Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

The success of the fourth and upcoming fifth industrial resolution lies majorly in automation and robotics. Industrial robots perform various manufacturing-related tasks due to their autonomy, flexibility, and autonomous work in a complex environment. Applications including drilling, material transfer, loading and unloading machines, processing, assembling, and inspection, welding, spray painting, machining, and so on are common. The present work comprehensively summarizes all the pertinent work related to the industrial robot based on extensive literature review and patents, such as inverse kinematics problems, robot design, programming, scheduling, motion planning, and trajectory planning. In addition, the present work discusses various optimization algorithms employed in industrial robots. Furthermore, several recommendations for future research have been addressed.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976326652241018114550
2024-11-05
2025-12-19
Loading full text...

Full text loading...

References

  1. GrooverM.P. Automation, production systems, and computer integrated manufacturing.2016Pearson Education India
    [Google Scholar]
  2. ShindeV.B. PawarP.J. Application of meta heuristic algorithms for optimization of inverse kinematics of a 5D robotic manipulator.Techno-Societal.2021ChamSpringer International Publishing53754610.1007/978‑3‑030‑69925‑3_53
    [Google Scholar]
  3. MaciejewskiA.A. KleinC.A. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments.Int. J. Robot. Res.19854310911710.1177/027836498500400308
    [Google Scholar]
  4. WangK BjørkeØ. An efficient inverse kinematic solution with a closed form for five-degree-of-freedom robot manipulators with a non-spherical wrist.CIRP Annals - Manufacturing Technology19893836536810.1016/S0007‑8506(07)62724‑3
    [Google Scholar]
  5. ParkerJ.K. KhoogarA.R. GoldbergD.E. Inverse kinematics of redundant robots using genetic algorithms.Proceedings, 1989 International Conference on Robotics and AutomationScottsdale, AZ, USA1989271276vol.1,10.1109/ROBOT.1989.100000
    [Google Scholar]
  6. WangL.C.T. ChenC.C. A combined optimization method for solving the inverse kinematics problems of mechanical manipulators.IEEE Trans. Robot. Autom.19917448949910.1109/70.86079
    [Google Scholar]
  7. SongY.Y. LinL.I. Optimization of cycle time and kinematic energy in a robot/conveyor system with variable pick-up locations.Int. J. Prod. Res.19933171541155610.1080/00207549308956808
    [Google Scholar]
  8. ManochaD. CannyJ.F. Efficient inverse kinematics for general 6R manipulators.IEEE Trans. Robot. Autom.199410564865710.1109/70.326569
    [Google Scholar]
  9. NearchouA.C. AspragathosN.A. Application of genetic algorithms to point-to-point motion of redundant manipulators.Mechanism Mach. Theory199631326127010.1016/0094‑114X(95)00074‑9
    [Google Scholar]
  10. MaoZ. HsiaT.C. Obstacle avoidance inverse kinematics solution of redundant robots by neural networks.Robotica199715131010.1017/S0263574797000027
    [Google Scholar]
  11. ChenC.Y. HerM.G. HungY.C. KarkoubM. Approximating a robot inverse kinematics solution using fuzzy logic tuned by genetic algorithms.Int. J. Adv. Manuf. Technol.200220537538010.1007/s001700200166
    [Google Scholar]
  12. KökerR. ÖzC. ÇakarT. EkizH. A study of neural network based inverse kinematics solution for a three-joint robot.Robot. Auton. Syst.2004493-422723410.1016/j.robot.2004.09.010
    [Google Scholar]
  13. TabandehS. ClarkC. MelekW. A genetic algorithm approach to solve for multiple solutions of inverse kinematics using adaptive niching and clustering.IEEE Congress on Evolutionary Computation, CEC 2006Vancouver, BC20061815182210.1109/CEC.2006.1688527
    [Google Scholar]
  14. HasanA.T. HamoudaA.M.S. IsmailN. Al-AssadiH.M.A.A. An adaptive-learning algorithm to solve the inverse kinematics problem of a 6 D.O.F serial robot manipulator.Adv. Eng. Softw.200637743243810.1016/j.advengsoft.2005.09.010
    [Google Scholar]
  15. KalraP. MahapatraP.B. AggarwalD.K. An evolutionary approach for solving the multimodal inverse kinematics problem of industrial robots.Mechanism Mach. Theory200641101213122910.1016/j.mechmachtheory.2005.11.005
    [Google Scholar]
  16. ValsamosH. NektariosT. AspragathosN.A. Optimal placement of path following robot task using Genetic Algorithms.IFAC2006391513213710.3182/20060906‑3‑IT‑2910.00024
    [Google Scholar]
  17. JianX. WenyiQ. BinL. ChengL. Inverse kinematics problem for 6-DOF space manipulator based on the theory of screws.IEEE International Conference on Robotics and Biomimetics,ROBIO,. Sanya, China200716591663
    [Google Scholar]
  18. PhamD.T. CastellaniM. FahmyA.A. Learning the inverse kinematics of a robot manipulator using the Bees Algorithm.IEEE International Conference on Industrial Informatics (INDIN).Daejeon, Korea (South)200849349810.1109/INDIN.2008.4618151
    [Google Scholar]
  19. AlavandarS. NigamM.J. Neuro-fuzzy based approach for inverse kinematics solution of industrial robot manipulators.Int. J. Comput. Commun. Control20083322423410.15837/ijccc.2008.3.2391
    [Google Scholar]
  20. DutraMS SalcedoIL MargaritaL DiazP New technique for inverse kinematics problem using simulated annealing.international conference on engineering optimization, Rio de Janeiro, Brazil, 2008, p. 1–5
    [Google Scholar]
  21. RoutB.K. MittalR.K. Optimal manipulator parameter selection using evolutionary optimization technique.Inverse Probl. Sci. Eng.200917791593510.1080/17415970902916953
    [Google Scholar]
  22. HasanA.T. IsmailN. HamoudaA.M.S. ArisI. MarhabanM.H. Al-AssadiH.M.A.A. Artificial neural network-based kinematics Jacobian solution for serial manipulator passing through singular configurations.Adv. Eng. Softw.201041235936710.1016/j.advengsoft.2009.06.006
    [Google Scholar]
  23. WangJ. LiY. ZhaoX. Inverse kinematics and control of a 7-DOF redundant manipulator based on the closed-loop Algorithm.Int. J. Adv. Robot. Syst.2010743710.5772/10495
    [Google Scholar]
  24. SunQ. ZouX. ZouH. ChenY. CaiW. Intelligent design and kinematics analysis of picking robot manipulator.International Conference on Measuring Technology and Mechatronics Automation, ICMTMA.Changsha, China201049349610.1109/ICMTMA.2010.266
    [Google Scholar]
  25. LiuW. LuoY. YangT. ShiZ. FuM. Numerical study on inverse kinematic analysis of 5R serial robot.In Proceedings of the 2010 International Forum on Information Technology and Applications, IEEE Computer Society. USA, 2010, 155–158
    [Google Scholar]
  26. RoutB.K. MittalR.K. Optimal design of manipulator parameter using evolutionary optimization techniques.Robotica201028338139510.1017/S0263574709005700
    [Google Scholar]
  27. NektariosA. AspragathosN.A. Optimal location of a general position and orientation end-effector’s path relative to manipulator’s base, considering velocity performance.Robot. Comput.-Integr. Manuf.201026216217310.1016/j.rcim.2009.07.003
    [Google Scholar]
  28. ZhangP. MuX. MaZ. DuF. A PSGO-Based method for inverse kinematics analysis of serial dangerous articles disposal manipulator.Information (Japan)20121557035710
    [Google Scholar]
  29. RamirezJ.A. RubianoA.F. Optimization of inverse kinematics of a 3R robotic manipulator using genetic algorithms.World Acad. Sci. Eng. Technol.20115914251430
    [Google Scholar]
  30. JhaP. BiswalB.B. Inverse kinematic solution of 5r manipulator using ANN and ANFIS.IAES International Journal of Robotics and Automation (IJRA)201542109[IJRA].10.11591/ijra.v4i2.pp109‑123
    [Google Scholar]
  31. KökerR. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization.Inf. Sci.201322252854310.1016/j.ins.2012.07.051
    [Google Scholar]
  32. JhaP. BiswalB.B. Intelligent computation and kinematics of 4-DOF SCARA manipulator using ANN and ANFI.Swarm, Evolutionary, and Memetic Computing SEMCCO 2013 Lecture Notes in Computer Science.Cham: Springer20138298277286
    [Google Scholar]
  33. JhaP. BiswalB.B. A neural network approach for inverse kinematic of a SCARA manipulator.IAES Int J Robot Auto (IJRA)201431526110.11591/ijra.v3i1.3201
    [Google Scholar]
  34. ShiraziR.A. Seyyed FakhrabadiM.M. GhanbariA. Analysis and optimization of the 5-RPUR parallel manipulator.Adv. Robot.201428151021103110.1080/01691864.2014.904755
    [Google Scholar]
  35. JhaP. BiswalB.B. Hybrid neural network based prediction of inverse kinematics of robot manipulator.5th international & 26th all india manufacturing technology Design and Research Conference AIMTDRGuwahati, Assam, India20141051–6.6
    [Google Scholar]
  36. JhaP. BiswalB.B. SahuO.P. Intelligent computation of inverse kinematics of a 5-dof manipulator using MLPNNLecture Notes in Computer Science.Cham: Springer2014871724350
    [Google Scholar]
  37. PeidroA. GilA. MarinJ.M. ReinosoO. Inverse kinematic analysis of a redundant hybrid climbing robot.Int. J. Adv. Robot. Syst.2015121116310.5772/61748
    [Google Scholar]
  38. JhaP BiswalBB SahuOP Inverse kinematic solution of robot manipulator using hybrid neural network.Int J Mater Eng20153l3810.12720/ijmse.3.1.31‑38
    [Google Scholar]
  39. KökerR. ÇakarT. A neuro-genetic-simulated annealing approach to the inverse kinematics solution of robots: A simulation based study.Eng. Comput.201632455356510.1007/s00366‑015‑0432‑z
    [Google Scholar]
  40. RaglendJ.I. Dev AnandM. Inverse kinematics solution of a five joint robot using recurrent neural network algorithm.Int. J. Control2016932113229
    [Google Scholar]
  41. ConteJ. SantolariaJ. MajarenaA.C. AceroR. Modelling, kinematic parameter identification and sensitivity analysis of a laser tracker having the beam source in the rotating head.Measurement20168926127210.1016/j.measurement.2016.03.059
    [Google Scholar]
  42. DashK.K. ChoudhuryB.B. SenapatiS.K. A Inverse kinematics solution of a 6-DOF industrial robot using ANN.Indian J. Sci. Res.20171597101
    [Google Scholar]
  43. ChembulyV.V.M.J.S. VorugantiH.K. An optimization based inverse kinematics of redundant robots avoiding obstacles and singularities.ACM International Conference Proceeding Series New Delhi India, 2017, p.2–710.1145/3132446.3134888
    [Google Scholar]
  44. AlmagedM. Forward and inverse kinematic analysis and validation of the ABB IRB 140 industrial robot. Int J Electron.Mech Mechatron Eng2017721383140110.17932/IAU.IJEMME.21460604.2017.7/2.1383‑1401
    [Google Scholar]
  45. WangX. ZhangD. ZhaoC. Inverse kinematics of a 7R 6‐DOF robot with nonspherical wrist based on transformation into the 6R robot.Math. Probl. Eng.201720171207413710.1155/2017/2074137
    [Google Scholar]
  46. GaoG. SunG. NaJ. GuoY. WuX. Structural parameter identification for 6 DOF industrial robots.Mech. Syst. Signal Process.201811314515510.1016/j.ymssp.2017.08.011
    [Google Scholar]
  47. ChembulyV.V.M.J.S. VorugantiH.K. An efficient approach for inverse kinematics and redundancy resolution scheme of hyper-redundant manipulators.AIP Conf Proc20181943020019-1, 020019-8.10.1063/1.5029595
    [Google Scholar]
  48. MyC.A. LeC.H. PackianatherM. BohezE.L.J. Novel robot arm design and implementation for hot forging press automation.Int. J. Prod. Res.201957144579459310.1080/00207543.2018.1521026
    [Google Scholar]
  49. PancuR. ȘuteuM.D. VesselenyiT. BuhasS.D. Szabo-AlexiM. Szabo-AlexiP. Inverse kinematics proposal to automatize the 3D scanning of handball shoes by using a robotic arm with 3 actuated joints. Switzerland.Applied Sciences202414
    [Google Scholar]
  50. WangX. ZhouX. XiaZ. GuX. A survey of welding robot intelligent path optimization.J. Manuf. Process.202163142310.1016/j.jmapro.2020.04.085
    [Google Scholar]
  51. PatleB.K. BabuL.G. PandeyA. ParhiD.R.K. JagadeeshA. A review: On path planning strategies for navigation of mobile robot.Defence Technology201915458260610.1016/j.dt.2019.04.011
    [Google Scholar]
  52. ZhangH. GanZ. WangJ. ZhangG. Robotic machining with a flexible manipulator. 2015.US Patent 9110456B2.10.1115/1.3426492
  53. WangC. LinH-C. KatoT. Collision avoidance motion planning method for industrial robot.US Patent 11813753B22021
  54. ShillerZ. DubowskyS. On the optimal control of robotic manipulators with actuator and end-effector constraints.IEEE International Conference on Robotics and Automation1985St. Louis, MO, USA61462010.1109/ROBOT.1985.1087305
    [Google Scholar]
  55. RogersP. WilliamsD.J. Knowledge-based control in manufacturing automation.Int. J. Comput. Integrated Manuf.198811213010.1080/09511928808944340
    [Google Scholar]
  56. JungB.C. BlackJ.T. ChenD.W.H. HoolJ.N. Taguchi-based methodology for determining/optimizing robot process capability.IIE Trans.199123216918410.1080/07408179108963852
    [Google Scholar]
  57. KobayashiH. OhtakeS. A local feedback law for hyper-redundant manipulators.Adv. Robot.19949324525310.1163/156855395X00184
    [Google Scholar]
  58. BüskensC. MaurerH. Realtime control of robots with initial value perturbations via nonlinear programming methods.Optimization2000473-438340510.1080/02331930008844488
    [Google Scholar]
  59. PashkevichA. DolguiA. ChumakovO. Optimal control of robotic manipulator for laser cutting applications.2002Vol. 35IFAC
    [Google Scholar]
  60. SujanV.A. DubowskyS. OhkamiY. Robotic manipulation of highly irregular shaped objects: Application to a robot crucible packing system for semiconductor manufacture.J. Manuf. Process.20024111510.1016/S1526‑6125(02)70129‑1
    [Google Scholar]
  61. ChettibiT. Synthesis of dynamic motions for robotic manipulators with geometric path constraints.Mechatronics200616954756310.1016/j.mechatronics.2006.03.012
    [Google Scholar]
  62. WangH. XieY. Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics.Automatica20094592114211910.1016/j.automatica.2009.05.011
    [Google Scholar]
  63. MaravallD. de LopeJ. MartínH.J.A. Hybridizing evolutionary computation and reinforcement learning for the design of almost universal controllers for autonomous robots.Neurocomputing2009724-688789410.1016/j.neucom.2008.04.058
    [Google Scholar]
  64. Díaz-RodríguezM. IriarteX. MataV. RosJ. On the experiment design for direct dynamic parameter identification of parallel robots.Adv. Robot.200923332934810.1163/156855308X397550
    [Google Scholar]
  65. FahmyA.A. KalyoncuM. CastellaniM. Automatic design of control systems for robot manipulators using the bees algorithm.Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng.2012226449750810.1177/0959651811425312
    [Google Scholar]
  66. ShiraziA.R. FakhrabadiM.M.S. GhanbariA. Optimal design of a 6-DOF parallel manipulator using particle swarm optimization.Adv. Robot.201226131419144110.1080/01691864.2012.690187
    [Google Scholar]
  67. MorishitaT. TojoO. Integer inverse kinematics method using Fuzzy logic.Intell. Serv. Robot.20136210110810.1007/s11370‑012‑0115‑1
    [Google Scholar]
  68. HuangH.C. Intelligent motion control for omnidirectional mobile robots using ant colony optimization.Appl. Artif. Intell.201327315116910.1080/08839514.2013.768877
    [Google Scholar]
  69. MohammedA. SchmidtB. WangL. GaoL. Minimizing energy consumption for robot arm movement.Procedia CIRP20142540040510.1016/j.procir.2014.10.055
    [Google Scholar]
  70. HaoK. GuoC. DingY. Physiological hemostasis based intelligent integrated cooperative controller for precise fault-tolerant control of redundant parallel manipulator.Int. J. Syst. Sci.201445102072208710.1080/00207721.2012.762558
    [Google Scholar]
  71. PandaS. MishraD. BiswalB.B. TripathyM. Revolute manipulator workspace optimization using a modified bacteria foraging algorithm: A comparative study.Eng. Optim.201446218119910.1080/0305215X.2012.753439
    [Google Scholar]
  72. Nho ChoC. JungH. SonJ. Gi KimK. A modular control scheme for hyper-redundant robots.Int. J. Adv. Robot. Syst.20151279110.5772/60602
    [Google Scholar]
  73. WangH. LiR. GaoY. CaoC. GeL. Comparative study on the redundancy of mobile single- and dual-arm robots.Int. J. Adv. Robot. Syst.201613610.1177/1729881416666782
    [Google Scholar]
  74. ZhaoY. Dynamic optimum design of a 3U P S- P RU parallel robot.Int. J. Adv. Robot. Syst.201613113
    [Google Scholar]
  75. TohidiH. AlGeddawyT. Planning of modular fixtures in a robotic assembly system.Procedia CIRP20164125225710.1016/j.procir.2015.12.090
    [Google Scholar]
  76. LiD. WangW. WangQ. HaoD. Polishing robot structure optimization based on workspace analysis.Proceedings of 2016 Asia-Pacific Conference on Intelligent Robot Systems, ACIRS.Tokyo, Japan2016525610.1109/ACIRS.2016.7556187
    [Google Scholar]
  77. OstafewC.J. SchoelligA.P. BarfootT.D. Robust constrained learning-based NMPC enabling reliable mobile robot path tracking.Int. J. Robot. Res.201635131547156310.1177/0278364916645661
    [Google Scholar]
  78. ChenJ.Y. LuJ.C. ChenC.P. LinP.C. Stable walking in a biped robot with force-feedback-induced center-of-mass regulation.Zhongguo Gongcheng Xuekan201639779480110.1080/02533839.2016.1196612
    [Google Scholar]
  79. WenS. QinG. ZhangB. LamH.K. ZhaoY. WangH. The study of model predictive control algorithm based on the force/position control scheme of the 5-DOF redundant actuation parallel robot.Robot. Auton. Syst.201679122510.1016/j.robot.2016.02.002
    [Google Scholar]
  80. ChenD. ZhangY. Jerk-level synchronous repetitive motion scheme with gradient-type and zeroing-type dynamics algorithms applied to dual-arm redundant robot system control.Int. J. Syst. Sci.201748132713272710.1080/00207721.2017.1363310
    [Google Scholar]
  81. XuP. CheungC.F. LiB. HoL.T. ZhangJ.F. Kinematics analysis of a hybrid manipulator for computer controlled ultra-precision freeform polishing.Robot. Comput.-Integr. Manuf.201744445610.1016/j.rcim.2016.08.003
    [Google Scholar]
  82. CirilloA. CirilloP. De MariaG. MarinoA. NataleC. PirozziS. Optimal custom design of both symmetric and unsymmetrical hexapod robots for aeronautics applications.Robot. Comput.-Integr. Manuf.20174411610.1016/j.rcim.2016.06.002
    [Google Scholar]
  83. IversenT.F. EllekildeL.P. Optimization for solving workcell layouts using Gaussian penalties for escaping local minima.Proceedings of the 14th International Conference on Informatics in Control, Automation and RoboticsSpain Madrid201711012110.5220/0006438201100121
    [Google Scholar]
  84. ElshabasyM.M.Y.B. MohamedK.T. AtaA.A. Power optimization of planar redundant manipulator moving along constrained-end trajectory using hybrid techniques.Alex. Eng. J.201756443944710.1016/j.aej.2017.01.040
    [Google Scholar]
  85. VillagrossiE. PedrocchiN. BeschiM. Molinari TosattiL. A human mimicking control strategy for robotic deburring of hard materials.Int. J. Comput. Integrated Manuf.201831986988010.1080/0951192X.2018.1447688
    [Google Scholar]
  86. RahmaniB. BelkheiriM. Adaptive neural network output feedback control for flexible multi-link robotic manipulators.Int. J. Control201992102324233810.1080/00207179.2018.1436774
    [Google Scholar]
  87. MoradiM. NaraghiM. KamaliE.A. Simultaneous design of parameters and controller of robotic manipulators: Closed loop approach to practical implementation.Adv. Robot.201832310512110.1080/01691864.2017.1421097
    [Google Scholar]
  88. PanZ. PoldenJ. LarkinN. Van DuinS. NorrishJ. NorrishJ. Recent progress on programming methods for industrial robots.Robot. Comput.-Integr. Manuf.2012282879410.1016/j.rcim.2011.08.004
    [Google Scholar]
  89. TsarouchiP. MakrisS. ChryssolourisG. Human – Robot interaction review and challenges on task planning and programming.Int. J. Comput. Integrated Manuf.201629891693110.1080/0951192X.2015.1130251
    [Google Scholar]
  90. GiniG. GiniM. SomalvicoM. Deterministic and nondeterministic programming in robot systems.Cybern. Syst.198112434536210.1080/01969728108927680
    [Google Scholar]
  91. RubinovitzJ. WyskR.A. Task level off-line programming system for robotic arc welding — An overview.J. Manuf. Syst.19887429330610.1016/0278‑6125(88)90040‑4
    [Google Scholar]
  92. TsaiM.J. LinS-D. ChenM.C. Mathematical model for robotic arc-welding off-line programming system.Int. J. Comput. Integrated Manuf.199254-530030910.1080/09511929208944538
    [Google Scholar]
  93. BidandaB. NarayananV. RubinovitzJ. Computer-aided-design-based interactive off-line programming of spray-glazing robots.Int. J. Comput. Integrated Manuf.19936635736510.1080/09511929308944587
    [Google Scholar]
  94. MitsiS. BouzakisK.D. MansourG. Optimization of robot links motion in inverse kinematics solution considering collision avoidance and joint limits.Mechanism Mach. Theory199530565366310.1016/0094‑114X(94)00070‑2
    [Google Scholar]
  95. CarvalhoG.C. McMasterR. BlackmanS. A strategy for oflline programming and adaptive control of a robotic welding cell.Sci. Technol. Weld. Join.199611111510.1179/stw.1996.1.1.11
    [Google Scholar]
  96. NetoP. MendesN. Direct off-line robot programming via a common CAD package.Robot. Auton. Syst.201361889691010.1016/j.robot.2013.02.005
    [Google Scholar]
  97. XiaoW. HuanJ. DongS. A STEP-compliant industrial robot data model for robot off-line programming systems.Robot. Comput.-Integr. Manuf.201430211412310.1016/j.rcim.2013.09.007
    [Google Scholar]
  98. MakrisS TsarouchiP SurdilovicD KrügerJ Intuitive dual arm robot programming for assembly operations.CIRP Annals - Manufacturing Technol201463131610.1016/j.cirp.2014.03.017
    [Google Scholar]
  99. ErdősG. KardosC. KeményZ. KovácsA. VánczaJ. Process planning and offline programming for robotic remote laser welding systems.Int. J. Comput. Integrated Manuf.201629121287130610.1080/0951192X.2015.1033753
    [Google Scholar]
  100. NathanaelD. MosialosS. VosniakosG.C. Development and evaluation of a virtual training environment for on-line robot programming.Int. J. Ind. Ergon.20165327428310.1016/j.ergon.2016.02.004
    [Google Scholar]
  101. DaneshjoN. KrálikM. MajerníkM. PajerskáE.D. NaščákováJ. Non-collision trajectories of service industrial robots.Adv. Eng. Softw.2018124909610.1016/j.advengsoft.2018.08.003
    [Google Scholar]
  102. OstaninM. PopovD. KlimchikA. Programming by demonstration using two-step optimization for industrial robot.IFAC-PapersOnLine20185111727710.1016/j.ifacol.2018.08.237
    [Google Scholar]
  103. RaghunathanA.V. SivakumarA.K. PalaniswamyA.M. Kinematic study of curved 6 DOF arm.AIP Conf Proc2024303502003110.1063/5.0194646
    [Google Scholar]
  104. ShindeV.B. PawarP.J. Minimizing cycle time and energy consumption for a multi-degree serial manipulator using teaching–learning-based optimization.J. Braz. Soc. Mech. Sci. Eng.202345526310.1007/s40430‑023‑04192‑z
    [Google Scholar]
  105. DenavitJ. HartenbergR.S. A kinematic notation for lower-pair mechanisms based on matrices.J. Appl. Mech.195522221522110.1115/1.4011045
    [Google Scholar]
  106. AspragathosN.A. DimitrosJ.K. A comparative study of three methods for robot kinematics.IEEE Trans. Syst. Man Cybern. B Cybern.199828213514510.1109/3477.662755 18255932
    [Google Scholar]
  107. UickerJ.J.Jr DenavitJ. HartenbergR.S. An iterative method for the displacement analysis of spatial mechanisms.J. Appl. Mech.196431230931410.1115/1.3629602
    [Google Scholar]
  108. SnymanJ.A. du PlessisL.J. DuffyJ. An optimization approach to the determination of the boundaries of manipulator workspaces.J. Mech. Des.2000122444745610.1115/1.1289388
    [Google Scholar]
  109. ChapelleF. BidaudP. A closed form for inverse kinematics approximation of general 6R manipulators using genetic programming.Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation.Seoul, Korea (South)200133643369vol.4
    [Google Scholar]
  110. AlbertF.Y.C.C. KohS.P. TiongS.K. ChenC.P. YapF.W. Inverse kinematic solution in handling 3R manipulator via real-time genetic algorithm.International Symposium on Information Technology2008Kuala Lumpur, Malaysia1610.1109/ITSIM.2008.4632036
    [Google Scholar]
  111. KarabogaD. AkayB. A comparative study of artificial Bee Colony algorithm.Appl. Math. Comput.2009214110813210.1016/j.amc.2009.03.090
    [Google Scholar]
  112. ChiddarwarS.S. Ramesh BabuN. Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach.Eng. Appl. Artif. Intell.20102371083109210.1016/j.engappai.2010.01.028
    [Google Scholar]
  113. DayaB. KhawandiS. AkoumM. Applying neural network architecture for inverse kinematics problem in robotics.J. Softw. Eng. Appl.20103323023910.4236/jsea.2010.33028
    [Google Scholar]
  114. DahariM. TanJ.D. Forward and inverse kinematics model for robotic welding process using KR-16KS KUKA robot.4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO.Kuala Lumpur, Malaysia201116
    [Google Scholar]
  115. BingülZ. KarahanO. A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control.Expert Syst. Appl.20113811017103110.1016/j.eswa.2010.07.131
    [Google Scholar]
  116. LiuZ. LiuH. LuoZ. Inverse kinematics analysis of 5-DOF robot manipulators based on virtual joint method.Applied Mechanics and Materials2012143–144265268
    [Google Scholar]
  117. LazarevskaE. A neuro-fuzzy model of the inverse kinematics of a 4 DOF robotic arm," in computer modeling and simulation.14th international conference on modelling and simulation.Cambridge, Cambridgeshire United Kingdom2012306311
    [Google Scholar]
  118. AghajarianM. KianiK. Inverse kinematics solution of PUMA 560 robot arm using ANFIS.8th International Conference on Ubiquitous Robots and Ambient Intelligence.Incheon, Korea (South)201157457810.1109/URAI.2011.6145885
    [Google Scholar]
  119. LiuJ. JianF. LiuJ. Four degrees of freedom SCARA robot modeling and simulation.International Symposium on Computer, Consumer and Control, IS3C.Taichung, Taiwan201441041210.1109/IS3C.2014.113
    [Google Scholar]
  120. BhushanB. PillaiS.S. Particle swarm optimization and firefly algorithm: Performance analysis.3rd IEEE International Advance Computing Conference, IACC.Ghaziabad, India201374675110.1109/IAdCC.2013.6514320
    [Google Scholar]
  121. VijayanA. SinganamalaH. NairB. MediniC. NutakkiC. DiwakarS. Classification of robotic arm movement using SVM and Naïve Bayes classifiers.3rd International Conference on Innovative Computing Technology, INTECH 20132013London, UK263268
    [Google Scholar]
  122. ShahJ.A. RattanS.S. NakraB.C. End-effector position analysis using forward kinematics for 5 dof pravak robot arm IAES International journal of robotics and automation.2013Vol. 2IJRA
    [Google Scholar]
  123. DukaA.V. Neural network based inverse kinematics solution for trajectory tracking of a robotic arm.Procedia Technol.201412202710.1016/j.protcy.2013.12.451
    [Google Scholar]
  124. DeshpandeV. GeorgeP.M. Kinematic modelling and analysis of 5 DOF robotic arm.Int. J. Robot. Res. Dev.2014421724
    [Google Scholar]
  125. AbaasT.F.A.S. Bedan A;Shabeeb AH. workspace simulation and analysis of 5 DOF articulated robot using forward kinematics approach.Iraqi J Mech Mat Eng201414398407
    [Google Scholar]
  126. MohammedA.A. SunarM. Kinematics modeling of a 4-DOF robotic armInternational Conference on Control, Automation and Robotics2015Singapore8791
    [Google Scholar]
  127. MirjaliliS. How effective is the Grey Wolf optimizer in training multi-layer perceptrons.Appl. Intell.201543115016110.1007/s10489‑014‑0645‑7
    [Google Scholar]
  128. AyyıldızM. ÇetinkayaK. Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator.Neural Comput. Appl.201627482583610.1007/s00521‑015‑1898‑8
    [Google Scholar]
  129. MomaniS. Abo-HammourZ.S. AlsmadiO.M.K. Solution of inverse kinematics problem using genetic algorithms.Appl. Math. Inf. Sci.20161022523310.18576/amis/100122
    [Google Scholar]
  130. El-SherbinyA. ElhosseiniM.A. HaikalA.Y. A comparative study of soft computing methods to solve inverse kinematics problem.Ain Shams Eng. J.2018942535254810.1016/j.asej.2017.08.001
    [Google Scholar]
  131. Lopez-FrancoC. Hernandez-BarraganJ. AlanisA.Y. Arana-DanielN. A soft computing approach for inverse kinematics of robot manipulators.Eng. Appl. Artif. Intell.20187410412010.1016/j.engappai.2018.06.001
    [Google Scholar]
  132. DereliS. KökerR. Öylekİ. AyM. A comprehensive research on the use of swarm algorithms in the inverse kinematics solution.J Polytech201822757910.2339/politeknik.374830
    [Google Scholar]
  133. JengW. Der, Lin JT. A branch and bound algorithm for scheduling problem of a robot-centered manufacturing cell.J Chin Inst Eng199316431010.1080/02533839.1993.9677513
    [Google Scholar]
  134. EdanY. BermanS. BoteachE. MendelsonE. Distributed multi-robot assembly/packaging algorithms.Intelligent Automation & Soft Computing200410434935710.1080/10798587.2004.10642888
    [Google Scholar]
  135. ZachariaP.T. AspragathosN.A. Optimal robot task scheduling based on genetic algorithms.Robot. Comput.-Integr. Manuf.2005211677910.1016/j.rcim.2004.04.003
    [Google Scholar]
  136. BuW. LiuZ. TanJ. Industrial robot layout based on operation sequence optimisation.Int. J. Prod. Res.200947154125414510.1080/00207540802001525
    [Google Scholar]
  137. DawandeM. GeismarH.N. PinedoM. SriskandarajahC. Throughput optimization in dual-gripper interval robotic cells.IIE Trans.200942111510.1080/07408170902789092
    [Google Scholar]
  138. BoschettiG. RosaR. TrevisaniA. Optimal robot positioning using task-dependent and direction-selective performance indexes: General definitions and application to a parallel robot.Robot. Comput.-Integr. Manuf.201329243144310.1016/j.rcim.2012.09.013
    [Google Scholar]
  139. DangQ.V. NguyenL. A heuristic approach to schedule mobile robots in flexible manufacturing Environments.Procedia CIRP20164039039510.1016/j.procir.2016.01.073
    [Google Scholar]
  140. MiljkovićZ. PetrovićM. Application of modified multi-objective particle swarm optimisation algorithm for flexible process planning problem.Int. J. Comput. Integrated Manuf.2017302-327129110.1080/0951192X.2016.1145804
    [Google Scholar]
  141. SangsawangC. SethananK. Hybrid particle swarm optimization with a Cauchy distribution for solving a reentrant flexible flow shop problem with a blocking constraint.KKU EN J2016435561
    [Google Scholar]
  142. GunjiA.B. DeepakB.B.B.V.L. BahubalendruniC.M.V.A.R. BiswalD.B.B. An optimal robotic assembly sequence planning by assembly subsets detection method using teaching learning-based optimization algorithm.IEEE Trans. Autom. Sci. Eng.20181531369138510.1109/TASE.2018.2791665
    [Google Scholar]
  143. AdzharN. YusofY. AhmadM.A. A review on autonomous mobile robot path planning algorithms. Advances in Science.Adv Sci Technol Eng Sys J20205323624010.25046/aj050330
    [Google Scholar]
  144. BrownS. PiersonH.A. Adaptive path planning of novel complex parts for industrial spraying operations.Prod. Manuf. Res.20208133536810.1080/21693277.2020.1792374
    [Google Scholar]
  145. LiangX KouD WenL An improved chicken swarm optimization algorithm and its application in robot path planning.IEEE Access20208495435010.1109/ACCESS.2020.2974498
    [Google Scholar]
  146. NiJ WangX TangM CaoW ShiP YangSX An improved real-time path planning method based on dragonfly algorithm for heterogeneous multi-robot system.IEEE Access202081405586810.1109/ACCESS.2020.3012886
    [Google Scholar]
  147. BouhalassaL. BenchikhL. Ahmed-FoitihZ. BouzgouK. Path planning of the manipulator arm FANUC based on soft computing techniques.Int Rev Automat Control (IREACO)202013417118110.15866/ireaco.v13i4.18506
    [Google Scholar]
  148. MaL. GaoX. FuY. MaD. An improved jump point search algorithm for home service robot path planning.Proceedings of the 31st Chinese Control and Decision Conference, CCDC,20192477248210.1109/CCDC.2019.8833422
    [Google Scholar]
  149. BansalR. KhanesarM.A. BransonD. Ant colony optimization algorithm for industrial robot programming in a digital twin.25th International Conference on Automation and Computing (ICAC)Lancaster, UK, 20191510.23919/IConAC.2019.8895095
    [Google Scholar]
  150. ZhangG. LiC. ShengL. GaoM. Global smooth path planning for mobile robots using a novel adaptive particle swarm optimization.Chinese Control Conference (CCC)2019Guangzhou, China2124212910.23919/ChiCC.2019.8866315
    [Google Scholar]
  151. ChengKP MohanRE NhanNHK LeAV Graph theory-based approach to accomplish complete coverage path planning tasks for reconfigurable robots.IEEE Access20197946429465710.1109/ACCESS.2019.2928467
    [Google Scholar]
  152. IqbalZ. ReisJ. GonçalvesG. Path planning for an industrial robotic arm.Intelli201920193036
    [Google Scholar]
  153. OuJ. WangM. Path planning for omnidirectional wheeled mobile robot by improved ant colony optimization.Chinese Control ConferenceGuangzhou, China, 20192668267310.23919/ChiCC.2019.8866228
    [Google Scholar]
  154. JiangH. SunY. WangX. ZhangP. Research on path planning of mobile disinfection robot based on improved A* algorithm.J. Phys. Conf. Ser.20211871101211110.1088/1742‑6596/1871/1/012111
    [Google Scholar]
  155. WangX. YanY. GuX. Spot welding robot path planning using intelligent algorithm.J. Manuf. Process.20194211010.1016/j.jmapro.2019.04.014
    [Google Scholar]
  156. HernandezB. GiraldoE. A Review of Path Planning and Control for Autonomous Robots.IEEE 2nd Colombian Conference on Robotics and Automation (CCRA).2018Barranquilla, Colombia16
    [Google Scholar]
  157. WangL. KanJ. GuoJ. WangC. Improved ant colony optimization for ground robot 3D path planning.International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC).2018Zhengzhou, China1061066
    [Google Scholar]
  158. PatleB.K. PandeyA. JagadeeshA. ParhiD.R. Path planning in uncertain environment by using firefly algorithm.Defence Technol201814669170110.1016/j.dt.2018.06.004
    [Google Scholar]
  159. Suarez-RuizF. LembonoT.S. PhamQ.C. Fast solution to the robotic task sequencing problem.IEEE International Conference on Robotics and Automation (ICRA)2018Brisbane, QLD, Australia, 21-25 May16111616
    [Google Scholar]
  160. LarsenL. KimJ. KupkeM. SchusterA. Automatic path planning of industrial robots comparing sampling-based and computational intelligence methods.Procedia Manuf.20171124124810.1016/j.promfg.2017.07.237
    [Google Scholar]
  161. ZhengH CongM DongH LiuY LiuD CAD-based automatic path generation and optimization for laser cladding robot in additive manufacturing.Int. J. Adv. Manuf. Technol.2017929-123605361410.1007/s00170‑017‑0384‑0
    [Google Scholar]
  162. YinG. ZhuZ. GongH. Flexible punching system using industrial robots for automotive panels.Robot. Comput.-Integr. Manuf.201852929910.1016/j.rcim.2017.11.002
    [Google Scholar]
  163. LiJ.H. KangH. ParkG.H. SuhJ.H. Real time path planning of underwater robots in unknown environment.International Conference on Control, Artificial Intelligence, Robotics and Optimization (ICCAIRO)2017Prague, Czech Republic31231810.1109/ICCAIRO.2017.64
    [Google Scholar]
  164. LiuS. QiuZ. ZhangX. Singularity and path-planning with the working mode conversion of a 3-DOF 3-RRR planar parallel manipulator.Mechanism Mach. Theory201710716618210.1016/j.mechmachtheory.2016.09.004
    [Google Scholar]
  165. DasP.K. BeheraH.S. DasS. TripathyH.K. PanigrahiB.K. PradhanS.K. A hybrid improved PSO-DV algorithm for multi-robot path planning in a clutter environment.Neurocomputing201620773575310.1016/j.neucom.2016.05.057
    [Google Scholar]
  166. Al DabooniS. WunschD. Heuristic dynamic programming for mobile robot path planning based on Dyna approach.Proceedings of the International Joint Conference on Neural Networks2016Vancouver, BC, Canada3723373010.1109/IJCNN.2016.7727679
    [Google Scholar]
  167. SonC. Intelligent rule-based sequence planning algorithm with fuzzy optimization for robot manipulation tasks in partially dynamic environments.Inf. Sci.201634220922110.1016/j.ins.2015.08.020
    [Google Scholar]
  168. ZhangQ. ZhaoM.Y. Minimum time path planning of robotic manipulator in drilling/spot welding tasks.J. Comput. Des. Eng.20163132139
    [Google Scholar]
  169. AkkaK. KhaberF. Mobile robot path planning using an improved ant colony optimization.Int. J. Adv. Robot. Syst.201815310.1177/1729881418774673
    [Google Scholar]
  170. ZhaoJ. WangP. Research on visual rid and path planning of industrial robot. Proceedings of the 2016 International Conference on Education, Management.Comput. Soc.20163719501953
    [Google Scholar]
  171. YehoshuaR. AgmonN. KaminkaG.A. Robotic adversarial coverage of known environments.Int. J. Robot. Res.201635121419144410.1177/0278364915625785
    [Google Scholar]
  172. VillarrealB.L. OlagueG. GordilloJ.L. Synthesis of odor tracking algorithms with genetic programming.Neurocomputing20161751019103210.1016/j.neucom.2015.09.108
    [Google Scholar]
  173. JoseK. PratiharD.K. Task allocation and collision-free path planning of centralized multi-robots system for industrial plant inspection using heuristic methods.Robot. Auton. Syst.201680344210.1016/j.robot.2016.02.003
    [Google Scholar]
  174. WangX. ShiY. DingD. GuX. Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning.Eng. Optim.201648229931610.1080/0305215X.2015.1005084
    [Google Scholar]
  175. AlamM.S. RafiqueM.U. Mobile robot path planning in environments cluttered with non-convex obstacles using particle swarm optimization.International Conference on Control, Automation and Robotics, ICCAR.2015Singapore, 20-22 May323610.1109/ICCAR.2015.7165997
    [Google Scholar]
  176. RastgooM.N. NakisaB. NasrudinM.F. NazriM.Z.A. A critical evaluation of literature on robot path planning in dynamic environment.J. Theor. Appl. Inf. Technol.201470177185
    [Google Scholar]
  177. MadaniT. DaachiB. BenallegueA. Adaptive variable structure controller of redundant robots with mobile/fixed obstacles avoidance.Robot. Auton. Syst.201361655556410.1016/j.robot.2013.02.010
    [Google Scholar]
  178. ZhouZ. NieY. MinG. Enhanced ant colony optimization algorithm for global path planning of mobile robots.International Conference on Computational and Information Sciences2013Shiyang, China69870110.1109/ICCIS.2013.189
    [Google Scholar]
  179. GigrasY. GuptaK. Artificial intelligence in robot path planning.Int. J. Soft Comput.201217471474
    [Google Scholar]
  180. Gómez-BravoF. CarboneG. FortesJ.C. Collision free trajectory planning for hybrid manipulators.Mechatronics201222683685110.1016/j.mechatronics.2012.05.001
    [Google Scholar]
  181. HusseinA. MostafaH. Badrel-DinM. SultanO. KhamisA. Metaheuristic optimization approach to mobile robot path planning.International Conference on Engineering and Technology (ICET)2012Cairo, Egypt1610.1109/ICEngTechnol.2012.6396150
    [Google Scholar]
  182. HsuC.C. ChenY.J. LuM.C. LiS.A. Optimal path planning incorporating global and local search for mobile robots,The 1st IEEE Global Conference on Consumer Electronics.2012Tokyo, Japan668671
    [Google Scholar]
  183. WangH. YuY. YuanQ. Application of Dijkstra algorithm in robot path-planning.Second International Conference on Mechanic Automation and Control Engineering2011Hohhot10671069
    [Google Scholar]
  184. SinghM.K. ParhiD.R. Path optimisation of a mobile robot using an artificial neural network controller.Int. J. Syst. Sci.201142110712010.1080/00207720903470155
    [Google Scholar]
  185. LinC.C. ChuangJ.H. A potential‐based path planning algorithm for hyper‐redundant manipulators.J. Chinese Inst Eng201033341542710.1080/02533839.2010.9671630
    [Google Scholar]
  186. ChenH. FuhlbriggeT. LiX. A review of CAD‐based robot path planning for spray painting.Ind. Rob.2009361455010.1108/01439910910924666
    [Google Scholar]
  187. RajaP. PugazhenthiS. Path planning for mobile robots in dynamic environments using particle swarm optimization.International Conference on Advances in Recent Technologies in Communication and Computing2009Ottayam, India40140510.1109/ARTCom.2009.24
    [Google Scholar]
  188. LiC. LiY. ZhouF. FanC. Multi-objective path planning for the mobile robot.Proceedings of the IEEE International Conference on Automation and Logistics. ICAL 20072007Jinan, China2248225210.1109/ICAL.2007.4338950
    [Google Scholar]
  189. GalickiM. Path-constrained control of a redundant manipulator in a task space.Robot. Auton. Syst.200654323424310.1016/j.robot.2005.11.001
    [Google Scholar]
  190. ChenX. LiY. Smooth path planning of a mobile robot using stochastic particle swarm optimization.IEEE International Conference on Mechatronics and Automation, ICMA.2006, vol. 2006, Luoyang, Chinap. 1722–7.
    [Google Scholar]
  191. KwonJ.W. YangD.H. ChwaD. HongS.K. Wavefront method-based local-path planning for a mobile robot with a vision system.2006 SICE-ICASE International Joint Conference.Busan, Korea (South)20061250125410.1109/SICE.2006.315432
    [Google Scholar]
  192. KimY.T. ChoH.C. SeoJ.Y. JeonH.T. KlirG.J. Intelligent path planning of two cooperating robots based on fuzzy logic.Int. J. Gen. Syst.200231435937610.1080/03081070290018038
    [Google Scholar]
  193. PratiharD.K. DebK. GhoshA. Fuzzy-genetic algorithms and time-optimal obstacle-free path generation for mobile robots.Eng. Optim.199932111714210.1080/03052159908941294
    [Google Scholar]
  194. WurllC.H. HenrichD.O. WörnH.E. Multi-Goal path planning for industrial robots.International Conference on Robotics and Application (RA´99)1999Santa Barbara, USA, 28-30,
    [Google Scholar]
  195. BarraquandJ. LangloisB. LatombeJ-C. Numerical potential field techniques for robot path planning.Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments1991Pisa, Italy10121017vol.2,
    [Google Scholar]
  196. BobrowJ.E. Optimal robot plant planning using the minimum-time criterion.IEEE J. Robot. Autom.19884444345010.1109/56.811
    [Google Scholar]
  197. LuhJ.Y.S. LinC.S. Optimum path planning for mechanical manipulators.J. Dyn. Syst. Meas. Control1981103214215110.1115/1.3139654
    [Google Scholar]
  198. MajumderA. MajumderA. BhaumikR. Teaching–learning-based optimization algorithm for path planning and task allocation in multi-robot plant inspection system.Arab. J. Sci. Eng.20214698999902110.1007/s13369‑021‑05710‑8
    [Google Scholar]
  199. TaitlerA. IoslovichI. GutmanP.O. KarpasE. Combined time and energy optimal trajectory planning with quadratic drag for mixed discrete-continuous task planning.Optimization201968112514310.1080/02331934.2018.1502769
    [Google Scholar]
  200. BarbiéT. KabutanR. TanakaR. NishidaT. Gaussian mixture spline trajectory: Learning from a dataset, generating trajectories without one.Adv. Robot.2018321054755810.1080/01691864.2018.1465849
    [Google Scholar]
  201. HuangJ. HuP. WuK. ZengM. Optimal time-jerk trajectory planning for industrial robots.Mechanism Mach. Theory201812153054410.1016/j.mechmachtheory.2017.11.006
    [Google Scholar]
  202. KimJ. CroftE.A. Preshaping input trajectories of industrial robots for vibration suppression.Robot. Comput.-Integr. Manuf.201854354410.1016/j.rcim.2018.05.009
    [Google Scholar]
  203. ChembulyV.V.M.J.S. VorugantiH.K. Trajectory planning of redundant manipulators moving along constrained path and avoiding obstacles.Procedia Comput. Sci.201813362763410.1016/j.procs.2018.07.094
    [Google Scholar]
  204. HashemianA. HosseiniS.F. NabaviS.N. Kinematically smoothing trajectories by NURBS reparameterization – An innovative approach.Adv. Robot.20173123-241296131210.1080/01691864.2017.1396923
    [Google Scholar]
  205. KucukS. Optimal trajectory generation algorithm for serial and parallel manipulators.Robot. Comput.-Integr. Manuf.20174821923210.1016/j.rcim.2017.04.006
    [Google Scholar]
  206. KerelukJ.A. EmamiM.R. Task-based optimization of reconfigurable robot manipulators.Adv. Robot.2017311683685010.1080/01691864.2017.1362995
    [Google Scholar]
  207. RamacciottiM. MilazzoM. LeoniF. RoccellaS. StefaniniC. A novel shared control algorithm for industrial robots.Int. J. Adv. Robot. Syst.201613610.1177/1729881416682701
    [Google Scholar]
  208. MarkusE.D. AgeeJ.T. JimohA.A. Flat control of industrial robotic manipulators.Robot. Auton. Syst.20178722623610.1016/j.robot.2016.10.009
    [Google Scholar]
  209. RubioF. Llopis-AlbertC. ValeroF. SuñerJ.L. Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory.Robot. Auton. Syst.20168610611210.1016/j.robot.2016.09.008
    [Google Scholar]
  210. LangeF. Albu-SchäfferA. Iterative path-accurate trajectory generation for fast sensor-based motion of robot arms.Adv. Robot.201630211380139410.1080/01691864.2016.1222307
    [Google Scholar]
  211. AtawnihA. PapageorgiouD. DoulgeriZ. Kinematic control of redundant robots with guaranteed joint limit avoidance.Robot. Auton. Syst.20167912213110.1016/j.robot.2016.01.006
    [Google Scholar]
  212. SuleimanW. On inverse kinematics with inequality constraints: New insights into minimum jerk trajectory generation.Adv. Robot.20163017-181164117210.1080/01691864.2016.1202136
    [Google Scholar]
  213. Renny SimbaK. UchiyamaN. SanoS. Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves.Robot. Comput.-Integr. Manuf.201641314210.1016/j.rcim.2016.02.002
    [Google Scholar]
  214. LondheP.S. SinghY. SanthakumarM. PatreB.M. WaghmareL.M. Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.ISA Trans.20166321823210.1016/j.isatra.2016.02.016 27012441
    [Google Scholar]
  215. ZhongQ. ChenF. Trajectory planning for biped robot walking on uneven terrain – Taking stepping as an example.CAAI Trans. Intell. Technol.20161319720910.1016/j.trit.2016.10.009
    [Google Scholar]
  216. AvramO. ValenteA. Trajectory planning for reconfigurable industrial robots designed to operate in a high precision manufacturing industry.Procedia CIRP20165746146610.1016/j.procir.2016.11.080
    [Google Scholar]
  217. BenzaouiM. ChekirebH. TadjineM. BoulkrouneA. Trajectory tracking with obstacle avoidance of redundant manipulator based on fuzzy inference systems.Neurocomputing2016196233010.1016/j.neucom.2016.02.037
    [Google Scholar]
  218. BaizidK. YousnadjA. MeddahiA. ChellaliR. IqbalJ. Time scheduling and optimization of industrial robotized tasks based on genetic algorithms.Robot. Comput.-Integr. Manuf.20153414015010.1016/j.rcim.2014.12.003
    [Google Scholar]
  219. ŠtevoS. SekajI. DekanM. Optimization of robotic arm trajectory using genetic algorithm.IFAC Proceedings Volumes (IFACPapersOnline)2014917481753
    [Google Scholar]
  220. ErkorkmazK AlzaydiA ElfizyA EnginS Time-optimized hole sequence planning for 5-axis on-the-fly laser drilling. CIRP Annals - Manuf Technol20146337780
    [Google Scholar]
  221. PerumaalS.S. JawaharN. Automated trajectory planner of industrial robot for pick-and-place task.Int. J. Adv. Robot. Syst.201310210010.5772/53940
    [Google Scholar]
  222. ZhangQ. LiS.R. GaoX.S. Practical smooth minimum time trajectory planning for path following robotic manipulators.Proceedings of the American Control Conference2013Washington, DC, USA27788310.1109/ACC.2013.6580255
    [Google Scholar]
  223. PetričT. ŽlajpahL. Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem.Robot. Auton. Syst.201361994895910.1016/j.robot.2013.04.019
    [Google Scholar]
  224. Al-DoisH. JhaA.K. MishraR.B. Task-based design optimization of serial robot manipulators.Eng. Optim.201345664765810.1080/0305215X.2012.704027
    [Google Scholar]
  225. PerumaalS. JawaharN. Synchronized trigonometric S-curve trajectory for jerk-bounded time-optimal pick and place operation.Int. J. Robot. Autom.201227438539510.2316/Journal.206.2012.4.206‑3780
    [Google Scholar]
  226. TangQ. EberhardP. Cooperative motion of swarm mobile robots based on particle swarm optimization and multibody system dynamics.Mech. Based Des. Struct. Mach.201139217919310.1080/15397734.2011.550855
    [Google Scholar]
  227. Al-AssadiH.M A A. Mat IsaA.A. HasanA.T. RahmanZ.A. HeimannB. Development of a real-time-position prediction algorithm for under-actuated robot manipulator by using of artificial neural network.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.201122581991199810.1177/0954406211400345
    [Google Scholar]
  228. GhasemiM.H. KashiriN. DardelM. Near time-optimal control of redundant manipulators along a specified path with jerks constraint.Adv. Robot.201125182319233910.1163/016918611X603846
    [Google Scholar]
  229. ErkorkmazK AlzaydiA ElfizyA EnginS Time-optimal trajectory generation for 5-axis on-the-fly laser drilling.CIRP Annals - Manufacturing Technology201160114114
    [Google Scholar]
  230. SaravananR. RamabalanS. BalamuruganC. SubashA. Evolutionary trajectory planning for an industrial robot.Int. J. Autom. Comput.20107219019810.1007/s11633‑010‑0190‑8
    [Google Scholar]
  231. KumarS. BeheraL. McGinnityT.M. Kinematic control of a redundant manipulator using an inverse-forward adaptive scheme with a KSOM based hint generator.Robot. Auton. Syst.201058562263310.1016/j.robot.2009.12.002
    [Google Scholar]
  232. SaravananR. RamabalanS. SriramP. BalamuruganC. Non-uniform rational B-spline-based minimum cost trajectory planning for autonomous robots.Int. J. Intell. Syst. Technol. Appl.20109212114910.1504/IJISTA.2010.034317
    [Google Scholar]
  233. SaravananR. RamabalanS. BalamuruganC. Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles.Eng. Appl. Artif. Intell.200922232934210.1016/j.engappai.2008.06.002
    [Google Scholar]
  234. da Graça MarcosM. MachadoT.J.A. Azevedo-PerdicoúlisT.P. Trajectory planning of redundant manipulators using genetic algorithms.Commun. Nonlinear Sci. Numer. Simul.20091472858286910.1016/j.cnsns.2008.10.014
    [Google Scholar]
  235. SaravananR. RamabalanS. BalamuruganC. Evolutionary collision-free optimal trajectory planning for intelligent robots.Int. J. Adv. Manuf. Technol.20083611-121234125110.1007/s00170‑007‑0935‑x
    [Google Scholar]
  236. SaravananR. RamabalanS. Evolutionary minimum cost trajectory planning for industrial robots.J. Intell. Robot. Syst.2008521457710.1007/s10846‑008‑9202‑0
    [Google Scholar]
  237. SaravananR. RamabalanS. BalamuruganC. Evolutionary optimal trajectory planning for industrial robot with payload constraints.Int. J. Adv. Manuf. Technol.20083811-121213122610.1007/s00170‑007‑1169‑7
    [Google Scholar]
  238. RamabalanS. SaravananR. BalamuruganC. Multi-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstacles.Int. J. Adv. Manuf. Technol.2009415-658059410.1007/s00170‑008‑1506‑5
    [Google Scholar]
  239. SaravananR. RamabalanS. BalamuruganC. Multiobjective trajectory planner for industrial robots with payload constraints.Robotica200826675376510.1017/S0263574708004359
    [Google Scholar]
  240. HuangT WangPF MeiJP ZhaoXM ChetwyndDG Time minimum trajectory planning of a 2-DOF translational parallel robot for pick-and-place operations.CIRP Annals - Manufacturing Technology2007563658
    [Google Scholar]
  241. Lo BiancoC.G. PiazziA. Minimum-time trajectory planning of mechanical manipulators under dynamic constraints.Int. J. Control2002751396798010.1080/00207170210156161
    [Google Scholar]
  242. ZhaX.F. Optimal pose trajectory planning for robot manipulators.Mechanism Mach. Theory200237101063108610.1016/S0094‑114X(02)00053‑8
    [Google Scholar]
  243. AurnhammerA. MartiK. Robust optimal trajectory planning for robots by stochastic optimization.Math. Comput. Model. Dyn. Syst.2002817511610.1076/mcmd.8.1.75.8343
    [Google Scholar]
  244. HermleM. EberhardP. Control and parameter optimization of flexible robots.Mech. Struct. Mach.2000282-313716810.1081/SME‑100100615
    [Google Scholar]
  245. HeimA. Von StrykO. Trajectory optimization of industrial robots with application to computer-aided robotics and robot controllers.Optimization2000473-440742010.1080/02331930008844489
    [Google Scholar]
  246. PetiotJ.F. ChedmailP. HascoëtJ.Y. Contribution to the scheduling of trajectories in robotics.Robot. Comput.-Integr. Manuf.199814323725110.1016/S0736‑5845(97)00032‑X
    [Google Scholar]
  247. WestkämperE. SchraftR.D. SchweizerM. Fred HerkommerT. MeißnerA. Task-oriented programming of large redundant robot motion.Robot. Comput.-Integr. Manuf.1998145-636337510.1016/S0736‑5845(98)00026‑X
    [Google Scholar]
  248. KubotaN. ArakawaT. FukudaT. Hierarchical trajectory planning of redundant manipulators with structured intelligence.Adv. Robot.199712320922510.1163/156855398X00154
    [Google Scholar]
  249. WonJ.H. ChoiB.W. ChungM.J. A numerical method of predetermined optimal resolution for a redundant manipulator.IEEE Trans. Robot. Autom.19939221522010.1109/70.238285
    [Google Scholar]
  250. BeinerL. Time optimization of the continuous-path motions of industrial robots.Adv. Robot.19916329130510.1163/156855392X00105
    [Google Scholar]
  251. DubowskyS. NorrisM.A. ShillerZ. Time optimal trajectory planning for robotic manipulators with obstacle avoidance: A CAD approach.Proceedings of IEEE International Conference on Robotics and Automation1986San Francisco, CA, USA1906191210.1109/ROBOT.1986.1087434
    [Google Scholar]
  252. RajanV.T. Minimum time trajectory planning.Proceedings 1985 IEEE International Conference on Robotics and Automation1985St. Louis, MO, USA7596410.1109/ROBOT.1985.1087280
    [Google Scholar]
  253. DubowskyS. ShillerZ. Optimal Dynamic Trajectories for Robotic Manipulators. Morecki A, Bianchi G, Kȩdzior K, editors Theory and Practice of Robots and Manipulators:Proceedings of RoMan-Sy ’84: The Fifth CISM --- IFToMM Symposium.Boston, MA: Springer US198513314310.1007/978‑1‑4615‑9882‑4_15
    [Google Scholar]
  254. BobrowJ.E. DubowskyS. GibsonJ.S. Time-optimal control of robotic manipulators along specified paths.Int. J. Robot. Res.19854331710.1177/027836498500400301
    [Google Scholar]
  255. SahuP.K. MuraliG.B. KhamariB.K. PandaS.N. BiswalB.B. An efficient robotic manipulator trajectory planning using modified firefly algorithm. in advances in materials and manufacturing engineer.2019Lecture Notes in Mechanical Engineering5966
    [Google Scholar]
  256. SavsaniP. JhalaR.L. SavsaniV.J. Comparative study of different metaheuristics for the trajectory planning of a robotic arm.IEEE Syst. J.201610269770810.1109/JSYST.2014.2342292
    [Google Scholar]
  257. RoutA. DileepM. MohantaG.B. DeepakB.B.V.L. BiswalB.B. Optimal time-jerk trajectory planning of 6 axis welding robot using TLBO method.Procedia Comput. Sci.201813353754410.1016/j.procs.2018.07.067
    [Google Scholar]
  258. GaoX. MuY. GaoY. Optimal trajectory planning for robotic manipulators using improved teaching-learning-based optimization algorithm.Ind. Rob.201643330831610.1108/IR‑08‑2015‑0167
    [Google Scholar]
  259. SavsaniP. JhalaR.L. SavsaniV.J. Optimized trajectory planning of a robotic arm using teaching learning based optimization (TLBO) and artificial bee colony (ABC) optimization techniques.SysCon-7th Annual IEEE International Systems Conference, Proceedings.Orlando, FL, USA2013381386
    [Google Scholar]
  260. DuanC. WangY. KumariS. Research on trajectory planning of industrial robot based on MATLAB.Adv Transdisciplinary Eng20245729531110.3233/ATDE240480
    [Google Scholar]
  261. DubowskyS. BlubaughT.D. Planning time-optimal robotic manipulator motions and work places for point-to-point tasks.IEEE Trans. Robot. Autom.19895337738110.1109/70.34775
    [Google Scholar]
  262. ShillerZ. DubowskyS. On computing the global time-optimal motions of robotic manipulators in the presence of obstacles.IEEE Trans. Robot. Autom.19917678579710.1109/70.105387
    [Google Scholar]
  263. ChengF.T. SuK.H. WangW.M. Priority considerations for multiple goals of redundant manipulators.J Chin Inst Eng19961949951310.1080/02533839.1996.9677813
    [Google Scholar]
  264. ShibataT. AbeT. TanieK. NoseM. Motion planning by genetic algorithm for a redundant manipulator using a model of criteria of skilled operators.Inf. Sci.19971021-417118610.1016/S0020‑0255(97)00049‑2
    [Google Scholar]
  265. KimK.Y. KimD.W. NnajiB.O. Robot arc welding task sequencing using genetic algorithms.IIE Trans.2002341086588010.1080/07408170208928918
    [Google Scholar]
  266. PashkevichA.P. DolguiA.B. ChumakovO.A. Multiobjective optimization of robot motion for laser cutting applications.Int. J. Comput. Integrated Manuf.200417217118310.1080/0951192031000078202
    [Google Scholar]
  267. WinklerA. SuchýJ. Force-guided motions of a 6-d.o.f. industrial robot with a joint space approach.Adv. Robot.20062091067108410.1163/156855306778394049
    [Google Scholar]
  268. HanS. XueyanS. TiezhongZ. BinZ. LimingX. Design optimisation and simulation of structure parameters of an eggplant picking robot.N. Z. J. Agric. Res.200750595996410.1080/00288230709510373
    [Google Scholar]
  269. KuoC.H. LaiY.W. ChiuK.W. LeeS.T. Motion planning and control of interactive humanoid robotic arms.Proceedings of IEEE Workshop on Advanced Robotics and Its Social Impacts, ARSO.Taipei, Taiwan, 23-25 August200816
    [Google Scholar]
  270. MarcosM.G. Tenreiro MachadoJ.A. Azevedo-PerdicoúlisT.P. A multi-objective approach for the motion planning of redundant manipulators.Appl. Soft Comput.201212258959910.1016/j.asoc.2011.11.006
    [Google Scholar]
  271. SongA. ZhangM. Genetic programming for detecting target motions.Connect. Sci.2012242-311714110.1080/09540091.2012.744873
    [Google Scholar]
  272. LiuZ. KamogawaH. OtaJ. Motion planning for two robots of an object handling system considering fast transition between stable states.Adv. Robot.20122611-121291131610.1080/01691864.2012.689731
    [Google Scholar]
  273. Shyh ChyanG. PonnambalamS.G. Obstacle avoidance control of redundant robots using variants of particle swarm optimization.Robot. Comput.-Integr. Manuf.201228147153
    [Google Scholar]
  274. DuguleanaM. BarbuceanuF.G. TeirelbarA. MoganG. Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning.Robot. Comput.-Integr. Manuf.201228132146
    [Google Scholar]
  275. KalaR. ShuklaA. TiwariR. Robot path planning using dynamic programming with accelerating nodes.Paladyn201231233410.2478/s13230‑012‑0013‑4
    [Google Scholar]
  276. LiB. WangM. In-Field recognition and navigation path extraction for pineapple harvesting robots.Intelligent Automation & Soft Computing20131919910710.1080/10798587.2013.771451
    [Google Scholar]
  277. KimJ.H. JooC.B. Optimal motion planning of redundant manipulators with controlled task infeasibility.Mechanism Mach. Theory20136415517410.1016/j.mechmachtheory.2013.02.001
    [Google Scholar]
  278. MollM. BordeauxJ. KavrakiL.E. Software for project-based learning of robot motion planning.Comput. Sci. Educ.201323433234810.1080/08993408.2013.847167
    [Google Scholar]
  279. DeepakB.B.V.L. ParhiD.R. Target seeking behaviour of an intelligent mobile robot using advanced particle swarm optimization.International Conference on Control, Automation, Robotics and Embedded Systems (CARE)2013Jabalpur, India10.1109/CARE.2013.6733749
    [Google Scholar]
  280. ZachariaP.T. XidiasE.K. AspragathosN.A. Task scheduling and motion planning for an industrial manipulator.Robot. Comput.-Integr. Manuf.201329644946210.1016/j.rcim.2013.05.002
    [Google Scholar]
  281. SchulmanJ. DuanY. HoJ. Motion planning with sequential convex optimization and convex collision checking.Int. J. Robot. Res.20143391251127010.1177/0278364914528132
    [Google Scholar]
  282. SongH.C. KimY.L. SongJ.B. Guidance algorithm for complex-shape peg-in-hole strategy based on geometrical information and force control.Adv. Robot.201630855256310.1080/01691864.2015.1130172
    [Google Scholar]
  283. RoozegarM. MahjoobM.J. JahromiM. Optimal motion planning and control of a nonholonomic spherical robot using dynamic programming approach: simulation and experimental results.Mechatronics20163917418410.1016/j.mechatronics.2016.05.002
    [Google Scholar]
  284. ErdősG KovácsA VánczaJ Optimized joint motion planning for redundant industrial robots.CIRP Annals - Manufacturing Technology201665451410.1016/j.cirp.2016.04.024
    [Google Scholar]
  285. SetyawanN. KadirR.E. JazidieA. Adaptive Gaussian parameter particle swarm optimization and its implementation in mobile robot path planning.International Seminar on Intelligent Technology and Its Applications (ISITIA),2017238243IEEE.
    [Google Scholar]
  286. WuK. KrewetC. KuhlenkötterB. Dynamic performance of industrial robot in corner path with CNC controller.Robot. Comput.-Integr. Manuf.20185415616110.1016/j.rcim.2017.11.008
    [Google Scholar]
  287. MaiolinoP. WoolleyR. BransonD. BenardosP. PopovA. RatchevS. Flexible robot sealant dispensing cell using RGB-D sensor and off-line programming.Robot. Comput.-Integr. Manuf.20174818819510.1016/j.rcim.2017.04.004
    [Google Scholar]
  288. SuiZ. XiangL. JenkinsO.C. DesinghK. Goal-directed robot manipulation through axiomatic scene estimation.Int. J. Robot. Res.20173618610410.1177/0278364916683444
    [Google Scholar]
  289. BruneteA. GambaoE. KoskinenJ. Hard material small-batch industrial machining robot.Robot. Comput.-Integr. Manuf.20185418519910.1016/j.rcim.2017.11.004
    [Google Scholar]
  290. JotawarS. SoniM. KumarS. Motion planning for an automated pick and place robot in a retail warehouse.ACM International Conference Proceeding Series2017New Delhi, India1610.1145/3132446.3134904
    [Google Scholar]
  291. PellegrinelliS. PedrocchiN. TosattiL.M. FischerA. TolioT. Multi-robot spot-welding cells for car-body assembly: Design and motion planning.Robot. Comput.-Integr. Manuf.2017449711610.1016/j.rcim.2016.08.006
    [Google Scholar]
  292. BadmosT.A. OmolayeP.O. MebawonduJ. AliyuH.A. Robot path planning performance evaluation of a dynamic environment.IOSR-JECE201813192610.9790/2834‑1306011926
    [Google Scholar]
  293. WichapongK. BureeratS. PholdeeN. Solving inverse kinematics of robot manipulators by means of meta-heuristic optimisation.IOP Conf. Series Mater. Sci. Eng.201837001205610.1088/1757‑899X/370/1/012056
    [Google Scholar]
  294. WahabM.N.A. Nefti-MezianiS. AtyabiA. A comparative review on mobile robot path planning: Classical or meta-heuristic methods?Annu. Rev. Contr.20205023325210.1016/j.arcontrol.2020.10.001
    [Google Scholar]
  295. GangadharanM.M. SalgaonkarA. Ant colony optimization and firefly algorithms for robotic motion planning in dynamic environments.Eng. Rep.20202310.1002/eng2.12132e12132
    [Google Scholar]
  296. LiuS. LiuP. Benchmarking and optimization of robot motion planning with motion planning pipeline.Int. J. Adv. Manuf. Technol.2021949961
    [Google Scholar]
  297. RaheemF.A. And;Gorial II. Comparative study between joint space and cartesian space path planning for two-link robot manipulator using fuzzy logic.RAQI J Comput Commun Control Syst Eng201313110
    [Google Scholar]
/content/journals/meng/10.2174/0122127976326652241018114550
Loading
/content/journals/meng/10.2174/0122127976326652241018114550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test