial communities.FEMS Microbiol. Rev.201034442644410.1111/j.1574‑6976.2009.00204.x 20070374
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073317626240911164733
Loading
/content/journals/cchts/10.2174/0113862073317626240911164733
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test