Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Introduction

Wire electrical discharge machining (W-EDM) has proven to be an appropriate choice for machining hard-to-cut materials for obtaining difficult and complex geometries with excellent surface characteristics. This study contributes to the development of a patent related to W-EDM advancements.

Methods

The present work investigates the effect of different wires, . copper, brass, and Nb-coated brass, along with the investigations of W-EDM input factors, . pulse-on-duration (T), pulse-off-duration (T), and current on material removal rate (MRR) and surface roughness (SR). Taguchi’s L9 design has been employed to perform the trials.

Results

The maximum MRR of 31.03 mm3/min has been obtained for Nb-coated brass as compared to copper and brass. SR was observed to be least using the brass with a value of 3.19 µm. However, the optimum SR value obtained using a Nb-coated brass was 4.87 µm. Finally, scanning electron microscopy (SEM) for various wire materials revealed the machined surface topography.

Conclusion

The surface machined with Nb-coated wire shows fewer microcracks, pores, and globule sizes. As per this study, the current work can significantly benefit commercial applications.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976325410240821104946
2025-06-01
2025-10-05
Loading full text...

Full text loading...

References

  1. Mohd JaniJ. LearyM. SubicA. GibsonM.A. A review of shape memory alloy research, applications and opportunities.Mater. Des.2014561078111310.1016/j.matdes.2013.11.084
    [Google Scholar]
  2. EdoziunoF.O. AdediranA.A. AdetunlaA. NwaejuC.C. NnukaE.E. RSM-based optimization and predictive modelling of the gravimetric corrosion behaviour of solution-treated copper-based shape memory alloy in HCl solution.Int J Interac Design Manuf20241811311139
    [Google Scholar]
  3. KayaE. Kayaİ. A review on machining of NiTi shape memory alloys: The process and post process perspective.Int. J. Adv. Manuf. Technol.20191005-82045208710.1007/s00170‑018‑2818‑8
    [Google Scholar]
  4. GuptaN.K. SrivastavaV. SomaniN. Self-healing materials: Fabrication technique and applications—A critical review.Int J Interac Design Manuf20232023118
    [Google Scholar]
  5. RathiP. GhiyaR. ShahH. SrivastavaP. PatelS. ChaudhariR. Multi-response Optimization of Ni55. 8Ti Shape Memory Alloy Using Taguchi–Grey Relational Analysis Approach. Recent Advances in Mechanical Infrastructure.ChamSpringer20201323
    [Google Scholar]
  6. ChaudhariR. VoraJ.J. ParikhD. A review on applications of nitinol shape memory alloy.Recent Advances in Mechanical Infrastructure.ChamSpringer2021123132
    [Google Scholar]
  7. AlipourS. TaromianF. GhomiE.R. ZareM. SinghS. RamakrishnaS. Nitinol: From historical milestones to functional properties and biomedical applications.Proc. Inst. Mech. Eng. H2022236111595161210.1177/09544119221123176 36121059
    [Google Scholar]
  8. AliyuA.A.A. Abdul-RaniA.M. GintaT.L. PrakashC. AxinteE. RazakM.A. A review of additive mixed-electric discharge machining: Current status and future perspectives for surface modification of biomedical implants.Adv. Mater. Sci. Eng.20172872323910.1155/2017/8723239
    [Google Scholar]
  9. MatandaB.K. PatelV. SinghB. JoshiU. JoshiA. OzaA.D. A review on parametric optimization of EDM process for nanocomposites machining: Experimental and modelling approach.Adv. Mater. Sci. Eng.2023202301353110.1007/s12008‑023‑01353‑1
    [Google Scholar]
  10. ManjaiahM. NarendranathS. BasavarajappaS. Review on non-conventional machining of shape memory alloys.Trans. Nonferrous Met. Soc. China2014241122110.1016/S1003‑6326(14)63022‑3
    [Google Scholar]
  11. VoraJ. KhannaS. ChaudhariR. Machining parameter optimization and experimental investigations of nano-graphene mixed electrical discharge machining of nitinol shape memory alloy.J. Mater. Res. Technol.20221965366810.1016/j.jmrt.2022.05.076
    [Google Scholar]
  12. ElaiyarasanU. VinodB. NallathambiK. Response surface methodology study on electrical discharge deposition of AZ31B magnesium alloy with powder composite electrode.IJIDeM202317143544410.1007/s12008‑022‑00923‑z
    [Google Scholar]
  13. HassanM. MehrpouyaM. DawoodS. Review of the machining difficulties of nickel-titanium based shape memory alloys.Appl. Mech. Mater.201456453353710.4028/www.scientific.net/AMM.564.533
    [Google Scholar]
  14. Al-AminM. Abdul-RaniA.M. AhmedR. ShahidM.U. ZohuraF.T. RaniM.D.B.A. Multi-objective optimization of process variables for MWCNT-added electro-discharge machining of 316L steel.Int. J. Adv. Manuf. Technol.20211151-217919810.1007/s00170‑021‑07169‑1
    [Google Scholar]
  15. ChaudhariR. VoraJ.J. PrabuS. PalaniI. PatelV.K. ParikhD. Pareto optimization of WEDM process parameters for machining a NiTi shape memory alloy using a combined approach of RSM and heat transfer search algorithm.Adv. Manuf.2021910648010.1007/s40436‑019‑00267‑0
    [Google Scholar]
  16. ChaudhariR. KhannaS. VoraJ. Experimental investigations and optimization of MWCNTs-mixed WEDM process parameters of nitinol shape memory alloy.J. Mater. Res. Technol.2021152152216910.1016/j.jmrt.2021.09.038
    [Google Scholar]
  17. PainP. BoseG.K. BoseD. Parametric analysis and optimization of aluminium and SS 204 material using micro-EDM system.Int J Interact Design Manuf202317611810.1007/s12008‑023‑01350‑4
    [Google Scholar]
  18. Al-AminM. Abdul RaniA.M. AbduA.A.A. AbdulR.M.A.H. HastutyS. BryantM.G. Powder mixed-EDM for potential biomedical applications: A critical review.Mater. Manuf. Process.202035161789181110.1080/10426914.2020.1779939
    [Google Scholar]
  19. PrakashC. SinghS. PruncuC.I. Surface modification of Ti-6Al-4V alloy by electrical discharge coating process using partially sintered Ti-Nb electrode.Materials (Basel)2019127100610.3390/ma12071006 30934688
    [Google Scholar]
  20. TallaG. GangopadhyayS. BiswasC.K. Effect of powder-suspended dielectric on the EDM characteristics of Inconel 625.J. Mater. Eng. Perform.201625270471710.1007/s11665‑015‑1835‑0
    [Google Scholar]
  21. PrakashC. KansalH.K. PablaB.S. PuriS. AggarwalA. Electric discharge machining – A potential choice for surface modification of metallic implants for orthopedic applications: A review.Proc. Inst. Mech. Eng., B J. Eng. Manuf.2016230233135310.1177/0954405415579113
    [Google Scholar]
  22. AmorimF.L. StedileL.J. TorresR.D. SoaresP.C. Henning LaurindoC.A. Performance and surface integrity of Ti6Al4V after sinking EDM with special graphite electrodes.J. Mater. Eng. Perform.20142341480148810.1007/s11665‑013‑0852‑0
    [Google Scholar]
  23. KhoshaimA.B. MuthuramalingamT. MoustafaE.B. ElsheikhA. Influences of tool electrodes on machinability of titanium α- β alloy with ISO energy pulse generator in EDM process.Alex. Eng. J.20236346547410.1016/j.aej.2022.07.059
    [Google Scholar]
  24. HaraneP.P. WojciechowskiS. UnuneD.R. Investigating the effect of different tool electrodes in electric discharge drilling of Waspaloy on process responses.J. Mater. Res. Technol.2022202542255710.1016/j.jmrt.2022.08.015
    [Google Scholar]
  25. SabouniH.R. DaneshmandS. Investigation of the parameters of EDM process performed on smart NiTi alloy using graphite tools.Life Sci. J.201294504510https://www.researchgate.net/publication/293768778_Investigation_of_the_Parameters_of_EDM_Process_Performed_on_Smart_NiTi_Alloy_Using_Graphite_Tools
    [Google Scholar]
  26. AbediE. DaneshmandS. NeyestanakA.A.L. MonfaredV. Analysis and modeling of electro discharge machining input parameters of nitinol shape memory alloy by de-ionized water and copper tools.Int. J. Electrochem. Sci.2014962934294310.1016/S1452‑3981(23)07980‑4
    [Google Scholar]
  27. GaikwadV. JattiV.S. Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method.J. King Saud Univ. Eng. Sci.201830326627210.1016/j.jksues.2016.04.003
    [Google Scholar]
  28. SahuA.K. ChatterjeeS. NayakP.K. MahapatraS.S. Study on effect of tool electrodes on surface finish during electrical discharge machining of Nitinol.IOP Conf Ser: Mater Sci Eng2018338012033 https://www.researchgate.net/publication/324420807_Study_on_effect_of_tool_electrodes_on_surface_finish_during_electrical_discharge_machining_of_Nitinol
    [Google Scholar]
  29. KumarL. KumarK. ChhabraD. Experimental investigations of electrical discharge micro-drilling for Mg-alloy and multi-response optimization using MOGA-ANN.CIRO J. Manuf. Sci. Technol.20223877478610.1016/j.cirpj.2022.06.014
    [Google Scholar]
  30. PrakashC. SinghS. SinghM. VermaK. ChaudharyB. SinghS. Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy.Vacuum201815818019010.1016/j.vacuum.2018.09.050
    [Google Scholar]
  31. Al-AminM. Abdul-RaniA.M. DanishM. Analysis of hybrid HA/CNT suspended-EDM process and multiple-objectives optimization to improve machining responses of 316L steel.J. Mater. Res. Technol.2021152557257410.1016/j.jmrt.2021.09.074
    [Google Scholar]
  32. VoraJ. ParikhN. ChaudhariR. Optimization of bead morphology for GMAW-based wire-arc additive manufacturing of 2.25 Cr-1.0 Mo steel using metal-cored wires.Appl. Sci. (Basel)20221210506010.3390/app12105060
    [Google Scholar]
  33. ChaudhariR. KevalramaniA. VoraJ. Parametric optimization and influence of near-dry WEDM variables on nitinol shape memory alloy.Micromachines (Basel)2022137102610.3390/mi13071026 35888844
    [Google Scholar]
  34. ChaudhariR. VoraJ.J. PramanikA. ParikhD. Optimization of parameters of spark erosion based processes.Spark erosion machining.Boca Raton, FloridaCRC Press202019021610.1201/9780429085758‑12
    [Google Scholar]
  35. MoayyedianM. QazaniM.R.C. PourmostaghimiV. Optimized injection-molding process for thin-walled polypropylene part using genetic programming and interior point solver.Int. J. Adv. Manuf. Technol.20231241-229731310.1007/s00170‑022‑10551‑2
    [Google Scholar]
  36. Huu PhanN. MuthuramalingamT. Multi criteria decision making of vibration assisted EDM process parameters on machining silicon steel using Taguchi-DEAR methodology.Silicon20211361879188510.1007/s12633‑020‑00573‑4
    [Google Scholar]
  37. ChaudhariR. PrajapatiP. KhannaS. Multi-response optimization of Al2O3 nanopowder-mixed wire electrical discharge machining process parameters of nitinol shape memory alloy.Materials (Basel)2022156201810.3390/ma15062018 35329469
    [Google Scholar]
  38. RamaswamyA. PerumalA.V. Multi-objective optimization of drilling EDM process parameters of LM13 Al alloy–10ZrB2–5TiC hybrid composite using RSM.J. Braz. Soc. Mech. Sci. Eng.202042843210.1007/s40430‑020‑02518‑9
    [Google Scholar]
  39. MarkopoulosA.P. PapazoglouE.L. Karmiris-ObratańskiP. Experimental study on the influence of machining conditions on the quality of electrical discharge machined surfaces of aluminum alloy Al5052.Machines2020811210.3390/machines8010012
    [Google Scholar]
  40. ChaudhariR. PatelH. ShethM. PrajapatiN. FuseK. AbhishekK. Effect of different tool electrodes (wire) of WEDM process of inconel 718. Recent Advances in Mechanical Infrastructure.ChamSpringer202131732710.3390/10.1007/978‑981‑16‑7660‑4_28
    [Google Scholar]
  41. KuppanP. NarayananS. RajaduraiA. Effect of process parameters on material removal rate and surface roughness in electric discharge drilling of Inconel 718 using graphite electrode.Int J Manuf Technol Manag2011233/421423310.1504/IJMTM.2011.045509
    [Google Scholar]
  42. TsaiY.Y. MasuzawaT. An index to evaluate the wear resistance of the electrode in micro-EDM.J. Mater. Process. Technol.20041491-330430910.1016/j.jmatprotec.2004.02.043
    [Google Scholar]
  43. SinghS. MaheshwariS. PandeyP.C. Some investigations into the electric discharge machining of hardened tool steel using different electrode materials.J. Mater. Process. Technol.20041491-327227710.1016/j.jmatprotec.2003.11.046
    [Google Scholar]
  44. NguyenH.P. NgoN.V. NguyenQ.T. Optimizing process parameters in edm using low frequency vibration for material removal rate and surface roughness.J. King Saud Univ. Eng. Sci.202133428429110.1016/j.jksues.2020.05.002
    [Google Scholar]
  45. GoyalA. SharmaD. BhowmickA. PathakV.K. Experimental investigation for minimizing circularity and surface roughness under nano graphene mixed dielectric EDM exercising fuzzy-ANFIS approach.Int J Interact Design Manuf2022202200826510.1007/s12008‑021‑00826‑5
    [Google Scholar]
  46. Che HaronC.H. GhaniJ.A. BurhanuddinY. SeongY.K. SweeC.Y. Copper and graphite electrodes performance in electrical-discharge machining of XW42 tool steel.J. Mater. Process. Technol.20082011-357057310.1016/j.jmatprotec.2007.11.285
    [Google Scholar]
  47. ParsanaS. RadadiaN. ShethM. Machining parameter optimization for EDM machining of Mg–RE–Zn–Zr alloy using multi-objective Passing Vehicle Search algorithm.Arch. Civ. Mech. Eng.201818379981710.1016/j.acme.2017.12.007
    [Google Scholar]
  48. MoudoodM. SaburA. LutfiA. AliM. JaafarI. Investigation of the machininabilty of non-conductive ZrO2 with different tool electrodes in EDM.Int J Automot Mech Eng2014101866187610.15282/ijame.10.2014.4.0155
    [Google Scholar]
  49. SahuA.K. MahapatraS.S. Comparison of performance of different tool electrodes during electrical discharge machining.Indian J. Eng. Mater. Sci.2019263-4186199
    [Google Scholar]
  50. ChowdhryA. SinghK. GuptaA. Progress in adoptable materials in 3D bioprinting technology for organ and tissue regenerative engineering.J Proc Mech Eng202420243410710.1177/09544089241234107
    [Google Scholar]
  51. VasudevanB. NagarajanL.L.N. Experimental study, modeling, and parametric optimization on abrasive waterjet drilling of YSZ-coated Inconel 718 superalloy.J. Mater. Res. Technol.2024294662467510.1016/j.jmrt.2024.02.134
    [Google Scholar]
  52. ChaudhariR. RehmanI.U. KhannaS. A parametric study with experimental investigations of expanded graphite on performance measure of EDM process of Ni55.8Ti SMA.Alex. Eng. J.20248716417410.1016/j.aej.2023.12.013
    [Google Scholar]
  53. PrakashC. KansalH.K. PablaB.S. PuriS. To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-dominated Sorting Genetic Algorithm-II. 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS). 21-22 December 2015; Chandigarh, India.201510.1109/RAECS.2015.7453288
    [Google Scholar]
  54. GuptaN.K. SomaniN. PrakashC. Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) alloy.Materials (Basel)2021149229210.3390/ma14092292 33925156
    [Google Scholar]
  55. HoK.H. NewmanS.T. RahimifardS. AllenR.D. State of the art in wire electrical discharge machining (WEDM).Int. J. Mach. Tools Manuf.20044412-131247125910.1016/j.ijmachtools.2004.04.017
    [Google Scholar]
  56. BalasubramaniyanC. RajkumarK. Enhancing low-speed WEDM machining capabilities on Nitronic-50 with a constant frequency ultrasonic hybrid method.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.202423883468347910.1177/09544062231198941
    [Google Scholar]
  57. LodhiB.K. AgarwalS. Experimental investigation to assess the surface integrity in WEDM of Al-based hybrid composite material.Proc. Inst. Mech. Eng., E J. Process Mech. Eng.2024202424103810.1177/09544089241241038
    [Google Scholar]
  58. KumarA. GroverN. MannaA. Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites.Compos Advanced Mater202020202096313710.1177/2633366X20963137
    [Google Scholar]
  59. MouralovaK. BenesL. FriesJ. Comparison of MRR of different WEDM-machined materials.Int. J. Adv. Manuf. Technol.20241329-104461447110.1007/s00170‑024‑13631‑7
    [Google Scholar]
  60. Skondras-GiousiosD. Karmiris-ObratańskiP. JaroszM. MarkopoulosA.P. Investigation of the influence of machining parameters and surface roughness on the wettability of the Al6082 surfaces produced with WEDM.Materials (Basel)2024177168910.3390/ma17071689 38612202
    [Google Scholar]
  61. MohapatraA. DuttaP. MullickS. BartaryaG. Micro-feature fabrication on SS304 stainless steel using WEDM process.Mater. Manuf. Process.202439101420143210.1080/10426914.2024.2323442
    [Google Scholar]
  62. RoyB.K. TiwariS. MandalA. An analysis on the machinability aspects of the turning process using WEDM for profile generation.Arab. J. Sci. Eng.20234922165217710.1007/s13369‑023‑08133‑9
    [Google Scholar]
  63. CeritbinmezF. GünenA. Comparison of drilling of Inconel 625 by AWJM and WEDM.Aircr. Eng. Aerosp. Technol.202496232933610.1108/AEAT‑03‑2023‑0068
    [Google Scholar]
  64. VijayakumarN. ChandradassJ. Experimental investigation on the surface quality of WEDM machined 20MnCr5 steel for gear application.Mater. Res. Express202411303652310.1088/2053‑1591/ad31de
    [Google Scholar]
  65. KumarD. PrakashS.R. SelvakumarG. Study on WEDM process parameters on machining of SS304.Mater. Today Proc.202420246765721
    [Google Scholar]
  66. KumarV MondalS C Experimental investigation and optimization of wedm process parameters for the development of ni-based hardfaced turning tool insert using hybrid GA-CoCoSo technique. J Institut Eng(India) 2024; 2024: 4wB3oEZ7.
  67. HaraneP.P. UnuneD.R. Exploring tool geometry influence on EDD of Waspaloy.Mater. Manuf. Process.2024202411710.1080/10426914.2024.2334693
    [Google Scholar]
  68. NasE. Experimental and statistical investigation of electro-erosion machining performance of cryogenic treated hardened AISI H13 hot work tool steel.Tribol. Int.202419310945310.1016/j.triboint.2024.109453
    [Google Scholar]
  69. PantP. BhartiP.S. Surface integrity assessment techniques in EDM process for enhancement of product’s performance: A review.Advances Mater Process Technol202410116718510.1080/2374068X.2022.2155760
    [Google Scholar]
  70. DiviyaM. JoelJ.J. SubramanianM. Parametric investigation of W-EDM factors for machining AM60B conductive biomaterial.Sci. Rep.202414121610.1038/s41598‑023‑50777‑y 38168764
    [Google Scholar]
  71. BeheraA. SahooA.K. MahapatraS.S. Electrical discharge machining of Ni-based superalloy and its applications in aero turbine parts: A comprehensive review.Advances Mater Process Technol20242024235863810.1080/2374068X.2024.2358638
    [Google Scholar]
  72. AsapuS y RK, Gupta A, Jha SK. Microstructural and mechanical characterization of selective laser melted 17-4 PH stainless steel: effect of laser scan strategy and heat treatment.J. Mater. Eng. Perform.2024202411510.1007/s11665‑024‑09470‑y
    [Google Scholar]
  73. HicksC. TamimiS. SivaswamyG. PimentelM. McKegneyS. FitzpatrickS. Hybrid manufacturing approach for landing gear applications: WAAM Ti–6Al–4V on forged Ti–5Al–5Mo–5V–3Cr.J. Mater. Res. Technol.2024306596660810.1016/j.jmrt.2024.05.088
    [Google Scholar]
  74. JoseB. ManikandanM. ArivazhaganN. MuktinutalapatiN.R. Madhusudhan ReddyG. Development of a novel welding technique with reduced heat-input by employing double-pulsed gas metal arc welding for aerospace grade 18% Ni maraging steel.J. Manuf. Sci. Eng.2023145202100210.1115/1.4055248
    [Google Scholar]
  75. NathanS.R. ManikantaG. SonarT. BaburajM. Wire-cut electrical discharge machining of duplex stainless steel: A study.Mater. Manuf. Process.2024202411210.1080/10426914.2024.2362617
    [Google Scholar]
  76. GaoQ. LiZ.L. ZhangY.O. XiX.C. YangF. ZhaoW.S. Research on a two-stage discharge current regulation method in RT-WEDM.Int. J. Adv. Manuf. Technol.20221239-103285329910.1007/s00170‑022‑10414‑w
    [Google Scholar]
  77. RahmanM.A. AhmedA. MiaM. Trends in electrical discharge machining of Ti-and Ni-based superalloys: Macro-micro-compound arc/spark/melt process. Micro Electro-Fabrication.ChamElsevier2021638710.1016/B978‑0‑12‑820049‑0.00006‑2
    [Google Scholar]
  78. SinghB. Influences of powder mixed dielectric fluid on machining characteristics of EDM processed parts: A review.IOP Conf. Series Mater. Sci. Eng.20211116101209910.1088/1757‑899X/1116/1/012099
    [Google Scholar]
  79. WangC. WangH. ChuX. LuY. HeH. Study on forming mechanism of the recast layer on the workpiece surface during micro EDM.Materials (Basel)2024175107310.3390/ma17051073 38473545
    [Google Scholar]
  80. GevorkyanE.S. RuckiM. NerubatskyiV.P. Remanufacturing and advanced machining processes for new materials and components.Philadelphia Taylor & Francis202220410.1201/9781003218654
    [Google Scholar]
  81. CaoM. LawlorF. Multiple-input multiple-output (MIMO) omnidirectional antenna. US Patent 2019123456A1,2019
/content/journals/meng/10.2174/0122127976325410240821104946
Loading
/content/journals/meng/10.2174/0122127976325410240821104946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test