Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

This study emphasises lithium-ion batteries, which have been the subject of extensive research due to their wide range of benefits, including extended life cycle, minimal discharge, and high energy density. However, the temperature sensitivity of the batteries presents a notable obstacle that can negatively impact their performance and longevity when operating under extreme conditions. To overcome this challenge, implementing an effective battery thermal management system (BTMS) is imperative. Battery thermal management is crucial for ensuring the safety and longevity of lithium-ion batteries, especially in high-demand applications like electric vehicles. This comprehensive review explores a variety of BTMS technologies, including air-cooling methods, liquid-cooling techniques, heat pipes, and PCM materials. While air-cooled BTMS is a safe and straightforward design, its lower heat capacity and thermal efficiency limit is used to low-capacity batteries. However, forced air-cooled BTMS is an excellent solution for high charging/discharging rates, as air flows through channels within the battery packs to optimize cooling. Liquid-cooled BTMS also shows promise, although designers must ensure the sealing cover is secure to prevent leaks. Heat pipes (HP) offer a unique approach to controlling battery temperature, while Phase change materials (PCM) thermal management is notable for its ability to absorb significant heat by latent heat. Hybrid cooling combines fins, nanofluids, PCM, and microchannels-based cooling and can significantly enhance battery performance under high charging/discharging rates. Furthermore, lithium-ion batteries are extensively used in various applications, including the Electric vehicle industry. Keeping the lithium-ion battery temperature within the optimal range is important and is accomplished by a suitable BTMS. Different methods, such as air cooling, Liquid cooling, Heat pipe, and PCM materials, are used in BTMS. An effective thermal management system and efficient battery model are absolutely necessary. Each of the techniques in BTMS has its own benefits and drawbacks. The effectiveness of thermal management configurations and methods can vary. Thus, evaluating performance and optimal configuration is crucial before implementation. The review also considers recent advancements and patent filings that underscore innovation in BTMS technologies.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976331173241008095200
2024-11-07
2025-12-10
Loading full text...

Full text loading...

References

  1. MartinsT. BarretoA.C. SouzaF.M. SouzaA.M. Fossil fuels consumption and carbon dioxide emissions in G7 countries: Empirical evidence from ARDL bounds testing approach.Environ. Pollut.202129111809310.1016/j.envpol.2021.118093 34543957
    [Google Scholar]
  2. AfonsoC.F.A. Recent advances in building air conditioning systems.Appl. Therm. Eng.200626161961197110.1016/j.applthermaleng.2006.01.016
    [Google Scholar]
  3. AlbuquerqueF.D.B. MaraqaM.A. ChowdhuryR. MaugaT. AlzardM. Greenhouse gas emissions associated with road transport projects: Current status, benchmarking, and assessment tools.Transport Res. Procedia20202018203010.1016/j.trpro.2020.08.261
    [Google Scholar]
  4. FradeI. RibeiroA. GonçalvesG. AntunesA.P. Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal.Transp. Res. Rec.201122521919810.3141/2252‑12
    [Google Scholar]
  5. SamarasC. MeisterlingK. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: Implications for policy.Environ. Sci. Technol.20084293170317610.1021/es702178s 18522090
    [Google Scholar]
  6. GoodenoughJ.B. ParkK.S. The Li-ion rechargeable battery: A perspective.J. Am. Chem. Soc.201313541167117610.1021/ja3091438 23294028
    [Google Scholar]
  7. BrainM BryantCW PumphreyC SimónY How Batteries Work.HowStuffWorks2000https://electronics.howstuffworks.com/everyday-tech/battery.htm
    [Google Scholar]
  8. MishraA. MehtaA. BasuS. Electrode materials for lithium-ion batteries.Mater. Sci. Energy Technol.20181218218710.1016/j.mset.2018.08.001
    [Google Scholar]
  9. GrecoA. JiangX. CaoD. An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite.J. Power Sources2015278506810.1016/j.jpowsour.2014.12.027
    [Google Scholar]
  10. RahimiM. Lithium-ion batteries: Latest advances and prospects.Batteries202171810.3390/batteries7010008
    [Google Scholar]
  11. ChenY. EvansJ.W. Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application.J Electrochem Soc19931401833183810.1149/1.2220724
    [Google Scholar]
  12. SopianK. Wan DaudW.R. Challenges and future developments in proton exchange membrane fuel cells.Renew. Energy200631571972710.1016/j.renene.2005.09.003
    [Google Scholar]
  13. AbdelkareemM.A. MaghrabieH.M. Abo-KhalilA.G. Thermal management systems based on heat pipes for batteries in EVs/HEVs.J. Energy Storage20225110438410.1016/j.est.2022.104384
    [Google Scholar]
  14. KimJ. OhJ. LeeH. Review on battery thermal management system for electric vehicles.Appl. Therm. Eng.201914919221210.1016/j.applthermaleng.2018.12.020
    [Google Scholar]
  15. McGinnisR. CO2-to-fuels renewable gasoline and jet fuel can soon be price competitive with fossil fuels.Joule20204350951110.1016/j.joule.2020.01.002
    [Google Scholar]
  16. DudićB. Global development and sustainability of lithium-ion batteries in electric vehicles.Adv Eng Lett202432839010.46793/adeletters.2024.3.2.5
    [Google Scholar]
  17. LiuW. JiaZ. LuoY. XieW. DengT. Experimental investigation on thermal management of cylindrical Li-ion battery pack based on vapor chamber combined with fin structure.Appl. Therm. Eng.201916211427210.1016/j.applthermaleng.2019.114272
    [Google Scholar]
  18. WangQ. JiangB. LiB. YanY. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles.Renew. Sustain. Energy Rev.20166410612810.1016/j.rser.2016.05.033
    [Google Scholar]
  19. GambhireP. GanesanN. BasuS. A reduced order electrochemical thermal model for lithium ion cells.J. Power Sources20152908710110.1016/j.jpowsour.2015.04.179
    [Google Scholar]
  20. OrgW.E. HuM. WangJ. FuC. QinD. XieS. Study on cycle-life prediction model of lithium-ion battery for electric vehicles.Int. J. Electrochem. Sci.2016111577589
    [Google Scholar]
  21. LeeC.H. BaeS.J. JangM. A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation.J. Power Sources201529349851010.1016/j.jpowsour.2015.05.095
    [Google Scholar]
  22. TranM.K. MevawallaA. AzizA. PanchalS. XieY. FowlerM. A Review of lithium-ion battery thermal runaway modeling and diagnosis approaches.Processes (Basel)2022106119210.3390/pr10061192
    [Google Scholar]
  23. MaliV. SaxenaR. KumarK. KalamA. TripathiB. Review on battery thermal management systems for energy-efficient electric vehicles.Renew. Sustain. Energy Rev.202115111161110.1016/j.rser.2021.111611
    [Google Scholar]
  24. FengX. LuL. OuyangM. LiJ. HeX. A 3D thermal runaway propagation model for a large format lithium ion battery module.Energy201611519420810.1016/j.energy.2016.08.094
    [Google Scholar]
  25. AnZ. JiaL. DingY. DangC. LiX. A review on lithium-ion power battery thermal management technologies and thermal safety.J. Therm. Sci.201726539141210.1007/s11630‑017‑0955‑2
    [Google Scholar]
  26. HutchinsonR. Sandia report temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.2004Available from: https://digital.library.unt.edu/ark:/67531/metadc928048/ (accessed on 28-9-2024)
    [Google Scholar]
  27. FengL. ZhouS. LiY. Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling.J. Energy Storage201816849210.1016/j.est.2018.01.001
    [Google Scholar]
  28. LiuH. WeiZ. HeW. ZhaoJ. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review.Energy Convers. Manage.201715030433010.1016/j.enconman.2017.08.016
    [Google Scholar]
  29. GrecoA. Numerical and analytical modelling of battery thermal management using passive cooling systems.Thesis, Lancaster University, United Kingdom, November2015
    [Google Scholar]
  30. SabbahR. KizilelR. SelmanJ.R. Al-HallajS. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution.J. Power Sources2008182263063810.1016/j.jpowsour.2008.03.082
    [Google Scholar]
  31. ChenD. JiangJ. KimG.H. YangC. PesaranA. Comparison of different cooling methods for lithium ion battery cells.Appl. Therm. Eng.20169484685410.1016/j.applthermaleng.2015.10.015
    [Google Scholar]
  32. XiaG. CaoL. BiG. A review on battery thermal management in electric vehicle application.J. Power Sources20173679010510.1016/j.jpowsour.2017.09.046
    [Google Scholar]
  33. WangM. TengS. XiH. LiY. Cooling performance optimization of air-cooled battery thermal management system.Appl. Therm. Eng.202119511724210.1016/j.applthermaleng.2021.117242
    [Google Scholar]
  34. WuW. WangS. WuW. ChenK. HongS. LaiY. A critical review of battery thermal performance and liquid based battery thermal management.Energy Convers. Manage.201918226228110.1016/j.enconman.2018.12.051
    [Google Scholar]
  35. MalikM. DincerI. RosenM.A. Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles.Int. J. Energy Res.20164081011103110.1002/er.3496
    [Google Scholar]
  36. JaguemontJ. Van MierloJ. A comprehensive review of future thermal management systems for battery-electrified vehicles.J. Energy Storage20203110155110.1016/j.est.2020.101551
    [Google Scholar]
  37. SongZ. PanY. ChenH. ZhangT. Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review.Appl. Energy202130211757210.1016/j.apenergy.2021.117572
    [Google Scholar]
  38. ShiY. ZhangL. LiJ. Effect of operating parameters on the performance of thermally regenerative ammonia-based battery for low-temperature waste heat recovery.Chin. J. Chem. Eng.20213233534010.1016/j.cjche.2020.09.031
    [Google Scholar]
  39. ZhaoG. WangX. NegnevitskyM. LiC. An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles.Appl. Therm. Eng.202321911962610.1016/j.applthermaleng.2022.119626
    [Google Scholar]
  40. ZhouH. ZhouF. ShiS. YangW. SongZ. Influence of working temperature on the electrochemical characteristics of Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for Li-ion batteries.J. Alloys Compd.202084715641210.1016/j.jallcom.2020.156412
    [Google Scholar]
  41. WangY. ZhangX. ChenZ. Low temperature preheating techniques for lithium-ion batteries: Recent advances and future challenges.Appl. Energy202231311883210.1016/j.apenergy.2022.118832
    [Google Scholar]
  42. SunM. LiuT. LiM. A deep supercooling eutectic phase change material for low-temperature battery thermal management.J. Energy Storage20225010424010.1016/j.est.2022.104240
    [Google Scholar]
  43. MaS. JiangM. TaoP. Temperature effect and thermal impact in lithium-ion batteries: A review.Prog. Nat. Sci.201828665366610.1016/j.pnsc.2018.11.002
    [Google Scholar]
  44. ZhuG. WenK. LvW. Materials insights into low-temperature performances of lithium-ion batteries.J. Power Sources2015300294010.1016/j.jpowsour.2015.09.056
    [Google Scholar]
  45. NaY. SunX. FanA. CaiS. ZhengC. Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries.Chin. Chem. Lett.202132397398210.1016/j.cclet.2020.09.007
    [Google Scholar]
  46. ZhangD. TanC. OuT. ZhangS. LiL. JiX. Constructing advanced electrode materials for low-temperature lithium-ion batteries: A review.Energy Rep.202284525453410.1016/j.egyr.2022.03.130
    [Google Scholar]
  47. HouJ. YangM. WangD. ZhangJ. Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60°C.Adv. Energy Mater.20201018190415210.1002/aenm.201904152
    [Google Scholar]
  48. ZhangS.S. XuK. JowT.R. Electrochemical impedance study on the low temperature of Li-ion batteries.Electrochim. Acta20044971057106110.1016/j.electacta.2003.10.016
    [Google Scholar]
  49. IEEEAnnual Report.2016Available from: https://www.ieeer10.org/wp-content/uploads/2021/01/taipeisection-1.pdf (accessed on 28-9-2024)
    [Google Scholar]
  50. OuyangD. LiuJ. ChenM. WangJ. Investigation into the fire hazards of lithium-ion batteries under overcharging.Appl. Sci. (Basel)2017712131410.3390/app7121314
    [Google Scholar]
  51. YangK. AnJ. ChenS. Thermal behavior analysis of nickel/metal hydride battery during overcharging.Sci. China Chem.20105351177118210.1007/s11426‑010‑0153‑5
    [Google Scholar]
  52. RamadassP. HaranB. WhiteR. PopovB.N. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance.J. Power Sour20021122606613
    [Google Scholar]
  53. BeltJ.R. HoC.D. MotlochC.G. MillerT.J. DuongT.Q. A capacity and power fade study of Li-ion cells during life cycle testing.J. Power Sources2003123224124610.1016/S0378‑7753(03)00537‑8
    [Google Scholar]
  54. NingG. HaranB. PopovB.N. Capacity fade study of lithium-ion batteries cycled at high discharge rates.J. Power Sources20031171-216016910.1016/S0378‑7753(03)00029‑6
    [Google Scholar]
  55. LiaoZ. ZhangS. LiK. ZhangG. HabetlerT.G. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries.J. Power Sources201943622687910.1016/j.jpowsour.2019.226879
    [Google Scholar]
  56. AllenJ. Review of polymers in the prevention of thermal runaway in lithium-ion batteries.Energy Rep.2020202021722410.1016/j.egyr.2020.03.027
    [Google Scholar]
  57. AbrahamD.P. RothE.P. KosteckiR. McCarthyK. MacLarenS. DoughtyD.H. Diagnostic examination of thermally abused high-power lithium-ion cells.J. Power Sources2006161164865710.1016/j.jpowsour.2006.04.088
    [Google Scholar]
  58. XuB. LeeJ. KwonD. KongL. PechtM. Mitigation strategies for Li-ion battery thermal runaway: A review.Renew. Sustain. Energy Rev.202115011143710.1016/j.rser.2021.111437
    [Google Scholar]
  59. XuX.M. LiR.Z. ZhaoL. HuD.H. WangJ. Probing the thermal runaway triggering process within a lithium-ion battery cell with local heating.AIP Adv.201881010532310.1063/1.5039841
    [Google Scholar]
  60. WuW. WuW. WangS. Thermal management optimization of a prismatic battery with shape-stabilized phase change material.Int. J. Heat Mass Transf.201812196797710.1016/j.ijheatmasstransfer.2018.01.062
    [Google Scholar]
  61. FengX. XuC. HeX. WangL. ZhangG. OuyangM. Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity.J. Clean. Prod.201820544746210.1016/j.jclepro.2018.09.003
    [Google Scholar]
  62. RobinsonJ.B. DarrJ.A. EastwoodD.S. Non-uniform temperature distribution in Li-ion batteries during discharge - A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach.J. Power Sources2014252515710.1016/j.jpowsour.2013.11.059
    [Google Scholar]
  63. CapataR. CalabriaA. High-performance electric/hybrid vehicle—environmental, economic and technical assessments of electrical accumulators for sustainable mobility.Energies2022156213410.3390/en15062134
    [Google Scholar]
  64. TeteP.R. GuptaM.M. JoshiS.S. Developments in battery thermal management systems for electric vehicles: A technical review.J. Energy Storage20213510225510.1016/j.est.2021.102255
    [Google Scholar]
  65. YueQ.L. HeC.X. JiangH.R. WuM.C. ZhaoT.S. A hybrid battery thermal management system for electric vehicles under dynamic working conditions.Int. J. Heat Mass Transf.202116412052810.1016/j.ijheatmasstransfer.2020.120528
    [Google Scholar]
  66. JiangZ.Y. LiH.B. QuZ.G. ZhangJ.F. Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions.Int. J. Hydrogen Energy202247159428945910.1016/j.ijhydene.2022.01.008
    [Google Scholar]
  67. SiddiqueA.R.M. MahmudS. HeystB.V. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations.J. Power Sources201840122423710.1016/j.jpowsour.2018.08.094
    [Google Scholar]
  68. ZhaoC. ZhangB. ZhengY. HuangS. YanT. LiuX. Hybrid battery thermal management system in electrical vehicles: A review.Energies20201323625710.3390/en13236257
    [Google Scholar]
  69. ParkH. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles.J. Power Sources2013239303610.1016/j.jpowsour.2013.03.102
    [Google Scholar]
  70. FathabadiH. A novel design including cooling media for Lithium-ion batteries pack used in hybrid and electric vehicles.J. Power Sources201424549550010.1016/j.jpowsour.2013.06.160
    [Google Scholar]
  71. ChoiY.S. KangD.M. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles.J. Power Sources201427027328010.1016/j.jpowsour.2014.07.120
    [Google Scholar]
  72. ChoiJ. JeongM. YooJ. SeoM. A new CPU cooler design based on an active cooling heatsink combined with heat pipes.Appl. Therm. Eng.201244505610.1016/j.applthermaleng.2012.03.027
    [Google Scholar]
  73. FanL. KhodadadiJ.M. PesaranA.A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles.J. Power Sources201323830131210.1016/j.jpowsour.2013.03.050
    [Google Scholar]
  74. Al-ZareerM. DincerI. RosenM.A. A review of novel thermal management systems for batteries.Int. J. Energy Res.201842103182320510.1002/er.4095
    [Google Scholar]
  75. PangX. LeeH. RongJ. ZhuQ. XuS. Self‐thermal management in filtered selenium - terminated mxene films for flexible safe batteries.Small2024230958010.1002/smll.202309580 38705865
    [Google Scholar]
  76. ChenK. ChenY. LiZ. YuanF. WangS. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system.Int. J. Heat Mass Transf.201812739340110.1016/j.ijheatmasstransfer.2018.06.131
    [Google Scholar]
  77. LuZ. YuX. WeiL. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement.Appl. Therm. Eng.2018136284010.1016/j.applthermaleng.2018.02.080
    [Google Scholar]
  78. ZhangJ. WuX. ChenK. ZhouD. SongM. Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems.J. Power Sources202149022953910.1016/j.jpowsour.2021.229539
    [Google Scholar]
  79. LiX. HeF. ZhangG. HuangQ. ZhouD. Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system.Appl. Therm. Eng.201914686688010.1016/j.applthermaleng.2018.10.061
    [Google Scholar]
  80. SaechanP. DhuchakallayaI. Numerical study on the air-cooled thermal management of lithium-ion battery pack for electrical vehicles.Energy Rep.202281264127010.1016/j.egyr.2021.11.089
    [Google Scholar]
  81. WangS. LiK. TianY. WangJ. WuY. JiS. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow.Appl. Therm. Eng.201915244545410.1016/j.applthermaleng.2019.02.061
    [Google Scholar]
  82. FanY. BaoY. LingC. ChuY. TanX. YangS. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries.Appl. Therm. Eng.20191559610910.1016/j.applthermaleng.2019.03.157
    [Google Scholar]
  83. WangM. HungT.C. XiH. Numerical study on performance enhancement of the air-cooled battery thermal management system by adding parallel plates.Energies20211411309610.3390/en14113096
    [Google Scholar]
  84. ZhangF. LinA. WangP. LiuP. Optimization design of a parallel air-cooled battery thermal management system with spoilers.Appl. Therm. Eng.202118211606210.1016/j.applthermaleng.2020.116062
    [Google Scholar]
  85. PesaranAA Battery thermal management in evs and hevs: Issues and solutions.Available from: https://www.researchgate.net/publi-cation/237250969_Battery_Thermal_Management_in_EVs_and_HEVs_Issues_and_Solutions (accessed on 28-9-2024)
  86. LaiY. WuW. ChenK. WangS. XinC. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack.Int. J. Heat Mass Transf.201914411858110.1016/j.ijheatmasstransfer.2019.118581
    [Google Scholar]
  87. LvY. ZhouD. YangX. LiuX. LiX. ZhangG. Experimental investigation on a novel liquid-cooling strategy by coupling with graphene-modified silica gel for the thermal management of cylindrical battery.Appl. Therm. Eng.201915911388510.1016/j.applthermaleng.2019.113885
    [Google Scholar]
  88. GiulianoM.R. PrasadA.K. AdvaniS.G. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries.J. Power Sources201221634535210.1016/j.jpowsour.2012.05.074
    [Google Scholar]
  89. Al HallajS. SelmanJ.R. A novel thermal management system for electric vehicle batteries using phase-change material.J. Electrochem. Soc.2000147323110.1149/1.1393888
    [Google Scholar]
  90. KizilelR. LateefA. SabbahR. FaridM.M. SelmanJ.R. Al-HallajS. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature.J. Power Sources2008183137037510.1016/j.jpowsour.2008.04.050
    [Google Scholar]
  91. WuW. WuW. WangS. Thermal optimization of composite PCM based large-format lithium-ion battery modules under extreme operating conditions.Energy Convers. Manage.2017153223310.1016/j.enconman.2017.09.068
    [Google Scholar]
  92. DingY. JiH. WeiM. LiuR. Effect of liquid cooling system structure on lithium-ion battery pack temperature fields.Int. J. Heat Mass Transf.202218312217810.1016/j.ijheatmasstransfer.2021.122178
    [Google Scholar]
  93. GungorS. CetkinE. LorenteS. Canopy-to-canopy liquid cooling for the thermal management of lithium-ion batteries, a constructal approach.Int. J. Heat Mass Transf.202218212191810.1016/j.ijheatmasstransfer.2021.121918
    [Google Scholar]
  94. DingY. WeiM. LiuR. Channel parameters for the temperature distribution of a battery thermal management system with liquid cooling.Appl. Therm. Eng.202118611649410.1016/j.applthermaleng.2020.116494
    [Google Scholar]
  95. XieL. HuangY. LaiH. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module.Appl. Therm. Eng.202017811559910.1016/j.applthermaleng.2020.115599
    [Google Scholar]
  96. YatesM. AkramiM. JavadiA.A. Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries.J. Energy Storage20213310091310.1016/j.est.2019.100913
    [Google Scholar]
  97. ShengL. ZhangH. SuL. Effect analysis on thermal profile management of a cylindrical lithium-ion battery utilizing a cellular liquid cooling jacket.Energy202122011972510.1016/j.energy.2020.119725
    [Google Scholar]
  98. ZhaoC. CaoW. DongT. JiangF. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow.Int. J. Heat Mass Transf.201812075176210.1016/j.ijheatmasstransfer.2017.12.083
    [Google Scholar]
  99. PatilM.S. SeoJ.H. PanchalS. JeeS.W. LeeM.Y. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate.Int. J. Heat Mass Transf.202015511972810.1016/j.ijheatmasstransfer.2020.119728
    [Google Scholar]
  100. MonikaK. ChakrabortyC. RoyS. DindaS. SinghS.A. DattaS.P. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles.J. Energy Storage20213510230110.1016/j.est.2021.102301
    [Google Scholar]
  101. ShangZ. QiH. LiuX. OuyangC. WangY. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system.Int. J. Heat Mass Transf.2019130334110.1016/j.ijheatmasstransfer.2018.10.074
    [Google Scholar]
  102. PanchalS. KhasowR. DincerI. Agelin-ChaabM. FraserR. FowlerM. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery.Appl. Therm. Eng.2017122809010.1016/j.applthermaleng.2017.05.010
    [Google Scholar]
  103. WangH. TaoT. XuJ. MeiX. LiuX. GouP. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries.Appl. Therm. Eng.202017811559110.1016/j.applthermaleng.2020.115591
    [Google Scholar]
  104. LiuJ. LiH. LiW. ShiJ. WangH. ChenJ. Thermal characteristics of power battery pack with liquid-based thermal management.Appl. Therm. Eng.202016411442110.1016/j.applthermaleng.2019.114421
    [Google Scholar]
  105. MohamedS.A. Al-SulaimanF.A. IbrahimN.I. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems.Renew. Sustain. Energy Rev.2017701072108910.1016/j.rser.2016.12.012
    [Google Scholar]
  106. MaghrabieH.M. ElsaidK. SayedE.T. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review.J. Energy Storage20224810393710.1016/j.est.2021.103937
    [Google Scholar]
  107. JaguemontJ. OmarN. Van den BosscheP. MierloJ. Phase-change materials (PCM) for automotive applications: A review.Appl. Therm. Eng.201813230832010.1016/j.applthermaleng.2017.12.097
    [Google Scholar]
  108. YueQ.L. HeC.X. WuM.C. ZhaoT.S. Advances in thermal management systems for next-generation power batteries.Int. J. Heat Mass Transf.202118112185310.1016/j.ijheatmasstransfer.2021.121853
    [Google Scholar]
  109. WuW. YangX. ZhangG. An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack.Energy201611390991610.1016/j.energy.2016.07.119
    [Google Scholar]
  110. LiW.Q. QuZ.G. HeY.L. TaoY.B. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials.J. Power Sources201425591510.1016/j.jpowsour.2014.01.006
    [Google Scholar]
  111. ZhangZ. LiY. Experimental study of a passive thermal management system using copper foam-paraffin composite for lithium ion batteries.Energy Procedia20171422403240810.1016/j.egypro.2017.12.174
    [Google Scholar]
  112. LuoX. GuoQ. LiX. Experimental investigation on a novel phase change material composites coupled with graphite film used for thermal management of lithium-ion batteries.Renew. Energy20201452046205510.1016/j.renene.2019.07.112
    [Google Scholar]
  113. LingZ. LiS. CaiC. LinS. FangX. ZhangZ. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability.Appl. Therm. Eng.202119311700210.1016/j.applthermaleng.2021.117002
    [Google Scholar]
  114. HuangQ. LiX. ZhangG. pouch lithium battery with a passive thermal management system using form-stable and flexible composite phase change materials.ACS Appl. Energy Mater.2021421978199210.1021/acsaem.0c03116
    [Google Scholar]
  115. ZhangJ. LiX. ZhangG. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system.J. Power Sources202048022911610.1016/j.jpowsour.2020.229116
    [Google Scholar]
  116. El IdiM.M. KarkriM. Abdou TankariM. A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations.Int. J. Heat Mass Transf.202116912089410.1016/j.ijheatmasstransfer.2020.120894
    [Google Scholar]
  117. ZhangX. LiuC. RaoZ. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material.J. Clean. Prod.201820191692410.1016/j.jclepro.2018.08.076
    [Google Scholar]
  118. ZhangJ. LiX. ZhangG. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management.Energy Convers. Manage.202020411231910.1016/j.enconman.2019.112319
    [Google Scholar]
  119. LuoM. SongJ. LingZ. ZhangZ. FangX. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40°C to 50°C.Mater. Today Energy20212010065210.1016/j.mtener.2021.100652
    [Google Scholar]
  120. BroughD. RamosJ. DelpechB. JouharaH. Development and validation of a TRNSYS type to simulate heat pipe heat exchangers in transient applications of waste heat recovery.Int J Thermofluids2021910005610.1016/j.ijft.2020.100056
    [Google Scholar]
  121. GuichetV. KhordehgahN. JouharaH. Experimental investigation and analytical prediction of a multi-channel flat heat pipe thermal performance.Int J Thermofluids20205-610003810.1016/j.ijft.2020.100038
    [Google Scholar]
  122. GuichetV. JouharaH. Condensation, evaporation and boiling of falling films in wickless heat pipes (two-phase closed thermosyphons): A critical review of correlations.Int J Thermofluids20201-210000110.1016/j.ijft.2019.100001
    [Google Scholar]
  123. JouharaH. DelpechB. BennettR. Heat pipe based battery thermal management: Evaluating the potential of two novel battery pack integrations.Int J Thermofluids20211210011510.1016/j.ijft.2021.100115
    [Google Scholar]
  124. YangX. YanY.Y. MullenD. Recent developments of lightweight, high performance heat pipes.Appl. Therm. Eng.201233-3411410.1016/j.applthermaleng.2011.09.006
    [Google Scholar]
  125. BehiH. KarimiD. BehiM. Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles.J. Energy Storage20203210189310.1016/j.est.2020.101893
    [Google Scholar]
  126. AbdelkareemM.A. MaghrabieH.M. SayedE.T. Heat pipe-based waste heat recovery systems: Background and applications.Therm. Sci. Eng. Prog.20222910122110.1016/j.tsep.2022.101221
    [Google Scholar]
  127. BuidinT.I.C. MariasiuF. Battery thermal management systems: Current status and design approach of cooling technologies.Energies20211416487910.3390/en14164879
    [Google Scholar]
  128. JouharaH. BertrandD. AxcellB. Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery.Energy202122312003710.1016/j.energy.2021.120037
    [Google Scholar]
  129. RemeliM.F. DateA. OrrB. Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system.Energy Convers. Manage.201611114715710.1016/j.enconman.2015.12.032
    [Google Scholar]
  130. BroughD. MezquitaA. FerrerS. An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger.Energy202020811832510.1016/j.energy.2020.118325
    [Google Scholar]
  131. GuichetV. DelpechB. KhordehgahN. JouharaH. Experimental and theoretical investigation of the influence of heat transfer rate on the thermal performance of a multi-channel flat heat pipe.Energy202225012380410.1016/j.energy.2022.123804
    [Google Scholar]
  132. JouharaH. AlmahmoudS. BroughD. Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger.Energy202121911962410.1016/j.energy.2020.119624
    [Google Scholar]
  133. EsenM. EsenH. Experimental investigation of a two-phase closed thermosyphon solar water heater.Sol. Energy200579545946810.1016/j.solener.2005.01.001
    [Google Scholar]
  134. RaoZ. WangS. WuM. LinZ. LiF. Experimental investigation on thermal management of electric vehicle battery with heat pipe.Energy Convers. Manage.201365929710.1016/j.enconman.2012.08.014
    [Google Scholar]
  135. WangQ. JiangB. XueQ.F. Experimental investigation on EV battery cooling and heating by heat pipes.Appl. Therm. Eng.201588546010.1016/j.applthermaleng.2014.09.083
    [Google Scholar]
  136. ZouH. WangW. ZhangG. QinF. TianC. YanY. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle.Energy Convers. Manage.2016118889510.1016/j.enconman.2016.03.066
    [Google Scholar]
  137. JouharaH. SereyN. KhordehgahN. BennettR. AlmahmoudS. LesterS.P. Investigation, development and experimental analyses of a heat pipe based battery thermal management system.Int J Thermofluids20201-210000410.1016/j.ijft.2019.100004
    [Google Scholar]
  138. LeiS. ShiY. ChenG. Heat-pipe based spray-cooling thermal management system for lithium-ion battery: Experimental study and optimization.Int. J. Heat Mass Transf.202016312049410.1016/j.ijheatmasstransfer.2020.120494
    [Google Scholar]
  139. AlihosseiniA. ShafaeeM. Experimental study and numerical simulation of a lithium-ion battery thermal management system using a heat pipe.J. Energy Storage20213910261610.1016/j.est.2021.102616
    [Google Scholar]
  140. WeiT. XiaomingX. HuaD. YaohuaG. JichengL. HongchaoW. Sensitivity analysis of the battery thermal management system with a reciprocating cooling strategy combined with a flat heat pipe.ACS Omega20205148258826710.1021/acsomega.0c00552 32309736
    [Google Scholar]
  141. WangL. ZhaoY. QuanZ. LiangJ. Investigation of thermal management of lithium-ion battery based on micro heat pipe array.J. Energy Storage20213910262410.1016/j.est.2021.102624
    [Google Scholar]
  142. MbuluH. LaoonualY. WongwisesS. Experimental study on the thermal performance of a battery thermal management system using heat pipes.Case Stud. Therm. Eng.20212610102910.1016/j.csite.2021.101029
    [Google Scholar]
  143. BernagozziM. GeorgoulasA. MichéN. RouaudC. MarengoM. A novel loop heat pipe based cooling system for battery packs in electric vehicles.Proc IEEE Transp Electr Conf Expo (ITEC)202025125610.1109/ITEC48692.2020.9161607
    [Google Scholar]
  144. YeX. ZhaoY. QuanZ. Thermal management system of lithium-ion battery module based on micro heat pipe array.Int. J. Energy Res.201842264865510.1002/er.3847
    [Google Scholar]
  145. HongS. ZhangX. WangS. ZhangZ. Experimental investigation on the characters of ultra-thin loop heat pipe applied in BTMS.Energy Procedia2015753192320010.1016/j.egypro.2015.07.669
    [Google Scholar]
  146. RaoZ. HuoY. LiuX. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery.Exp. Therm. Fluid Sci.201457202610.1016/j.expthermflusci.2014.03.017
    [Google Scholar]
  147. LiuF. HuangL. DuanX. A facile method to prepare noble metal nanoparticles modified Self-Assembly (SAM) electrode.J. Exp. Nanosci.201813111010.1080/17458080.2017.1373202
    [Google Scholar]
  148. DanD. YaoC. ZhangY. ZhangH. ZengZ. XuX. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model.Appl. Therm. Eng.201916211418310.1016/j.applthermaleng.2019.114183
    [Google Scholar]
  149. YeY. ShiY. SawL.H. TayA.A.O. Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs.Int. J. Heat Mass Transf.20169289390310.1016/j.ijheatmasstransfer.2015.09.052
    [Google Scholar]
  150. TranT.H. HarmandS. DesmetB. FilangiS. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery.Appl. Therm. Eng.201463255155810.1016/j.applthermaleng.2013.11.048
    [Google Scholar]
  151. El IdiM.M. KarkriM. Abdou TankariM. VincentS. Hybrid cooling based battery thermal management using composite phase change materials and forced convection.J. Energy Storage20214110294610.1016/j.est.2021.102946
    [Google Scholar]
  152. Mehrabi-KermaniM. HoushfarE. AshjaeeM. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection.Int. J. Therm. Sci.2019141476110.1016/j.ijthermalsci.2019.03.026
    [Google Scholar]
  153. HekmatS. MolaeimaneshG.R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: An experimental investigation.Appl. Therm. Eng.202016611475910.1016/j.applthermaleng.2019.114759
    [Google Scholar]
  154. KongD. PengR. PingP. DuJ. ChenG. WenJ. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures.Energy Convers. Manage.202020411228010.1016/j.enconman.2019.112280
    [Google Scholar]
  155. YangW. ZhouF. ZhouH. WangQ. KongJ. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling.Appl. Therm. Eng.202017511533110.1016/j.applthermaleng.2020.115331
    [Google Scholar]
  156. ZhaoR. GuJ. LiuJ. Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design.Energy201713581182210.1016/j.energy.2017.06.168
    [Google Scholar]
  157. QinP. LiaoM. ZhangD. LiuY. SunJ. WangQ. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material.Energy Convers. Manage.20191951371138110.1016/j.enconman.2019.05.084
    [Google Scholar]
  158. WangS. LiY. LiY.Z. A forced gas cooling circle packaging with liquid cooling plate for the thermal management of Li-ion batteries under space environment.Appl. Therm. Eng.201712392993910.1016/j.applthermaleng.2017.05.159
    [Google Scholar]
  159. ZhangC. XiaZ. WangB. A Li-ion battery thermal management system combining a heat pipe and thermoelectric cooler.Energies202013484110.3390/en13040841
    [Google Scholar]
  160. SongW. BaiF. ChenM. LinS. FengZ. LiY. Thermal management of standby battery for outdoor base station based on the semiconductor thermoelectric device and phase change materials.Appl. Therm. Eng.201813720321710.1016/j.applthermaleng.2018.03.072
    [Google Scholar]
  161. ZhangW. QiuJ. YinX. WangD. A novel heat pipe assisted separation type battery thermal management system based on phase change material.Appl. Therm. Eng.202016511457110.1016/j.applthermaleng.2019.114571
    [Google Scholar]
  162. ZhaoJ. LvP. RaoZ. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack.Exp. Therm. Fluid Sci.20178218218810.1016/j.expthermflusci.2016.11.017
    [Google Scholar]
  163. YuanX. TangA. ShanC. LiuZ. LiJ. Experimental investigation on thermal performance of a battery liquid cooling structure coupled with heat pipe.J. Energy Storage20203210198410.1016/j.est.2020.101984
    [Google Scholar]
  164. LiuZ. HuangJ. CaoM. JiangG. YanQ. HuJ. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling.Appl. Therm. Eng.202118511641510.1016/j.applthermaleng.2020.116415
    [Google Scholar]
  165. MolaeimaneshG.R. Mirfallah NasiryS.M. DahmardehM. Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries.Appl. Therm. Eng.202018111602810.1016/j.applthermaleng.2020.116028
    [Google Scholar]
  166. LingZ. WangF. FangX. GaoX. ZhangZ. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling.Appl. Energy201514840340910.1016/j.apenergy.2015.03.080
    [Google Scholar]
  167. LyuY. SiddiqueA.R.M. MajidS.H. BiglarbegianM. GadsdenS.A. MahmudS. Electric vehicle battery thermal management system with thermoelectric cooling.Energy Rep.2019582282710.1016/j.egyr.2019.06.016
    [Google Scholar]
  168. ZhaoR. GuJ. LiuJ. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries.J. Power Sources20152731089109710.1016/j.jpowsour.2014.10.007
    [Google Scholar]
  169. LuM. ZhangX. JiJ. XuX. ZhangY. Research progress on power battery cooling technology for electric vehicles.J. Energy Storage20202710115510.1016/j.est.2019.101155
    [Google Scholar]
  170. Aswin KarthikC. KalitaP. CuiX. PengX. Thermal management for prevention of failures of lithium ion battery packs in electric vehicles: A review and critical future aspects.Energy Storage202023e13710.1002/est2.137
    [Google Scholar]
  171. ShahjalalM. ShamsT. IslamM.E. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues.J. Energy Storage20213910251810.1016/j.est.2021.102518
    [Google Scholar]
  172. ChiR.G. RhiS.H. Oscillating heat pipe cooling system of electric vehicle’s Li-ion batteries with direct contact bottom cooling mode.Energies2019129169810.3390/en12091698
    [Google Scholar]
  173. Harris W.P., Vite Q.W.B., W. Greene H. Systems and methods for battery.US Patent 10,998,590 B22021
    [Google Scholar]
/content/journals/meng/10.2174/0122127976331173241008095200
Loading
/content/journals/meng/10.2174/0122127976331173241008095200
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test