Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Aim

The disposal of chicken eggshell (ES), a byproduct of aviculture, is a major environmental issue. Chicken eggshell can be utilized to create new low-cost, low-density consumer goods materials. In order to alleviate environmental difficulties, the proper usage of ES as a bio-waste should be actively pursued.

Background

Composites emerged as the most promising materials in recent years. Nowadays, hybrid aluminium matrix composites were developed by utilizing of low-cost reinforcements with less density and high strength. Composite materials which were developed by use of agricultural waste as a reinforcement can be utilized in various applications/industries such as aeronautical, manufacturing, automobile .

Objective

The objective of present work is to find out the tribological characteristics of AA2024/SiC/carbonized eggshell hybrid green aluminium metal matrix composites (AMMCs). The wear rate (WR) and coefficient of friction (CF) were investigated at different combinations of load, reinforcement, sliding speed, and sliding distance.

Methods

A Taguchi-based L orthogonal array methodology was used to set up the combination of parameters. The mathematical models have been developed, and solved using non-dominating sorting genetic algorithm-II (NSGA-II). The solutions were predicted using NSGA-II were ranked using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The confirmation experiments were performed at three suggested settings (rank 1 to rank 3). In one of the patents (CN113957284B) the development method for hybrid composites is discussed.

Results

The results revealed that hardness of AA2024 hybrid green composite was observed to be enhanced as compared to base aluminium alloy. Wear resistance of the AA2024/SiC/carbonized eggshell composite was also improved. The patents on Al composite (US 3649227) revealed that after the addition of reinforcement, the mechanical characteristics such as tensile strength was improved.

Conclusion

Wear resistance is improved on AA2024/SiC/carbonized eggshell composite. With an increase in reinforcement percentage and speed, the WR decreased from 29.16×10-5 g/min to 26×10-5 g/min. The CF increases from 0.4 to 0.46 with the increase in reinforcement percentage, from 3% to 12%.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976331644240911113225
2024-09-23
2025-11-14
Loading full text...

Full text loading...

References

  1. SuleimanI.Y. AbdulwahabM. AweF.E. Influence of particulate loading on the mechanical properties of Al-4.5 Cu/GSA composite.Nig J Eng2016238697
    [Google Scholar]
  2. AlanemeK.K. AdewaleT.M. OlubambiP.A. Corrosion and wear behaviour of Al–Mg–Si alloy matrix hybrid composites reinforced with rice husk ash and silicon carbide.J. Mater. Res. Technol.20143191610.1016/j.jmrt.2013.10.008
    [Google Scholar]
  3. FetzerM.C. SprowlJ.D. MohondroW.R. Aluminum compositeUS Patent 36492271972
    [Google Scholar]
  4. HassanS.B. AigbodionV.S. Effects of eggshell on the microstructures and properties of Al–Cu–Mg/eggshell particulate composites.J. King Saud Univ. Eng. Sci.2015271495610.1016/j.jksues.2013.03.001
    [Google Scholar]
  5. SawtellR.R. ChuM.G. RiojaR. Armor with variable composition having metallurgically bonded layers.US Patent 13/0508022011
  6. WangJ. YangB. XingZ. Metal matrix ceramic composite and manufacturing method and application thereof.US Patent 92124132015
  7. TanD. XiaS. LoumingL.I. Composite brake disc, preparation method thereof and friction stir tool.US Patent 18/0280032023
  8. PirondiA. ColliniL. Analysis of crack propagation resistance of Al–Al2O3 particulate-reinforced composite friction stir welded butt joints.Int. J. Fatigue200931111112110.1016/j.ijfatigue.2008.05.003
    [Google Scholar]
  9. MegahedM. AttiaM.A. AbdelhameedM. El-ShafeiA.G. Tribological characterization of hybrid metal matrix composites processed by powder metallurgy.Acta Metall Sin201730878179010.1007/s40195‑017‑0568‑5
    [Google Scholar]
  10. BuleiC. StojanovicB. UtuD. Developments of discontinuously reinforced aluminium matrix composites: Solving the needs for the matrix.J. Phys. Conf. Ser.20222212101202910.1088/1742‑6596/2212/1/012029
    [Google Scholar]
  11. MiladinovićS. StojanovićB. GajevićS. VenclA. Hypereutectic aluminum alloys and composites: A review.Silicon20231562507252710.1007/s12633‑022‑02216‑2
    [Google Scholar]
  12. PetrovaA. YanevaS. MitevaA. StefanovG. BarbovB. Study of oxidation kinetics of al-si alloys with high concentration of impurities (Fe, Zr, V).Adv Eng Lett2022111710.46793/adeletters.2022.1.1.1
    [Google Scholar]
  13. DesnicaE. AšonjaA. KljajinM. GlavašH. PastukhovA. Analysis of bearing assemblies refit in agricultural PTO shafts.Teh. Vjesn.202330387288110.17559/TV‑20221117162133
    [Google Scholar]
  14. MilojevićS. StojanovićB. Determination of tribological properties of aluminum cylinder by application of Taguchi method and ANN-based model.J. Braz. Soc. Mech. Sci. Eng.2018401257110.1007/s40430‑018‑1495‑8
    [Google Scholar]
  15. AnkitT. JitendraR. ShubhangiC. MeenaS.L. PandeyS.M. Effect of sliding velocity on the wear behavior of HVOF sprayed Al2O3 coating.J. Phys. Conf. Ser.20211950101200810.1088/1742‑6596/1950/1/012008
    [Google Scholar]
  16. TyagiA. PandeyS.M. WaliaR.S. MurtazaQ. KumarA. Effect of temperature on the sliding wear behavior of HVOF sprayed Al2O3 composite coating. PandeyC. GoyatV. GoelS. Advances in Materials and Mechanical Engineering. Lecture Notes in Mechanical Engineering.SingaporeSpringer2021232810.1007/978‑981‑16‑0673‑1_3
    [Google Scholar]
  17. ChaurasiaR. SarangiS.K. Tribological and mechanical properties of graphene nano platelets (GNP)-reinforced aluminium 7075 nano composites.Recent Pat. Mech. Eng.20241711810.2174/0122127976305485240329053923
    [Google Scholar]
  18. RamanathanA. KrishnanP.K. MuralirajaR. A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities.J. Manuf. Process.20194221324510.1016/j.jmapro.2019.04.017
    [Google Scholar]
  19. AnilkumarH.C. HebbarH.S. RavishankarK.S. Mechanical properties of fly ash reinforced aluminium alloy (Al6061) composites.Int J Mech Mater Eng2011614145
    [Google Scholar]
  20. KokM. Production and mechanical properties of Al2O3 particlereinforced 2024 aluminium alloy composites.J Mater Process Technol2005161338138710.1016/j.jmatprotec.2004.07.068
    [Google Scholar]
  21. BandilK. VashisthH. KumarS. Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite.J. Compos. Mater.20195328-304215422310.1177/0021998319856679
    [Google Scholar]
  22. KarthikeyanA. NallusamyS. Investigation on mechanical properties and wear behavior of Al-Si-SiC-graphite composite using SEM and EDAX.IOP Conf. Series Mater. Sci. Eng.2017225101228110.1088/1757‑899X/225/1/012281
    [Google Scholar]
  23. Kanayo AlanemeK. Apata OlubambiP. Corrosion and wear behaviour of rice husk ash—Alumina reinforced Al–Mg–Si alloy matrix hybrid composites.J. Mater. Res. Technol.20132218819410.1016/j.jmrt.2013.02.005
    [Google Scholar]
  24. MadaksonP.B. YawasD.S. ApasiA. Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications.Int. J. Eng. Sci. Technol.20124311901198
    [Google Scholar]
  25. KumarG.B.V. RaoC.S.P. SelvarajN. Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–A review.J. Miner. Mater. Charact. Eng.2011101599110.4236/jmmce.2011.101005
    [Google Scholar]
  26. WuS.Q. WangH.Z. TjongS.C. Mechanical and wear behavior of an Al/Si alloy metal-matrix composite reinforced with aluminosilicate fiber.Compos. Sci. Technol.199656111261127010.1016/S0266‑3538(96)00085‑1
    [Google Scholar]
  27. ObasiN.A. UkadilonuJ. EzeE. AkubugwoE.I. OkorieU.C. Proximate composition, extraction, characterization and comparative assessment of coconut (Cocos nucifera) and melon (Colocynthis citrullus) seeds and seed oils.Pak. J. Biol. Sci.20121511910.3923/pjbs.2012.1.9
    [Google Scholar]
  28. AbdulwahabM. DodoR.M. SuleimanI.Y. GebiA.I. UmarI. Wear behavior of Al-7%Si-0.3%Mg/melon shell ash particulate composites.Heliyon201738e0037510.1016/j.heliyon.2017.e00375
    [Google Scholar]
  29. SurappaM.K. Aluminium matrix composites: Challenges and opportunities.Sadhana200328131933410.1007/BF02717141
    [Google Scholar]
  30. PrasadN. Development and characterization of metal matrix composite using red mud, an industrial waste, for wear resistant applications (dissertation).Rourkela (India): National Institute of Technology Rourkela2006
    [Google Scholar]
  31. HebbarH.S. RavindraK.G. Study of the mechanical and tribological properties of aluminium alloy–SiCp composites processed by stir casting method.Proceedings of the IISc Centenary–International Conference on Advances in Mechanical Engineering (IC-ICAME)2008 Jul 2-4Bangalore, India24
    [Google Scholar]
  32. NarasarajuG. RajuD.L. Characterization of hybrid rice husk and fly ash-reinforced aluminium alloy (AlSi10Mg) composites.Mater. Today Proc.201524-53056306410.1016/j.matpr.2015.07.245
    [Google Scholar]
  33. Amiri DeloueiA. EmamianA. SajjadiH. A comprehensive review on multi-dimensional heat conduction of multi-layer and composite structures: Analytical solutions.J. Therm. Sci.20213061875190710.1007/s11630‑021‑1517‑1
    [Google Scholar]
  34. ShanmugavelR. SundaresanT.K. MarimuthuU. ManickarajP. Process optimization and wear behavior of red mud reinforced aluminum composites.Adv. Tribol.201620161710.1155/2016/9082593
    [Google Scholar]
  35. DwivediS.P. SharmaS. MishraR.K. Microstructure and mechanical behavior of A356/SiC/Fly-ash hybrid composites produced by electromagnetic stir casting.J. Braz. Soc. Mech. Sci. Eng.2015371576710.1007/s40430‑014‑0138‑y
    [Google Scholar]
  36. AkbariM. ShojaeefardM.H. AsadiP. KhalkhaliA. Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II.Trans. Nonferrous Met. Soc. China201727112317233310.1016/S1003‑6326(17)60258‑9
    [Google Scholar]
  37. SinghN. BelokarR.M. WaliaR.S. Morphological and mechanical behavior of novel Al7075 (T6) + 3.5% SiC + 0.3% CR + 5.5% MoS2-based green hybrid composite: an experimental analysis and optimization via TOPSIS.Proc. Inst. Mech. Eng. Part, E J. Process Mech. Eng.202310.1177/09544089231225751
    [Google Scholar]
  38. KumarA. GulatiV. KumarP. SinghV. KumarB. SinghH. Parametric effects on formability of AA2024-O aluminum alloy sheets in single point incremental forming.J. Mater. Res. Technol.2019811461146910.1016/j.jmrt.2018.11.001
    [Google Scholar]
  39. DwivediS.P. SharmaS. MishraR.K. Synthesis and mechanical behaviour of green metal matrix composites using waste eggshells as reinforcement material.Green Process Syn20165327528210.1515/gps‑2016‑0006
    [Google Scholar]
  40. ThamL.M. GuptaM. ChengL. Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites.Acta Mater.200149163243325310.1016/S1359‑6454(01)00221‑X
    [Google Scholar]
  41. TuL. DengY. ZhengT. Wear and friction analysis of cubic boron nitride tools with different binders in high-speed turning of nickel-based superalloys.Tribol. Int.202217310765910.1016/j.triboint.2022.107659
    [Google Scholar]
  42. VermaS. PantM. SnášelV. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems.IEEE Access20219577575779110.1109/ACCESS.2021.3070634
    [Google Scholar]
  43. XuJ. YanF. LiY. YangZ. LiL. Multiobjective optimization of milling parameters for ultrahigh-strength steel AF1410 based on the NSGA-II method.Adv. Mater. Sci. Eng.202020201879673810.1155/2020/8796738
    [Google Scholar]
  44. DebK. PratapA. AgarwalS. MeyarivanT. A fast and elitist multiobjective genetic algorithm: NSGA-II.IEEE Trans. Evol. Comput.20026218219710.1109/4235.996017
    [Google Scholar]
  45. KhullarV.R. SharmaN. KishoreS. SharmaR. RSM- and NSGA-II-Based multiple performance characteristics optimization of EDM parameters for AISI 5160.Arab. J. Sci. Eng.20174251917192810.1007/s13369‑016‑2399‑5
    [Google Scholar]
  46. El RayesM.M. AbbasA.T. Al-AbduljabbarA.A. RagabA.E. BenyahiaF. ElkaseerA. Investigation and statistical analysis for optimizing surface roughness, cutting forces, temperature, and productivity in turning grey cast iron.Metals (Basel)2023136109810.3390/met13061098
    [Google Scholar]
  47. GuptaV. SinghB. MishraR.K. Microstructural and mechanical characterization of novel AA7075 composites reinforced with rice husk ash and carbonized eggshells.J Mater: Design and Appl20212351210.1177/14644207211031265
    [Google Scholar]
  48. JannetS. RajaR. RajeshR.S. Effect of egg shell powder on the mechanical and microstructure properties of AA 2024 metal matrix composite.Mater. Today Proc.20214413514010.1016/j.matpr.2020.08.546
    [Google Scholar]
  49. NagpalY. SharmaR. SharmaN. TyagiR.K. Microstructure characterisation and analysis of AA2024/SiC/carbonised eggshell-reinforced hybrid green aluminium matrix composite.Advances in Engineering Materials.SingaporeSpringer2024132210.1007/978‑981‑99‑4758‑4_3
    [Google Scholar]
  50. NagpalY. SharmaR. SharmaN. TyagiR.K. Fabrication of AA2024/SiC/eggshell reinforced hybrid green aluminium matrix composite by stir casting route.Mater. Today Proc.20237872673010.1016/j.matpr.2023.02.149
    [Google Scholar]
  51. KiryakovaD. KolchakovaG. Preparation and characterization of eggshells powders treated with hydrochloric acid and sodium hydroxide.Adv Eng Lett202323818710.46793/adeletters.2023.2.3.1
    [Google Scholar]
  52. ChauhanS. VashishthaG. GuptaM.K. Parallel structure of crayfish optimization with arithmetic optimization for classifying the friction behaviour of Ti-6Al-4V alloy for complex machinery applications.Knowl. Base. Syst.202428611138910.1016/j.knosys.2024.111389
    [Google Scholar]
  53. GuptaM.K. KorkmazM.E. ShibiC.S. Tribological characteristics of additively manufactured 316 stainless steel against 100 cr6 alloy using deep learning.Tribol. Int.202318810889310.1016/j.triboint.2023.108893
    [Google Scholar]
  54. DemirsozR. UğurA. ErdoğduA.E. KorkmazM.E. GuptaM.K. Abrasive wear behavior of nano-sized steel scale on soft CuZn35Ni2 material.J. Mater. Eng. Perform.202332198858886910.1007/s11665‑022‑07751‑y
    [Google Scholar]
  55. KorkmazM.E. GuptaM.K. SinghG. Machine learning models for online detection of wear and friction behaviour of biomedical graded stainless steel 316L under lubricating conditions.Int. J. Adv. Manuf. Technol.20231285-62671268810.1007/s00170‑023‑12108‑3
    [Google Scholar]
  56. GajevićS. MarkovićA. MilojevićS. AšonjaA. IvanovićL. StojanovićB. Multi-objective optimization of tribological characteristics for aluminum composite using taguchi grey and TOPSIS approaches.Lubricants202412517110.3390/lubricants12050171
    [Google Scholar]
  57. MiladinovićS. GajevićS. SavićS. MiletićI. StojanovićB. VenclA. Tribological behaviour of hypereutectic Al-Si Composites: A multi-response optimisation approach with ANN and taguchi grey method.Lubricants20241226110.3390/lubricants12020061
    [Google Scholar]
  58. BhaskarS. KumarM. PatnaikA. Application of hybrid AHP-TOPSIS technique in analyzing material performance of silicon carbide ceramic particulate reinforced AA2024 alloy composite.Silicon20201251075108410.1007/s12633‑019‑00211‑8
    [Google Scholar]
  59. BhaskarS. KumarM. PatnaikA. Investigation for the optimum selection of hybrid AA2024 – ceramic particulate alloy composite materials prepared through stir casting using the hybrid AHP-TOPSIS MCDM technique.Can. Metall. Q.202312910.1080/00084433.2023.2294546
    [Google Scholar]
  60. SajjadiH. NabaviS.N. AtashafroozM. AmiriD.A. Optimization of heating and cooling system locations by Taguchi’s method to maximize or minimize the natural convection heat transfer rate in a room.Iran. J. Sci. Technol. Trans. Mech. Eng.20234741599161410.1007/s40997‑023‑00624‑2
    [Google Scholar]
  61. SajjadiH. NabaviS.N. AhmadiG. Amiri DeloueiA. NaeimiH. Sensitivity analysis of the location of inlet and outlet air on the particle transmission in a modeled room utilizing Taguchi method and ANOVA.Amirkabir J Mech Eng20245613310.22060/MEJ.2024.22942.7698
    [Google Scholar]
  62. DeloueiA.A. EmamianA. GhorbaniS. HeF. Spherical partial differential equation with non‐constant coefficients for modeling of nonlinear unsteady heat conduction in functionally graded materials.Z. Angew. Math. Mech.2024e20230072510.1002/zamm.202300725
    [Google Scholar]
  63. DeloueiA.A. EmamianA. GhorbaniS. HeF. A general unsteady Fourier solution for orthotropic heat transfer in 2D functionally graded cylinders.Math. Methods Appl. Sci.20244763942395910.1002/mma.9796
    [Google Scholar]
  64. Amiri DeloueiA. EmamianA. KarimnejadS. SajjadiH. JingD. Two-dimensional temperature distribution in FGM sectors with the power-law variation in radial and circumferential directions.J. Therm. Anal. Calorim.2021144361162110.1007/s10973‑020‑09482‑5
    [Google Scholar]
  65. DeloueiA.A. EmamianA. KarimnejadS. SajjadiH. JingD. Asymmetric conduction in an infinite functionally graded cylinder: Two-dimensional exact analytical solution under general boundary conditions.J. Heat Transfer2020142404450510.1115/1.4046306
    [Google Scholar]
  66. SajjadiH. NabaviS.N. AhmadiG. DeloueiA.A. Optimization of ventilation register locations for reducing suspended particle concentration using the taguchi method.J Appl Comp Mech202410.22055/JACM.2024.46267.4488.
    [Google Scholar]
  67. Amiri DeloueiA. EmamianA. KarimnejadS. LiY. An exact analytical solution for heat conduction in a functionally graded conical shell.J. Appl. Comput. Mech.202392302317
    [Google Scholar]
  68. EmamianA. AmiriD.A. KarimnejadS. JingD. Analytical solution for temperature distribution in functionally graded cylindrical shells under convective cooling.Math. Methods Appl. Sci.20234610114421146110.1002/mma.7819
    [Google Scholar]
  69. HeF. AmiriD.A. EllahiR. AlamriS.Z. EmamianA. GhorbaniS. Unsteady temperature distribution in a cylinder made of functionally graded materials under circumferentially-varying convective heat transfer boundary conditions.Z. Naturforsch. A2023781089390610.1515/zna‑2023‑0039
    [Google Scholar]
/content/journals/meng/10.2174/0122127976331644240911113225
Loading
/content/journals/meng/10.2174/0122127976331644240911113225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test