Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

The soft pneumatic actuator is a technology in the robotics field driven by pneumatic power. Further, the problems in complicated fabrication processes can now be overcome with new technologies, such as additive manufacturing. Thus, the number of patent documents will also continue to increase. For this reason, a patent analysis is needed to help researchers map the direction of the research to be carried out.

Objective

By analyzing existing patents, unnecessary investment in technology can be avoided as early as possible. Thus, this article aimed to find updates and gaps in existing patents.

Methods

The patent analysis in this study used the systematic literature review method, which started with identifying, screening, and determining the patents being reviewed.

Results

In the early stages, 114 patents were obtained, and after screening, 18 patents related to the soft pneumatic actuator were obtained, divided into six families. Patents related to the existing soft pneumatic actuator are more directed to robotics and wearable devices. Hence, the current patent gap is still very wide open regarding fabrication, geometric shapes, and its application in other fields.

Conclusion

Research gaps were obtained related to fabrication technology, geometric shapes, and applications in fields other than robotics and wearable devices that are still very wide open for development and patent registration to advanced technology.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976300859240409044842
2024-05-20
2025-10-02
Loading full text...

Full text loading...

References

  1. CianchettiM. RanzaniT. GerboniG. Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach.Soft Robot.20141212213110.1089/soro.2014.0001
    [Google Scholar]
  2. TolleyM.T. ShepherdR.F. MosadeghB. A resilient, untethered soft robot.Soft Robot.20141321322310.1089/soro.2014.0008
    [Google Scholar]
  3. RusD. TolleyM.T. Design, fabrication and control of soft robots.Nature2015521755346747510.1038/nature14543 26017446
    [Google Scholar]
  4. DeimelR. BrockO. A novel type of compliant and underactuated robotic hand for dexterous grasping.Int. J. Robot. Res.2016351-316118510.1177/0278364915592961
    [Google Scholar]
  5. GallowayK.C. BeckerK.P. PhillipsB. Soft robotic grippers for biological sampling on deep reefs.Soft Robot.201631233310.1089/soro.2015.0019 27625917
    [Google Scholar]
  6. HughesJ. CulhaU. GiardinaF. GuentherF. RosendoA. IidaF. Soft manipulators and grippers: a review.Front. Robot. AI201636910.3389/frobt.2016.00069
    [Google Scholar]
  7. PolygerinosP. CorrellN. MorinS.A. Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction.Adv. Eng. Mater.20171912170001610.1002/adem.201700016
    [Google Scholar]
  8. SotoodehK. Actuator selection and sizing for valves.SN Applied Sciences2019110120710.1007/s42452‑019‑1248‑z
    [Google Scholar]
  9. ByrneO. CoulterF. GlynnM. Additive manufacture of composite soft pneumatic actuators.Soft Robot.20185672673610.1089/soro.2018.0030 30148682
    [Google Scholar]
  10. HohimerC.J. PetrossianG. AmeliA. MoC. PötschkeP. Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites.Proc. SPIE201810596105960J10.1117/12.2296774
    [Google Scholar]
  11. KeongB.A.W. HuaR.Y.C. A novel fold‐based design approach toward printable soft robotics using flexible 3D printing materials.Adv. Mater. Technol.201832170017210.1002/admt.201700172
    [Google Scholar]
  12. StanoG. ArleoL. PercocoG. Additive manufacturing for soft robotics: Design and fabrication of airtight, monolithic bending PneuNets with embedded air connectors.Micromachines202011548510.3390/mi11050485 32397442
    [Google Scholar]
  13. GeorgopoulouA. VanderborghtB. ClemensF. Fabrication of a soft robotic gripper with integrated strain sensing elements using multi-material additive manufacturing.Front. Robot. AI2021861599110.3389/frobt.2021.615991 35372524
    [Google Scholar]
  14. XavierM.S. TawkC.D. YongY.K. FlemingA.J. 3D-printed omnidirectional soft pneumatic actuators: Design, modeling and characterization.Sens. Actuators A Phys.202133211319910.1016/j.sna.2021.113199
    [Google Scholar]
  15. YapH.K. NgH.Y. YeowC.H. High-force soft printable pneumatics for soft robotic applications.Soft Robot.20163314415810.1089/soro.2016.0030
    [Google Scholar]
  16. HeriantoW. IrawanW. RitongaA.S. PrastowoA. Design and fabrication in the loop of soft pneumatic actuators using fused deposition modelling.Sens. Actuators A Phys.201929811155610.1016/j.sna.2019.111556
    [Google Scholar]
  17. AntonelliM.G. Beomonte ZobelP. DuranteF. RaparelliT. Additive manufacturing applications on flexible actuators for active orthoses and medical devices.J. Healthc. Eng.2019201911110.1155/2019/5659801 31019668
    [Google Scholar]
  18. TawkC. GillettA. in het PanhuisM. SpinksG.M. AliciG. A 3D-printed omni-purpose soft gripper.IEEE Trans. Robot.20193551268127510.1109/TRO.2019.2924386
    [Google Scholar]
  19. SalehM.A. SolimanM. MousaM.A. ElsamantyM. RadwanA.G. Design and implementation of variable inclined air pillow soft pneumatic actuator suitable for bioimpedance applications.Sens. Actuators A Phys.202031411227210.1016/j.sna.2020.112272
    [Google Scholar]
  20. TawkC. MutluR. AliciG. A 3D printed modular soft gripper integrated with metamaterials for conformal grasping.Front. Robot. AI2022879923010.3389/frobt.2021.799230 35071336
    [Google Scholar]
  21. TawkC. AliciG. 5 - 4D-printed pneumatic soft actuators modeling, fabrication, and controlSmart MatAdditManufact.Elsevier202210314010.1016/B978‑0‑323‑95430‑3.00005‑1
    [Google Scholar]
  22. FangX. WeiK. YangR. Untethered soft pneumatic actuators with embedded multiple sensing capabilities.Soft Robot.202411338239110.1089/soro.2023.0048 37948534
    [Google Scholar]
  23. YuQ. ZhuZ. FanX. WangD. Integrated DLP and DIW 3D printer for flexible electronics. In: Yang H, Liu H, Zou J, et al., editors. Intelligent Robotics and Applications. Lecture Notes in Computer Science. Singapore: Springer Nature2023455210.1007/978‑981‑99‑6492‑5_5
    [Google Scholar]
  24. DruryR. SencadasV. AliciG. 3D printed linear soft multi-mode actuators expanding robotic applications.Soft Matter20221891911191910.1039/D2SM00050D 35188175
    [Google Scholar]
  25. ZhangQ. WengS. ZhaoZ. QiH.J. FangD. Soft pneumatic actuators by digital light processing combined with injection-assisted post-curing.Appl. Math. Mech.202142215917210.1007/s10483‑021‑2705‑7
    [Google Scholar]
  26. GeL. DongL. WangD. GeQ. GuG. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators.Sens. Actuators A Phys.201827328529210.1016/j.sna.2018.02.041
    [Google Scholar]
  27. TaylorA.J. MontayreR. ZhaoZ. KwokK.W. TseZ.T.H. Modular force approximating soft robotic pneumatic actuator.Int. J. CARS201813111819182710.1007/s11548‑018‑1833‑4 30088209
    [Google Scholar]
  28. FarhadA. RezaR. AzamossadatH. Artificial intelligence in estimating fractional flow reserve: a systematic literature review of techniques.BMC Cardiovasc. Disord.202323140710.1186/s12872‑023‑03447‑w 37596521
    [Google Scholar]
  29. AliY. KhanH.U. KhalidM. Engineering the advances of the artificial neural networks (ANNs) for the security requirements of Internet of Things: a systematic review.J. Big Data202310112810.1186/s40537‑023‑00805‑5
    [Google Scholar]
  30. PutroP.A. SumardiT. SulaemanA.S. RozaL. RamzaH. AnugrahD.S.B. Synthesizing cellulose and its derivatives from pineapple peel: a systematic literature review.Biointerface Res. Appl. Chem.202313657510.33263/BRIAC136.575
    [Google Scholar]
  31. VenkateshR. SivaChandranS. MariduraiT. Magnesium alloy machining and its methodology: A systematic review and analyses.AIP Conf Proc20222473102000310.1063/5.0096398
    [Google Scholar]
  32. AsgariM. MagerandL. ManfrediL. A review on model-based and model-free approaches to control soft actuators and their potentials in colonoscopy.Front. Robot. AI202310123670610.3389/frobt.2023.1236706 38023589
    [Google Scholar]
  33. PaternaM. De BenedictisC. FerraresiC. The research on soft pneumatic actuators in Italy: design solutions and applications.Actuators2022111132810.3390/act11110328
    [Google Scholar]
  34. SuH. HouX. ZhangX. Pneumatic soft robots: challenges and benefits.Actuators20221139210.3390/act11030092
    [Google Scholar]
  35. XavierMS TawkCD ZolfagharianA Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control and applications.IEEE Access202210594425948510.1109/ACCESS.2022.3179589
    [Google Scholar]
  36. ZolfagharianA. MahmudM.A.P. GharaieS. BodaghiM. KouzaniA.Z. KaynakA. 3D/4D-printed bending-type soft pneumatic actuators: fabrication, modelling, and control.Virtual Phys. Prototyp.202015437340210.1080/17452759.2020.1795209
    [Google Scholar]
  37. SpreaficoC. LandiD. RussoD. Prospective life cycle assessment based on patent analysis to support eco-design. In: Carfagni M, Furferi R, Di Stefano P, Governi L, Gherardini F, editors. Design Tools and Methods in Industrial Engineering III. Cham: Springer Nature Switzerland; 202433133810.1007/978‑3‑031‑52075‑4_37
    [Google Scholar]
  38. SandbhorS. MulayP. TiwariA.K. VolkovaE. Innovative ICT in smart buildings domain: a pantentometric analysis.Recent Pat. Eng.2024185e17052321701610.2174/1872212118666230517140351
    [Google Scholar]
  39. ConsolatiD. MarmaglioP. CanzianiL. TiboniM. AmiciC. Electric actuation of transport vehicles: overview of technical characteristics and propulsion solutions through a systematic patent analysis.Actuators20231311510.3390/act13010015
    [Google Scholar]
  40. LiX. ShenY. ChengH. YuanF. HuangL. Identifying the development trends and technological competition situations for digital twin: a bibliometric overview and patent landscape analysis.IEEE Trans. Eng. Manage.2024711998202110.1109/TEM.2022.3166794
    [Google Scholar]
  41. JinL. LuJ. SunX. HuangH. RenH. Data-driven insights into treatment of sulfur-containing organic wastewater.J. Clean. Prod.202343313987810.1016/j.jclepro.2023.139878
    [Google Scholar]
  42. JangH. KimS. YoonB. An eXplainable AI (XAI) model for text-based patent novelty analysis.Expert Syst. Appl.202323112083910.1016/j.eswa.2023.120839
    [Google Scholar]
  43. UstaA.T. GökM.Ş. Climate change mitigation technologies detection and evaluation: case of buildings.Kybernetes202352115385541110.1108/K‑04‑2022‑0557
    [Google Scholar]
  44. WagnerN. Inventive activity for climate change mitigation: an insight into the maritime industry.Energies20231621740310.3390/en16217403
    [Google Scholar]
  45. BaeH. Biomimicry industry and patent trends.Biomimetics20238328810.3390/biomimetics8030288 37504176
    [Google Scholar]
  46. ShindeS.R. ApteS. TiwariA.K. Electro-chlorination technology for disinfection of drinking water: a patent landscape.Recent Pat. Eng.2022174e09052220439410.2174/1872212116666220509002607
    [Google Scholar]
  47. AltuntasS. SezerM. A novel technology intelligence tool based on utility mining.IEEE Trans. Eng. Manage.20237072480249210.1109/TEM.2021.3101582
    [Google Scholar]
  48. ZanellaG. LiuC.Z. ChooK.K.R. Understanding the trends in blockchain domain through an unsupervised systematic patent analysis.IEEE Trans. Eng. Manage.20237061991200510.1109/TEM.2021.3074310
    [Google Scholar]
  49. SpreaficoC. LandiD. RussoD. A new method of patent analysis to support prospective life cycle assessment of eco-design solutions.Sustainable Production Consum.20233824125110.1016/j.spc.2023.04.006
    [Google Scholar]
  50. KwonK. SoJ. Future smart logistics technology based on patent analysis using temporal network.Sustainability20231510815910.3390/su15108159
    [Google Scholar]
  51. WangY.H. LinG.Y. Exploring AI-healthcare innovation: natural language processing-based patents analysis for technology-driven roadmapping.Kybernetes20235241173118910.1108/K‑03‑2021‑0170
    [Google Scholar]
  52. LiuM. GuoJ. BiD. Comparison of administrative and regulatory green technologies development between China and the U.S. based on patent analysis.Data Sci Management202361344510.1016/j.dsm.2023.01.001
    [Google Scholar]
  53. BarbosaN.B. NunesD.D.G. SantosA.Á.B. MachadoB.A.S. Technological advances on fault diagnosis in wind turbines: a patent analysis.Appl. Sci.2023133172110.3390/app13031721
    [Google Scholar]
  54. de PauloA.F. GraeffC.F.O. PortoG.S. Uncovering emerging photovoltaic technologies based on patent analysis.World Pat. Inf.20237310218110.1016/j.wpi.2023.102181
    [Google Scholar]
  55. KarataşA.R. KazakH. AkcanA.T. AkkaşE. ArıkM. A bibliometric mapping analysis of the literature on patent analysis.World Pat. Inf.20247710226610.1016/j.wpi.2024.102266
    [Google Scholar]
  56. CunhaK.C.T. MazieriM.R. Intelligent packaging and value generating: Technological development opportunities based on Patent Analysis.World Pat. Inf.20247610225810.1016/j.wpi.2023.102258
    [Google Scholar]
  57. LiuY. AliasA.H. HaronN.A. BakarN.A. WangH. Technology status tracing and trends in construction robotics: A patent analysis.World Pat. Inf.20247610225910.1016/j.wpi.2023.102259
    [Google Scholar]
  58. TsengF.M. LiuJ. Palma GilE.I.N. LuL.Y.Y. Identifying and monitoring emerging blockchain technologies using patent analysis.World Pat. Inf.20237510223610.1016/j.wpi.2023.102236
    [Google Scholar]
  59. Barragán-OcañaA. Olvera-TreviñoM.Á. Silva-BorjasP. Technological innovation for sustainable development: Is agricultural and food nanotechnology a viable alternative?World Pat. Inf.20237510223510.1016/j.wpi.2023.102235
    [Google Scholar]
  60. AltuntasF. GokM.S. A data-driven analysis of renewable energy management: a case study of wind energy technology.Cluster Comput.20232664133415210.1007/s10586‑023‑03966‑3
    [Google Scholar]
  61. WangJ. ChengL. FengL. LinK.Y. ZhangL. ZhaoW. Tracking and predicting technological knowledge interactions between artificial intelligence and wind power: Multimethod patent analysis.Adv. Eng. Inform.20235810217710.1016/j.aei.2023.102177
    [Google Scholar]
  62. ZhangH. LiY. The patent landscape of mTOR and Pten targets.Recent Adv. Antiinfect. Drug Discov.19210411810.2174/2772434418666230427164556
    [Google Scholar]
  63. DasNandyA. VirgeR. HegdeH.V. ChattopadhyayD. A review of patent literature on the regulation of glucose metabolism by six phytocompounds in the management of diabetes mellitus and its complications.J. Integr. Med.202321322623510.1016/j.joim.2023.02.003 36932029
    [Google Scholar]
  64. OdaT. OdaC. An analysis of the key drivers of the Japanese digital therapeutics patents: A cross‐sectional study.Health Sci. Rep.202366e126810.1002/hsr2.1268 37275666
    [Google Scholar]
  65. LitvinovaO. EitenbergerM. BilirA. Patent analysis of digital sensors for continuous glucose monitoring.Front. Public Health202311120590310.3389/fpubh.2023.1205903 37621612
    [Google Scholar]
  66. ZhangH.L. LiY. The patent landscape of BRAF target and KRAS target.Recent Patents Anticancer Drug Discov.202318449550510.2174/1574892818666221207091329 36475349
    [Google Scholar]
  67. JiangJ. SunJ. HuangZ. The state of the art and future trends of root canal files from the perspective of patent analysis: a study design.Biomed. Eng. Online20222119010.1186/s12938‑022‑01060‑0 36566212
    [Google Scholar]
  68. SinghK. Sethi ChopraD. SinghD. SinghN. Nano-formulations in treatment of iron deficiency anaemia: An overview.Clin. Nutr. ESPEN202252121910.1016/j.clnesp.2022.08.032 36513444
    [Google Scholar]
  69. JanseM.E.M. ZinkwegD.B. LarsenO.F.A. van de BurgwalL. Innovations in the veterinary intestinal health field: A patent landscape analysis.One Health20221510041910.1016/j.onehlt.2022.100419 36277087
    [Google Scholar]
  70. SunX. JinL. ZhouF. Patent analysis of chemical treatment technology for wastewater: Status and future trends.Chemosphere2022307Pt 413580210.1016/j.chemosphere.2022.135802 35952783
    [Google Scholar]
  71. NiL. ChenX. GongX. Patent information analysis of TCM prescription for the treatment of diabetes based on patent analysis and SWOT model.Phytomedicine Plus20222310030710.1016/j.phyplu.2022.100307
    [Google Scholar]
  72. WeiF. ZhouH. GaoG. ZhengQ. Analysis of trends in patent development for coronavirus detection, prevention, and treatment technologies in key countries.J. Biosafe and Biosecurity202241233210.1016/j.jobb.2021.10.005 34746687
    [Google Scholar]
  73. AiliaM.J. ThakurN. Abdul-GhafarJ. JungC.K. YimK. ChongY. Current trend of artificial intelligence patents in digital pathology: a systematic evaluation of the patent landscape.Cancers (Basel)20221410240010.3390/cancers14102400 35626006
    [Google Scholar]
  74. WangY. BakerE. GoldsteinA. Leveraging patent analysis to measure relatedness between technology domains: an application on offshore wind energy.Environ. Res. Lett.202419202404510.1088/1748‑9326/ad239e
    [Google Scholar]
  75. SertkayaA. McGeeneyJ.D. SullivanC. Assessing the state of antibacterial drug discovery through patent analysis.Int. J. Antimicrob. Agents202463210705110.1016/j.ijantimicag.2023.107051 38072169
    [Google Scholar]
  76. RaghavS.S. Bhavna, Sethiya NK, Lal DK. Diabetic Foot Ulcer Management and Treatment: An Overview of Published Patents.Curr. Diabetes Rev.202320395107 37309771
    [Google Scholar]
  77. SampaioP.G.V. GonzálezM.O.A. de VasconcelosR.M. dos SantosM.A.T. de ToledoJ.C. PereiraJ.P.P. Photovoltaic technologies: Mapping from patent analysis.Renew. Sustain. Energy Rev.20189321522410.1016/j.rser.2018.05.033
    [Google Scholar]
  78. Van RaanA.F. Patent citations analysis and its value in research evaluation: A review and a new approach to map technology-relevant research.J. Data Inf. Sci.2017211350
    [Google Scholar]
  79. LiuJ.S. KuanC.H. ChaS.C. ChuangW.L. GauG.J. JengJ.Y. Photovoltaic technology development: A perspective from patent growth analysis.Sol. Energy Mater. Sol. Cells201195113130313610.1016/j.solmat.2011.07.002
    [Google Scholar]
  80. ChoiJ. HwangY.S. Patent keyword network analysis for improving technology development efficiency.Technol. Forecast. Soc. Change20148317018210.1016/j.techfore.2013.07.004
    [Google Scholar]
  81. KarvonenM. KässiT. Patent citations as a tool for analysing the early stages of convergence.Technol. Forecast. Soc. Change20138061094110710.1016/j.techfore.2012.05.006
    [Google Scholar]
  82. KwakkelJ.H. CarleyS. ChaseJ. CunninghamS.W. Visualizing geo-spatial data in science, technology and innovation.Technol. Forecast. Soc. Change201481678110.1016/j.techfore.2012.09.007
    [Google Scholar]
  83. LeeM. KimK. ChoY. A study on the relationship between technology diffusion and new product diffusion.Technol. Forecast. Soc. Change201077579680210.1016/j.techfore.2010.01.003
    [Google Scholar]
  84. PageM.J. McKenzieJ.E. BossuytP.M. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.Int. J. Surg.20218810590610.1016/j.ijsu.2021.105906 33789826
    [Google Scholar]
  85. FinchA.J. DickermanA.L. PTSD and lower respiratory symptoms: A systematic review of longitudinal associations in early 9/11 World Trade Center responders.J. Psychiatr. Res.202416931832710.1016/j.jpsychires.2023.11.048
    [Google Scholar]
  86. Alarcón-UribeS. Zapata-BuilesW. Higuita-GutiérrezL.F. Resistencia natural a la infección por el VIH-1: Revisión sistemática de la literatura.Iatreia2024371638410.17533/udea.iatreia.216
    [Google Scholar]
  87. BrucchiF. BracchettiG. FugazzolaP. ViganòJ. FilisettiC. AnsaloniL. A meta-analysis and trial sequential analysis comparing nonoperative versus operative management for uncomplicated appendicitis: a focus on randomized controlled trials.World J. Emerg. Surg.2024191210.1186/s13017‑023‑00531‑6
    [Google Scholar]
  88. ConteM. CagilE. LanzinoG. KeserZ. Fusiform aneurysms of anterior cerebral artery: center experience and systematic literature reviewIn: Neurosurgical Review Springer Science and Business Media Deutschland GmbH20244712410.1007/s10143‑023‑02247‑2
    [Google Scholar]
  89. KaspirisA PapadopoulosDV MacherasGA Bone ineral density, vitamin D and osseous metabolism indices in neurofibromatosis type 1: A systematic review and meta-analysis Bone.202418011699210.1016/j.bone.2023.116992
    [Google Scholar]
  90. LiW. LiJ. YuX. LiuJ. ZhangJ. ZengM. Hemoadsorption in acute respiratory distress syndrome patients requiring venovenous extracorporeal membrane oxygenation: A systematic review.Respir. Res.20242512110.1186/s12931‑024‑02675‑8
    [Google Scholar]
  91. ParkS.Y. CoufalN.G. DominguezS.R. FarnaesL. MessacarK. GoldmanF.D. Gaps in diagnosing suspected infection in immunocompromised children with cancer: A systematic review In: Pediatric Blood and Cancer.John Wiley and Sons Inc2024712e3079410.1002/pbc.30794
    [Google Scholar]
  92. Rodeghiero NetoI. AmaralF.G. Teaching occupational health and safety in engineering using active learning: A systematic review. Safety Science.Elsevier B.V.202417110639110.1016/j.ssci.2023.106391
    [Google Scholar]
  93. RomanoV. StegerB. AhmadS. ChehabM. PaganoL. TitleyM. Combined or sequential DMEK in cases of cataract and Fuchs endothelial corneal dystrophy—A systematic review and metaanalysis In: Acta Ophthalmologica.John Wiley and Sons Inc20241021e22e3010.1111/aos.15691
    [Google Scholar]
  94. AlkhaleelB.A. Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review.Int. J. Crit. Infrastruct. Prot.20244410064610.1016/j.ijcip.2023.100646
    [Google Scholar]
  95. CardosoJ. FerreiraA. AlmeidaA. SantosJ. Incorporation of plastic waste into road pavements: A systematic literature review on the fatigue and rutting performances.Constr. Build. Mater.202340713344110.1016/j.conbuildmat.2023.133441
    [Google Scholar]
  96. HuX. AssaadR.H. The use of unmanned ground vehicles (mobile robots) and unmanned aerial vehicles (drones) in the civil infrastructure asset management sector: Applications, robotic platforms, sensors, and algorithms.Expert Syst. Appl.202323212089710.1016/j.eswa.2023.120897
    [Google Scholar]
  97. PurnomoA. E-Commerce on Startup: A Systematic Literature Review.In: EAI/Springer Innovations in Communication and Computing.Springer Nature; 2024. p. 101-810.1007/978‑3‑031‑34750‑4_8
    [Google Scholar]
  98. TembrevillaG. PhillionA. ZeadinM. Experiential learning in engineering education: A systematic literature review.J. Eng. Educ.2024113119521810.1002/jee.20575
    [Google Scholar]
  99. UkejeN. GutierrezJ. PetrovaK. Information security and privacy challenges of cloud computing for government adoption: a systematic review.Int. J. Inf. Secur.202410.1007/s10207‑023‑00797‑6
    [Google Scholar]
  100. AvignoneT. Fernández-Pacheco AlisesG. Torres-JiménezM. Is there a gender-based analysis of unaccompanied migrant minors? A systematic review of the evidence.Child. Youth Serv. Rev.202415610731310.1016/j.childyouth.2023.107313
    [Google Scholar]
  101. AzizM.A. Norliati Fitri MdN.N. MasayuR.A.R.S. Systematic literature review (SLR) on. community support among the older adults.Ageing Int.20234841086109810.1007/s12126‑023‑09518‑9
    [Google Scholar]
  102. HuangW.D. LoidV. SungJ.S. Reflecting on gamified learning in medical education: a systematic literature review grounded in the structure of observed learning outcomes (SOLO) taxonomy 2012—2022.BMC Med. Educ.20242415510.1186/s12909‑023‑04955‑1
    [Google Scholar]
  103. WaseemH.B. MirzaM.N.E.E. RanaI.A. Exploring the role of social capital in flood risk reduction: Insights from a systematic review.Environ. Impact Assess. Rev.202410510739010.1016/j.eiar.2023.107390
    [Google Scholar]
  104. ShinH.G. KimK. ChungW.K. Multi-layered soft pneumatic actuator and robot mechanism including the same.US Patent 2023166408A12023
  105. ManfrediL. A robot for endoscopy.WO Patent 2020260168A12020
  106. SonarH.A. RobertsonM.A. JoshiS.D. BhatnagarT. PaikJ. Soft portable wearable pneumatic interactive suit.US Patent 11458067B22022
  107. EyalA. A wearable lumbo-pelvic active balancing device and methods of use.WO Patent 2022175940A12022
  108. ChristJ.F. AliheidariN. AmeliA. PötschkeP. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites.Mater. Des.201713139440110.1016/j.matdes.2017.06.011
    [Google Scholar]
  109. ChristJ. AliheidariN. PötschkeP. AmeliA. Bidirectional and stretchable piezoresistive sensors enabled by multimaterial 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites.Polymers20181111110.3390/polym11010011 30959995
    [Google Scholar]
  110. ZhangZ. XiangD. WuY. Effect of carbon black on the strain sensing property of 3D printed conductive polymer composites.Appl. Compos. Mater.20222931235124810.1007/s10443‑022‑10017‑4
    [Google Scholar]
  111. BaskarS. ChandrasekaranM. Vinod KumarT. VivekP. RamasubramanianS. Experimental studies on flow and heat transfer characteristics of secondary refrigerant-based CNT nanofluids for cooling applications.Int J Ambien Ener202041328528810.1080/01430750.2018.1456970
    [Google Scholar]
  112. LogeshK. BaskarS. Yuvan SiddarthB. Arun SherwinK. NareshP. Multi-walled carbon nanotube mixed with isopropyl alcohol Nano fluid for heat transfer applications.Mater. Today Proc.2019184690469410.1016/j.matpr.2019.07.454
    [Google Scholar]
  113. SanjeeviB. LoganathanK. Synthesis of MWCNT nanofluid by using two step method, thermal science.Thermal Science202024151952410.2298/TSCI190414430S
    [Google Scholar]
  114. MartinezR.V. WhitesidesG.M. Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators.US Patent 2015070904A12015
  115. SunZ ZhuM LeeJ K Robot arm, method of manufacturing robot arm, and interactive feedback system.CN Patent 115229782A2022
/content/journals/meng/10.2174/0122127976300859240409044842
Loading
/content/journals/meng/10.2174/0122127976300859240409044842
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test