Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

Energy harvesting systems provide a sustainable way to capture and convert various forms of energy into usable electrical power. The Electromagnetic Energy Harvester (EMEH) systems function based on Faraday’s law and are usually implemented in small systems where the demand for electrical energy is low.

Objective

This study aims to expand the use of a pneumatic cylinder by enabling it to work as an EMEH.

Methods

The objective can be achieved by adding a coil arrangement wrapped around the pneumatic cylinder and taking advantage of the rectilinear motion of the cylinder's inner magnet, which is a moving magnetic field. The paper explored the influence of key parameters on the induced voltage through a series of simulations of several designs in COMSOL software.

Results

The simulation results of the final model show that the obtained induced voltage can be effectively improved by optimizing the main parameters of the coil within a certain range. When the coil is made up of a coil wire with a diameter of 0.4 mm, wound into 1000 turns, the induced peak voltage obtained is 3.22 V, which represents a significant improvement over the initial design parameters.

Conclusion

Furthermore, the simulation shows that the optimized model is capable of achieving an effective voltage of 922 mV. This demonstrates the impact of the key design parameters on the system output, thus confirming the potential application value of enhanced pneumatic cylinders with energy harvesting capabilities.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976311519240604100835
2024-06-26
2025-11-14
Loading full text...

Full text loading...

References

  1. SarkerM.R. SaadM.H.M. OlazagoitiaJ.L. VinolasJ. Review of power converter impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications.Electronics2021109110810.3390/electronics10091108
    [Google Scholar]
  2. ImbaquingoC. BahlC. InsingaA.R. BjørkR. A two-dimensional electromagnetic vibration energy harvester with variable stiffness.Appl. Energy202232511965010.1016/j.apenergy.2022.119650
    [Google Scholar]
  3. LiaoH. YeT. PangY. Modelling and optimization of a magnetic spring based electromagnetic vibration energy harvester.J. Electr. Eng. Technol.202217146347410.1007/s42835‑021‑00904‑4
    [Google Scholar]
  4. ZhangK. ZhangB. FengW. LiuZ. ShenH. LiuB. Diamagnetic-levitation-based electromagnetic energy harvester for ultralow-frequency vibrations and human motions.Sens. Mater.2023351253810.18494/SAM4202
    [Google Scholar]
  5. ZhangY. ZhangK. ShiY. Electromagnetic energy harvesters based on natural leaves for constructing self-powered systems.Mater. Today Energy20222910113110.1016/j.mtener.2022.101131
    [Google Scholar]
  6. MuscatA BhattacharyaS ZhuY Electromagnetic vibrational energy harvesters: A review.Sensors20222215555510.3390/s22155555
    [Google Scholar]
  7. ChoK.H. ParkH.Y. HeoJ.S. PriyaS. Structure–performance relationships for cantilever-type piezoelectric energy harvesters.J. Appl. Phys.20141152020410810.1063/1.4879876
    [Google Scholar]
  8. PrušákováL. NovákP. KulhaP. Modeling and fabrication of single cantilever piezoelectric microgenerator with optimized ZNO active layer.Thin Solid Films201559130531010.1016/j.tsf.2015.05.053
    [Google Scholar]
  9. HafizhM. MuthalifA.G.A. RennoJ. PauroballyM.R. Mohamed AliM.S. A vortex-induced vibration-based self-tunable airfoil-shaped piezoelectric energy harvester for remote sensing applications in water.Ocean Eng.202326911346710.1016/j.oceaneng.2022.113467
    [Google Scholar]
  10. RastegarJ.S. KwokP.C. Self-powered piezoelectric-based programmable electronic impulse switches.US Patent 111771002021
  11. HonmaH. MitsuyaH. HashiguchiG. FujitaH. ToshiyoshiH. Power generation demonstration of electrostatic vibrational energy harvester with comb electrodes and suspensions located in upper and lower decks.Sens. Mater.20223441527153810.18494/SAM3785
    [Google Scholar]
  12. YamaneD. TamuraK. NotaK. Contactless electrostatic vibration energy harvesting using electric double layer electrets.Sens. Mater.20223451869187710.18494/SAM3945
    [Google Scholar]
  13. XuD. ZhuL. YangZ. GaoJ. JinM. Parameter optimization of catering oil droplet electrostatic coalescence under coupling field with COMSOL software.Atmosphere202213578010.3390/atmos13050780
    [Google Scholar]
  14. Duc TruongB. Phu LeC. Theoretical analysis of electrostatic energy harvester configured as Bennet’s doubler based on Q-V cycles.Int. J. Circuit Theory Appl.20235162518254310.1002/cta.3556
    [Google Scholar]
  15. WilliamsC.B. YatesR.B. Analysis of a micro-electric generator for microsystems.Sens. Actuators A Phys.1996521-381110.1016/0924‑4247(96)80118‑X
    [Google Scholar]
  16. YiminL. XianfengH. ZhuZ.Q. Direct power control of a permanent magnet linear generator in a free piston energy converter.2008 International Conference on Electrical Machines and SystemsWuhan, China200836363639
    [Google Scholar]
  17. LeeB.C. RahmanM.A. HyunS.H. ChungG.S. Low frequency driven electromagnetic energy harvester for self-powered system.Smart Mater. Struct.2012211212502410.1088/0964‑1726/21/12/125024
    [Google Scholar]
  18. PrudellJ StoddardM BrekkenTKA von JouanneA A novel permanent magnet tubular linear generator for ocean wave energy. 2009 IEEE Energy Conversion Congress and Exposition.San Jose, CA, USA20093641364610.1109/ECCE.2009.5316224
    [Google Scholar]
  19. VietN.V. WangQ. CarpinteriA. Development of an ocean wave energy harvester with a built-in frequency conversion function.Int. J. Energy Res.201842268469510.1002/er.3851
    [Google Scholar]
  20. DeligianniA. DrikosL. Floating wave energy harvester: A new perspective.Front. Energy Res.202311112215410.3389/fenrg.2023.1122154
    [Google Scholar]
  21. ZhongjieL. LanZ. YanP. JunL. ShaorongX. HuayanP. Twodimensional electromagnetic energy collector for collecting wave energy.CN Patent 112532012-B2022
  22. YuanS. HuangY. ZhouJ. XuQ. SongC. YuanG. A high-efficiency helical core for magnetic field energy harvesting.IEEE Trans. Power Electron.20173275365537610.1109/TPEL.2016.2610323
    [Google Scholar]
  23. YangF. DuL. YuH. HuangP. Magnetic and electric energy harvesting technologies in power grids.Review20202051496
    [Google Scholar]
  24. JoyceB.S. FarmerJ. InmanD.J. Electromagnetic energy harvester for monitoring wind turbine blades.Wind Energy201417686987610.1002/we.1602
    [Google Scholar]
  25. ElvinN.G. ElvinA.A. An experimentally validated electromagnetic energy harvester.J. Sound Vibrat.2011330102314232410.1016/j.jsv.2010.11.024
    [Google Scholar]
  26. WeiC. JingX. A comprehensive review on vibration energy harvesting: Modelling and realization.Renew. Sustain. Energy Rev.20177411810.1016/j.rser.2017.01.073
    [Google Scholar]
  27. SahaC.R. O’DonnellT. WangN. McCloskeyP. Electromagnetic generator for harvesting energy from human motion.Sens. Actuators A Phys.2008147124825310.1016/j.sna.2008.03.008
    [Google Scholar]
  28. AvilaB.A.G. LinaresG.L.E. The modelling of an electromagnetic energy harvesting architecture.Appl. Math. Model.201236104728474110.1016/j.apm.2011.12.007
    [Google Scholar]
  29. JiangX. WangJ. LiY. LiJ. Design and modelling of a novel linear electromagnetic vibration energy harvester.Int. J. Appl. Electromagn. Mech.201446116518310.3233/JAE‑141769
    [Google Scholar]
  30. SimeoneL. TehraniM.G. ElliottS.J. Design of an electromagnetic-transducer energy harvester.J. Phys. Conf. Ser.2016744101208410.1088/1742‑6596/744/1/012084
    [Google Scholar]
  31. TashiroK. IkegamiA. ShimadaS. KojimaH. WakiwakaH. Design of self-generating component powered by magnetic energy harvesting—Magnetic field alarm.Next Generation Sensors and Systems Smart Sensors, Measurement and Instrumentation.ChamSpringer International Publishing2016Vol. 16311330
    [Google Scholar]
  32. AhamedR. RashidM.M. FerdausM.M. YusufH.B. Modelling and performance evaluation of energy harvesting linear magnetorheological (MR) damper.J. Low Freq. Noise Vib. Act. Control201736217719210.1177/0263092317711993
    [Google Scholar]
  33. BrunnerS. GerstM. PylatiukC. Design of a body energy harvesting system for the upper extremity.Curr. Dir. Biomed. Eng.20173233133410.1515/cdbme‑2017‑0067
    [Google Scholar]
  34. PathanFR Kinetic energy harvesting from human hand movement by mounting micro electromagnetic generator.E3S Web of Conferences20191150200510.1051/e3sconf/201911502005
    [Google Scholar]
  35. HaronianD. HaronianM. Electromagnetic vibration and energy harvester having vibrating body, magnets and stationary magnet and hinge.US Patent 11,581,8282023
  36. PhanT.N. BaderS. OelmannB. Performance of an electromagnetic energy harvester with linear and nonlinear springs under real vibrations.Sensors20202019545610.3390/s20195456
    [Google Scholar]
  37. EschJ. YlliK. StojakovD. WillmannA. HoffmannD. ManoliY. Energy harvesting flex-coil system for pneumatic pistons.J. Phys. Conf. Ser.20181052101207910.1088/1742‑6596/1052/1/012079
    [Google Scholar]
  38. PrajwalK.T. ManickavasagamK. SureshR. A review on vibration energy harvesting technologies: Analysis and technologies.Eur. Phys. J. Spec. Top.202223181359137110.1140/epjs/s11734‑022‑00490‑0
    [Google Scholar]
  39. PeihongW. HuitingL. ZhuoqingY. High-performance micro electromagnetic vibration energy harvester easy for integrated manufacturing.CN Patent 101924451-B2013
  40. HaixiaZ. ShouheZ. QuanY. RuoxiJ. MengdiH. Electromagnetic energy harvester with linear and nonlinear springs under real vibrations.CN Patent 102723839-B2014
  41. SokK.E. QianZ. Electromagnetic energy conversion through coil and magnet arrays.US Patent 9231461B22013
  42. ShubinY. JianqiangH. JianH. XiaojuanH. JiliangM. ChenyangX. Magnet floating type vibratory drive electromagnetic energy harvester.CN Patent 105846641-B2019
  43. HaronianM. KorotaevS.D. Electromagnetic kinetic energy harvester.US Patent 202302388702023
  44. ErtugrulI. UlkirO. OzerS. OzelS. Analysis of thermal barrier coated pistons in the COMSOL and the effects of their use with water + ethanol doped biodiesel.Therm. Sci.2022264 Part A2981298910.2298/TSCI2204981E
    [Google Scholar]
  45. LiC ZhouY WangP Design and experiments of electromagnetic heating forming technology.IEEE Access20197626466265610.1109/ACCESS.2019.2912333
    [Google Scholar]
  46. UlkirO. ErtugrulI. AkkusN. OzerS. Fabrication and experimental study of micro-gripper with electrothermal actuation by stereolithography method.J. Mater. Eng. Perform.202231108148815910.1007/s11665‑022‑06875‑5
    [Google Scholar]
  47. MasaraD.O. El GamalH. MokhiamarO. Split cantilever multi-resonant piezoelectric energy harvester for low-frequency application.Energies20211416507710.3390/en14165077
    [Google Scholar]
  48. QianP. LiuL. WuJ. A novel double-acting, air-floating, frictionless pneumatic actuator.Sens. Actuators A Phys.202336211467410.1016/j.sna.2023.114674
    [Google Scholar]
  49. GaiC. Air strategy and application of PP Bi directional air cylinder positioning system.1st EAI International Conference on Multimedia Technology and Enhanced Learning, ICMTEL 2016Inner Mongolia, People’s Republic of China13-16 August 2016
    [Google Scholar]
  50. QianP HeD PuC LuoH LiX ZhangB Friction-adjustable air cylinder with independent air supply at rear end.CN Patent 113700696B2021
  51. MustaffaMT OhuchiH Repeated positioning of a pneumatic cylinder with enhancing use of proximity switches. Int J Autom Technol20126566266810.20965/ijat.2012.p0662
    [Google Scholar]
  52. RipkaP. BlažekJ. MirzaeiM. LipovskýP. ŠmelkoM. DraganováK. Inductive position and speed sensors.Sensors20192016510.3390/s20010065
    [Google Scholar]
  53. WacharasindhuT. KwonJ.W. A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion.J. Micromech. Microeng.2008181010401610.1088/0960‑1317/18/10/104016
    [Google Scholar]
  54. ChallaV.R. PrasadM.G. FisherF.T. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching.Smart Mater. Struct.200918909502910.1088/0964‑1726/18/9/095029
    [Google Scholar]
  55. FanK. LiuS. LiuH. ZhuY. WangW. ZhangD. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester.Appl. Energy201821682010.1016/j.apenergy.2018.02.086
    [Google Scholar]
  56. TadesseY. ShujunZ. PriyaS. Multimodal energy harvesting system: Piezoelectric and electromagnetic.J. Intell. Mater. Syst. Struct.200920562563210.1177/1045389X08099965
    [Google Scholar]
  57. KleinJ. ZuoL. A velocity-amplified electromagnetic energy harvester for small amplitude vibration.Smart Mater. Struct.201726909505710.1088/1361‑665X/aa7e54
    [Google Scholar]
  58. HalimM.A. ParkJ.Y. Modeling and experiment of a handy motion driven, frequency up-converting electromagnetic energy harvester using transverse impact by spherical ball.Sens. Actuators A Phys.2015229505810.1016/j.sna.2015.03.024
    [Google Scholar]
/content/journals/meng/10.2174/0122127976311519240604100835
Loading
/content/journals/meng/10.2174/0122127976311519240604100835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test