Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

Owing to the promising characteristics— high strength-to-weight ratio, acoustic and thermal insulation, renewable and biodegradable, sisal fiber-based composites have been explored. Including patents, interesting literature is available on sisal fiber-based composites.

Methods

The materials under investigation were sisal fiber (SF), polypropylene (PP), and sisal- fiber-reinforced polypropylene composite (SFR-PC). Three different samples of SFR-PC were fabricated injection molding. Their morphological-, mechanical-, thermal-, and water absorption- properties were analyzed.

Results

The untreated sisal fiber (USF) sample showed a network microstructure with micro-void; however, the alkali (NaOH)-treated sisal fiber (TSF) sample envisages surface roughness morphology. The C-O stretching vibration of the acetyl groups of lignin in the USF vanished after the alkali treatment of SF. The degree of crystallinity index, thermal stability, weight loss, and water resistance improved with the alkali (NaOH) treatment of SF. The tensile modulus (E) for SFR- PC showed an increasing trend with the addition of TSF at all weights % envisaging a better interaction between polymer matrix and reinforcement; however, the 90PP-10TSF sample exhibited the highest storage modulus (Eˈ) at all temperatures due to the TSF distribution and agglomeration in the polymer matrix. The addition of TSF improved the loss modulus (E˝) for the SFR-PC sample as compared to the PP sample.

Conclusion

The 90PP-10TSF sample showed the optimum distribution of TSF in the PP matrix. DSC secondary heating thermograph depicted that the addition of TSF did not affect the melting temperature of SFR-PC samples, and the cooling thermograph showed that the addition of TSF in the polymer matrix gradually increased the crystallization temperature, suggesting a better packing of the cellulose chain. The 70PP-30TSF sample showed the highest absorption, followed by 80PP-20TSF and 90PP-10TSF samples, whereas the PP sample showed the lowest absorption.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976319507240723102247
2024-08-12
2025-11-14
Loading full text...

Full text loading...

References

  1. KannanS. BrightR.J. MosesA.J. Materials today: Proceedings A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibers.Mater. Today Proc.20203379880510.1016/j.matpr.2020.06.259
    [Google Scholar]
  2. PradeepS.A. IyerR.K. KazanH. PillaS. Automotive Applications of Plastics: Past, Present, and Future.In: Applied Plastics Engineering Handbook.Elsevier Inc.2017651673
    [Google Scholar]
  3. MoritomiS. WatanabeT. KanzakiS. Polypropylene compounds for automotive applications.Sumitomo Kagaku201011116
    [Google Scholar]
  4. UlkirO. ErtugrulI. AkkusN. OzerS. Production of piezoelectric cantilever using MEMS-based layered manufacturing technology.Optik202327317047210.1016/j.ijleo.2022.170472
    [Google Scholar]
  5. RajakD. PagarD. MenezesP. LinulE. Fiber-reinforced polymer composites: Manufacturing, properties, and applications.Polymers20191110166710.3390/polym11101667 31614875
    [Google Scholar]
  6. TyagiA. PandeyS.M. WaliaR.S. MurtazaQ. KumarA. Effect of Temperature on the Sliding Wear Behavior of HVOF Sprayed Al2O3 Composite Coating BT-Advances in Materials and Mechanical Engineering.Singapore: Springer Singapore20212328
    [Google Scholar]
  7. ÖzerS. Raised agricultural bed applications supported with compost products left after biofuel production.In: Proceedings of the 2nd International Conference on Engineering, Natural and Social Sciences2023 Mar 25–26; Konya, Türkiye. Aksaray: Asproceeding202310210510.5281/zenodo.7763456
    [Google Scholar]
  8. ÖzerS. VuralE. Use of domestic waste paper as biofuel.In: Proceedings of the 2nd International Conference on Engineering, Natural and Social Sciences; 2023 Mar 25–26; Konya, Türkiye.Aksaray: Asproceeding2023372374Available from: https://asproceeding.com/index.php/icensos/article/view/472
    [Google Scholar]
  9. BelaadiA. BourchakM. AouiciH. Mechanical properties of vegetal yarn: Statistical approach.Compos., Part B Eng.201610613915310.1016/j.compositesb.2016.09.033
    [Google Scholar]
  10. KumarP MakhathaME VishwanathaHM HiremathS VermaBB Mechanical properties and moisture diffusion in hot-pressed jute fiber composite subjected to hygrothermal ageing.Proc Inst Mech Eng Part E J Process Mech Eng20232371011210.1177/09544089231215205
    [Google Scholar]
  11. KhanM.A. GuruS. PadmakaranP. MishraD. Characterisation studies and impact of chemical treatment on mechanical properties of sisal fiber.Composite Interfaces201118652754110.1163/156855411X610250
    [Google Scholar]
  12. KumarP. TiwariM. MakhathaM.E. DeyA. VermaB.B. Effect of rate of loading on jute fibrereinforced polymer composite.Trans. Indian Inst. Met.20207361573157710.1007/s12666‑020‑01934‑8
    [Google Scholar]
  13. Abd HalipJ. HuaL.S. AshaariZ. TahirP.M. ChenL.W. UyupM.K.A. Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites.In: Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites.Woodhead Publishing201914115610.1016/B978‑0‑08‑102292‑4.00008‑4
    [Google Scholar]
  14. TajS. MunawarM.A. KhanS. Natural fiber-reinforced polymer composites.Proc Pakistan Acad Sci2007442129
    [Google Scholar]
  15. HuC. SunZ. XiaoY. QinQ. Recent patents in additive manufacturing of continuous fiber reinforced composites.Recent Pat. Mech. Eng.2019121253610.2174/2212797612666190117131659
    [Google Scholar]
  16. ZhangM.H. ChenJ.K. ZhaoF. BaiS.L. A new model of interfacial adhesive strength of fiber-reinforced polymeric composites upon consideration of cohesive force.Int. J. Mech. Sci.2016106506110.1016/j.ijmecsci.2015.12.003
    [Google Scholar]
  17. LiuL. YuanZ. FanX. PanC. LiX. A review of interfacial bonding mechanism of bamboo fiber reinforced polymer composites.Cellulose20212021118
    [Google Scholar]
  18. HanY KimB Preparation method of ecofriendly polymer mortar comprising high performance and hydrophilic PVA fiber and natural sisal fiber, and method of crack control and repairing using the same.KR Patent 101921900B12018
    [Google Scholar]
  19. ChongwenY JiajiaF YuanmingZ SumingW Process for producing sisal fiber.CN Patent 101294309B2010
    [Google Scholar]
  20. MofokengT.G. RayS.S. Influence of selectively localised nanoclay particles on non-isothermal crystallisation and degradation behaviour of PP/LDPE blend composites.Polymers2018103245
    [Google Scholar]
  21. KimJ.H. KwonD.J. LimC.S. SeoB.K. DeVriesK.L. ParkJ.M. Interfacial adhesion evaluation via wettability for fiber reinforced polymer composites: A review.Compos. Interfaces202330328329910.1080/09276440.2022.2099519
    [Google Scholar]
  22. LiuL. JiaC. HeJ. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites.Compos. Sci. Technol.2015121567210.1016/j.compscitech.2015.08.002
    [Google Scholar]
  23. ShubhraQ.T. AlamA.M. QuaiyyumM.A. Mechanical properties of polypropylene composites: A review.J. Thermopl. Compos. Mat.2013263362391
    [Google Scholar]
  24. NaveenJ. JawaidM. AmuthakkannanP. ChandrasekarM. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites.In: Mechanical and physical testing of biocomposites, fibrereinforced composites and hybrid composites.Woodhead Publishing201942744010.1016/B978‑0‑08‑102292‑4.00021‑7
    [Google Scholar]
  25. KabirM.M. WangH. LauK.T. CardonaF. Composites: Part B Chemical treatments on plant-based natural fiber reinforced polymer composites: An overview.Compos Part B20124372883289210.1016/j.compositesb.2012.04.053
    [Google Scholar]
  26. FerreiraD.P. CruzJ. FangueiroR. Surface modification of natural fibers in polymer composites.In: Green Composites for Automotive Applications.Elsevier Ltd201934110.1016/B978‑0‑08‑102177‑4.00001‑X
    [Google Scholar]
  27. HinterstoisserB. SalménL. Application of dynamic 2D FTIR to cellulose.Vib. Spectrosc.2000221-211111810.1016/S0924‑2031(99)00063‑6
    [Google Scholar]
  28. PrasadM.G. GirimathA.G. RaoS. Investigation of mechanical properties of sisal fiber reinforced polymer composites.Adv J Grad Res201711404810.21467/ajgr.1.1.40‑48
    [Google Scholar]
  29. MohanTP KannyK Chemical treatment of sisal fiber using alkali and clay method.Compos Part A Appl Sci Manuf201243111989199810.1016/j.compositesa.2012.07.012
    [Google Scholar]
  30. NoorunnisaK.P. AbdulK.H.P.S. RamachandraR.G. VenkataN.S. Tensile, flexural and chemical resistance properties of sisal fibre reinforced polymer composites: Effect of fibre surface treatment.J. Polym. Environ.201119111511910.1007/s10924‑010‑0219‑7
    [Google Scholar]
  31. OladeleI.O. AgbabiakaO.G. Investigating the influence of mercerization treatment of sisal fiber on the mechanical properties of reinforced polypropylene composites and modeling of the properties.Fibers Polym.201516365065610.1007/s12221‑015‑0650‑4
    [Google Scholar]
  32. SunZ. MingmingW. Effects of sol-gel modification on the interfacial and mechanical properties of sisal fiber reinforced polypropylene composites.Ind. Crops Prod.2019137899710.1016/j.indcrop.2019.05.021
    [Google Scholar]
  33. OladeleI.O. OmotoyinboJ.A. AdewuyiB.O. KavisheF.P.L. The effects of production processes on the mechanical properties of sisal fibre reinforced polypropylene composites.Philipp. J. Sci.20131422189198
    [Google Scholar]
  34. MundeY.S. IngleR.B. SivaI. Effect of sisal fiber loading on mechanical, morphological and thermal properties of extruded polypropylene composites.Mater. Res. Express20196085307
    [Google Scholar]
  35. HariprasadK. RavichandranK. JayaseelanV. MuthuramalingamT. Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications.J. Mater. Res. Technol.202096140291403510.1016/j.jmrt.2020.09.112
    [Google Scholar]
  36. WagihA. JunaediH. MahmoudH.A. LubineauG. KumarA. SebaeyT.A. Enhanced damage tolerance and fracture toughness of lightweight carbon-Kevlar fiber hybrid laminate.J. Compos. Mater.20245891109112110.1177/00219983241235853
    [Google Scholar]
  37. GoyatV. GhangasG. SirohiS. KumarA. NainJ. A review on mechanical properties of coir based composites.Mat Tod Proc.20226241738174510.1016/j.matpr.2021.12.252
    [Google Scholar]
  38. LeeC.H. KhalinaA. LeeS.H. Importance of interfacial adhesion condition on characterization of plantfiber- reinforced polymer composites: A review.Polymers202113343810.3390/polym13030438 33573036
    [Google Scholar]
  39. Sathees KumarS. MuthalaguR. Nithin ChakravarthyC.H. Effects of fiber loading on mechanical characterization of pineapple leaf and sisal fibers reinforced polyester composites for various applications.Mat Tod Proc.202144154655310.1016/j.matpr.2020.10.214
    [Google Scholar]
  40. KrishnaiahP. ThevyC. ManickamS. Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments.Ultrason. Sonochem.20173472974210.1016/j.ultsonch.2016.07.008 27773300
    [Google Scholar]
  41. HaqueR. SaxenaM. ShitS.C. AsokanP. Fibrematrix adhesion and properties evaluation of sisal polymer composite.Fibers Polym.20151614615210.1007/s12221‑015‑0146‑2
    [Google Scholar]
  42. FerreiraS.R. SilvaF.A. LimaP.R.L. Toledo FilhoR.D. DiasR. FilhoT. Effect of fiber treatments on the sisal fiber properties and fiber–matrix bond in cement based systems.Constr. Build. Mater.201510173074010.1016/j.conbuildmat.2015.10.120
    [Google Scholar]
  43. SahuP. GuptaM.K. Effect of ecofriendly coating and treatment on mechanical, thermal and morphological properties of sisal fiber.Ind J. Fib Text. Res.201944199204
    [Google Scholar]
  44. SreekumarP.A. ThomasS.P. SaiterJ. JosephK. UnnikrishnanG. ThomasS. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding.Compos., Part A Appl. Sci. Manuf.200940111777178410.1016/j.compositesa.2009.08.013
    [Google Scholar]
  45. RodriguesS. De LimaV.H. OsmariJ. BotaroR. Influence of alkaline treatment on sisal fibre applied as reinforcement agent in composites of corn starch and cellulose acetate matrices.Plast. Rubber Compos.202050191710.1080/14658011.2020.1816119
    [Google Scholar]
  46. PanaitescuD.M. NicolaeC.A. VulugaZ. Influence of hemp fibers with modified surface on polypropylene composites.J. Ind. Eng. Chem.20163713714610.1016/j.jiec.2016.03.018
    [Google Scholar]
  47. ElkhaoulaniA. ArrakhizF.Z. BenmoussaK. BouhfidR. QaissA. Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene.Mater. Des.20134920320810.1016/j.matdes.2013.01.063
    [Google Scholar]
  48. LuT. JiangM. JiangZ. HuiD. WangZ. ZhouZ. Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites.Compos., Part B Eng.201351283410.1016/j.compositesb.2013.02.031
    [Google Scholar]
  49. PolettoM OrnaghiHLJr ZatteraAJ Native cellulose: structure, characterization and thermal properties. Materials2014796105611910.3390/ma7096105
    [Google Scholar]
  50. WeiJ. MeyerC. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment.Appl. Surf. Sci.201428951152310.1016/j.apsusc.2013.11.024
    [Google Scholar]
  51. ArbelaizA. FernB. RamosJ.A. MondragonI. Thermal and crystallization studies of short flax fiber reinforced polypropylene matrix composites: Effect of treatments.Thermochimica Acta2006440211112110.1016/j.tca.2005.10.016
    [Google Scholar]
  52. LauK. HungP. ZhuM.H. HuiD. Properties of natural fibre composites for structural engineering applications.Compos., Part B Eng.201813622223310.1016/j.compositesb.2017.10.038
    [Google Scholar]
  53. ShuklaA. BasakS. AliS.W. ChattopadhyayR. Development of fire retardant sisal yarn.Cellulose201724142343410.1007/s10570‑016‑1115‑7
    [Google Scholar]
  54. SamouhZ. CherkaouiO. SoulatD. LabaniehA.R. BoussuF moznine RE. Identification of the physical and mechanical properties of Moroccan sisal yarns used as reinforcements for composite materials.Fibers2021921310.3390/fib9020013
    [Google Scholar]
  55. JosephP.V. JosephK. ThomasS. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites.Compos. Sci. Technol.1999591116251640
    [Google Scholar]
  56. KongH. KongH. Structural properties and mechanical behavior of injection molded composites of polypropylene and sisal fiber.Polym. Compos.200223319328
    [Google Scholar]
  57. MayaJ. John, Rajesh D Anandjiwala. Recent developments in chemical modification and characterization of natural fiber‐reinforced composites.Polym. Compos.200829218720710.1002/pc.20461
    [Google Scholar]
  58. ChowC.P.L. XingX.S. LiR.K.Y. Science and moisture absorption studies of sisal fiber reinforced polypropylene composites.Compo. Sci. Technol.20076730631310.1016/j.compscitech.2006.08.005
    [Google Scholar]
  59. KaewkukS. SutapunW. JarukumjornK. Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites.Compos., Part B Eng.201345154454910.1016/j.compositesb.2012.07.036
    [Google Scholar]
  60. JosephPV MathewG JosephK GroeninckxG ThomasS Dynamic mechanical properties of short fiber reinforced polypropylene composites. Compos Part A Appl Sci Manuf200334327529010.1016/S1359‑835X(02)00020‑9.
    [Google Scholar]
  61. RoyA. ChakrabortyS. KunduS.P. BasakR.K. BasuM.S. AdhikariB. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model.Bioresour. Technol.201210722222810.1016/j.biortech.2011.11.073 22209134
    [Google Scholar]
  62. JosephP.V. JosephK. ThomasS. PillaiC.K.S. PrasadV.S. GroeninckxG. The thermal and crystallisation studies of short sisal fiber reinforced polypropylene composites.Compos., Part A Appl. Sci. Manuf.20033425326610.1016/S1359‑835X(02)00185‑9
    [Google Scholar]
  63. SarkissovaM JosephPV JosephK ThomasS PillaiCKS PrasadVS GroeninckxG The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites.Compos Part A Appl Sci Manuf20033425326610.1016/S1359‑835X(02)00185‑9
    [Google Scholar]
  64. HaqueM.M. HasanM. IslamM.S. AliM.E. Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites.Bioresour. Technol.2009100204903490610.1016/j.biortech.2009.04.072 19477124
    [Google Scholar]
  65. Ratna KumariY. RamanaiahK. Ratna PrasadA.V. Experimental investigation of water absorption behaviour of sisal fiber reinforced polyester and sisal fiber reinforced poly lactic acid composites.Mater. Today Proc.20214493594010.1016/j.matpr.2020.11.002
    [Google Scholar]
  66. MelkamuA. KahsayM.B. TesfayA.G. Mechanical and water-absorption properties of sisal fiber (Agave sisalana)-reinforced polyester composite.J. Nat. Fibers2018169877885
    [Google Scholar]
  67. FeredeE. AtalieD. Mechanical and water absorption characteristics of sisal fiber reinforced polypropylene composite.J. Nat. Fibers20221916148251483810.1080/15440478.2022.2069188
    [Google Scholar]
  68. GudayuAD SteuernagelL MeinersD GideonR Effect of surface treatment on moisture absorption, thermal, and mechanical properties of sisal fiber.J Ind Text2022512_suppl)(Suppl.2853S2873S10.1177/1528083720924774
    [Google Scholar]
  69. TekluT. WangatiaL.M. AlemayehuE. Effect of surface modification of sisal fibers on water absorption and mechanical properties of polyaniline composite.Polym. Compos.201940S1E46E5210.1002/pc.24462
    [Google Scholar]
  70. BassyouniM. Dynamic mechanical properties and characterization of chemically treated sisal fiber-reinforced polypropylene biocomposites.J. Reinf. Plast. Compos.201837231402141710.1177/0731684418798049
    [Google Scholar]
  71. ChoD. ZhouH. ChoY. AudusD. JooY.L. Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt.Polymer201051256005601210.1016/j.polymer.2010.10.028
    [Google Scholar]
  72. PatilA. PatelA. PurohitR. An overview of polymeric materials for automotive applications.Mater. Today Proc.2017423807381510.1016/j.matpr.2017.02.278
    [Google Scholar]
  73. DelliE. GiliopoulosD. BikiarisD.N. ChrissafisK. Fibre length and loading impact on the properties of glass fibre reinforced polypropylene random composites.Compos. Struct.202126311367810.1016/j.compstruct.2021.113678
    [Google Scholar]
  74. GopannaA. MandapatiR.N. ThomasS.P. RajanK. ChavaliM. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis.Polym. Bull.20197684259427410.1007/s00289‑018‑2599‑0
    [Google Scholar]
/content/journals/meng/10.2174/0122127976319507240723102247
Loading
/content/journals/meng/10.2174/0122127976319507240723102247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test