Current Pharmaceutical Biotechnology - Volume 26, Issue 7, 2025
Volume 26, Issue 7, 2025
-
-
The Hepatoprotective Effects of Ginsenoside from Ginseng: A Review of Molecular Mechanisms and Therapeutic Potentials
Treatment of hepatic diseases presents a significant challenge due to their diverse nature. Ginsenosides, bioactive compounds derived from the root of Panax ginseng and widely used in traditional Chinese medicine, offer multifaceted protection to various organs in the body. Their versatile effects, including antioxidant, anti-inflammatory, anti-apoptotic and more, make them a promising approach for addressing hepatic disorders. This review explores the intricate molecular mechanisms and properties of ginsenosides in the prevention and treatment of liver ailments, from mild conditions to severe damage and liver fibrosis. Given the increasing prevalence of hepatic disorders, this article sheds light on the significant pharmaceutical potential of ginsenosides in the realm of hepatic disease management.
-
-
-
Application of Nanotechnology to Develop Carrageenan-based Films and Coatings as Carriers for Essential Oils
This review highlights the effect of combining bioactive agents, especially nanoparticles, in carrageenan coating to increase the quality and stability of foods. This study is designed based on a review of previous studies. Biopolymer coatings and films are suitable for food and non-food packaging due to their degradability, renewable and edible nature. Edible coatings and films are based on polysaccharides, proteins, and lipids. They confer some beneficial effects on foods, such as improvement of appearance and texture, reducing the amount of moisture loss and oxidation, prevention of the release of gases and control of microbial growth, delaying ripening and adverse changes in color and taste, improvement of nutritional value, and increasing the shelf life of the product. These improvements lead to the prevention of food spoilage and increase the shelf life of various foods. In addition, nanomaterials and food additives such as antimicrobial and antioxidant agents, flavorings, and colors can be incorporated into food coatings and films to expand their applications. Nanotechnology can be applied in coatings and food films using nanoparticles. However, more research is still needed to gather information about coating formulations, especially when new materials are incorporated into them.
-
-
-
Biofilm Formation in Mycobacterial Genus; Mechanism of Biofilm Formation and Anti-mycobacterial Biofilm Agents
Mycobacterium tuberculosis, Mycobacterium leprae, and non-tuberculous mycobacteria (NTM) are among the most significant human pathogens within the Mycobacterium genus. These pathogens can infect people who come into contact with biomaterials or have chronic illnesses. A characteristic pathogenic trait of mycobacteria is the development of biofilms, which involves several molecules, such as the GroEL1 chaperone, glycopeptidolipids, and shorter-chain mycolic acids. Bacterial behavior is influenced by nutrients, ions, and carbon sources, which also play a regulatory role in biofilm development. Compared to their planktonic phase, mycobacterial biofilms are more resilient to environmental stresses and disinfectants. Mycobacteria that produce biofilms have been found in several environmental studies, particularly in water systems. NTM can cause respiratory problems in individuals with underlying illnesses such as cystic fibrosis, bronchiectasis, and old tuberculosis scars. Mycobacteria that grow slowly, like those in the Mycobacterium avium complex (MAC), or rapidly, like Mycobacterium abscessus, can be pathogens. Infections related to biomaterials represent a significant category of biofilm-associated infections, with rapidly growing mycobacteria being the most frequently identified organisms. A biofilm produced by M. tuberculosis can contribute to caseous necrosis and cavity formation in lung tissue. Additionally, M. tuberculosis forms biofilms on clinical biomaterials. Biofilm formation is a major contributor to antimicrobial resistance, providing defense against drugs that would typically be effective against these bacteria in their planktonic state. The antibiotic resistance of biofilm-forming microbes may render therapy ineffective, necessitating the physical removal of biofilms to cure the infection. Recently, new approaches have been developed with potential anti-biofilm compounds to increase treatment effectiveness. Understanding biofilms is crucial for the appropriate treatment of various NTM diseases, and the recent discovery of M. tuberculosis biofilms has opened up a new field of study. This review focuses on the biofilm formation of the Mycobacterial genus, the mechanisms of biofilm formation, and anti-mycobacterial biofilm agents.
-
-
-
Unlocking the Potential of RNA Nanoparticles: A Breakthrough Approach to Overcoming Challenges in Colon Cancer Treatment
Globally, one of the leading causes of cancer-related deaths is colon cancer. As this form of cancer has a tremendous potential to metastasize, effective treatment is complicated and sometimes impossible. Despite the improvement of conventional chemotherapy and the advent of targeted therapies, overcoming multi-drug resistance (MDR) and side effects remain significant challenges. As a therapeutic intervention for targeted gene silencing in cancer, RNA technology shows promise and certain RNA-based formulations are currently undergoing clinical studies. Various studies have reported that RNA-based nanoparticles have demonstrated substantial promise for targeted medication delivery, gene therapy, and other biomedical applications. However, using RNA as a therapeutic tool presents severe limitations, mainly related to its low stability and poor cellular uptake. Nanotechnology offers a flexible and tailored alternative due to the difficulties in delivering naked RNA molecules safely in vivo, such as their short half-lives, low chemical stability, and susceptibility to nuclease degradation. In addition to shielding RNA molecules from immune system attacks and enzymatic breakdown, the nanoparticle-based delivery systems allow RNA accumulation at the tumor site. The potential of RNA and RNA-associated nanomedicines for the treatment of colon cancer, as well as the prospects for overcoming any difficulties related to mRNA, are reviewed in this study, along with the current progress of mRNA therapeutics and advancements in designing nanomaterials and delivery strategies.
-
-
-
Role of Phytoactive-based Nanoformulation for the Treatment of Arthritis
Authors: Shivendra Kumar, Kantrol Kumar Sahu, Mohit Agrawal, Kuldeep Singh and Sunam SahaJoints and arthritic conditions are among the most dangerous illnesses that humans have ever encountered and it is even more worrying that there is no recognized treatment for arthritis. The researchers looked for safer alternatives, such as herbal medicines, because the traditional treatments used to treat severe joint inflammatory issues have several negative side effects. A ligand-coated nanomedicine can bind to receptors that are overexpressed by cells in chronically inflammatory tissues, increasing its efficacy and reducing its systemic side effects. This is because the pathophysiology of rheumatoid arthritis suggests that macrophages and overexpressed molecules exist within inflamed tissues, which increases permeability and allows nanomedicines to accumulate in inflamed tissue and cause retention phenomena. The anti-arthritic properties of a variety of plants, their components, extracts, and phyto-isolates have been studied to date. These plant compounds can pose stability and delivery problems, which restricts their efficacy as a treatment for inflammatory diseases. The multifunctional and adaptable features of different nanoparticles can help herbal remedies based on nanotechnology get beyond the delivery constraints of different natural ingredients. The application of nanoformulations in tissue engineering is an additional strategy for delivering drugs directly to bone and cartilage in RA patients. The medication is more therapeutically effective due to nanoformulation's improved synovium and cartilage absorption, accumulation, and penetration at inflammatory joints. Herbal medications with a nanotechnology foundation exhibit superior pharmacokinetic and drug delivery qualities, aid in better oral absorption, regulate drug release, boost in vivo retention capacity, target delivery, and have synergistic effects. This review provides an update on the use of herbal medicines based on nanotechnology, which show promise in treating arthritis and other ailments.
-
-
-
Nanogels as Drug Delivery Carrier: A Narrative Review on Formulation Techniques, Characterization, Applications and Patents
Authors: Alpana Kumari, Kamini Bhardwaj, Supriya Mishra, Lubhan Singh, Faheem Hyder Pottoo and Mohd YasirUnder the umbrella of targeted drug delivery systems, several techniques are unleashed in the market that allow a drug or other pharmacologically active material to be delivered to the target cell to treat a condition or health problem. The improvement of the pharmaceutical delivery systems' effectiveness, safety, and stability is accomplished through the Formulation of the nano-gel-based delivery system. Nanogels are aqueous dispersions of submicron-sized, three-dimensional, strongly cross-linked networks of hydrophilic polymers that are inflated by water. Through a variety of delivery routes, such as oral, pulmonary, nasal, parenteral, and intraocular, an active pharmaceutical agent or therapeutic agent with a high or low molecular weight can be easily encapsulated into nanogels. Nanogels have been researched as drug delivery systems due to their beneficial qualities, such as biocompatibility, high stability, flexible particle size, drug loading capacity, and potential surface modification for active targeting by attaching ligands that recognize cognate receptors on target cells or tissues. By responding to internal or external stimuli, including pH, temperature, light, and redox, nano gels can be made to be stimulus-responsive, allowing for regulated drug release. Thus, in the fact of said characteristics’ of nano gels, this review manuscript aims to provide an overview of characterization, evaluation, formulation technique, recent applications, and patents of nano gels.
-
-
-
Insulin Analogs and the Mode of Insulin Delivery: Recent Advances and Challenges
Authors: Medha Bhagi, Jasmine Kaur, Arti Dhar and Audesh BhatDiabetes is a medical condition associated with impaired glucose regulation caused either due to insufficient insulin production or resistance to insulin (Type 2 diabetes, gestational diabetes) or the absence of insulin through the selective killing of beta cells in the pancreas (Type 1 diabetes). Irregular insulin production leads to various health complications. To prevent such complications, patients must adhere to medical recommendations before availing of any advanced insulin therapy(ies), considered productive for the treatment. Natural insulin, although highly effective in controlling blood glucose levels, patients are often at risk of developing hypoglycemia and many other complications. This has led to the development of insulin analogs, the modified variants of natural insulin having a minimal risk of causing hypoglycemia. Besides the development of analogs, the mode of insulin delivery is also considered critical in achieving better glycemic control in diabetic patients. Until recently, various exogenous insulin delivery methods were practiced, but effective glycemic control without any associated risk and ease of delivery remains a subject of paramount concern. It countered attenuation or delayed onset of diabetes-associated complications without a permanent cure, raising an unmet demand for insulin formulations and delivery methods that offer stability, biocompatibility, reproducibility, precision dosing, non-immunogenicity, and safety. The current practice utilizes non-physiological delivery methods with less invasive administration routes, offering glycemic stability and therapeutic effectiveness. This review focuses on the recent advances made and future perspectives envisioned about newer insulin therapies and delivery methods that tend to improve the management of diabetes by inculcating ideas to reduce the disease’s severity and improve the quality of life.
-
-
-
Nanoemulsions a Delivery System in the Making for Tumor Targeting Therapeutics: Evaluation and Characterization to Meet Clinical Challenges
Authors: Ravi Shankar, Prabhat Kumar Upadhyay and Manish KumarCancer is a complex disease characterized by the uncontrolled and unregulated growth of cells followed by invasion and proliferation from the site of origin to other sites of the body. Conventional chemotherapy largely kills rapidly expanding and dividing cancer cells by impairing DNA synthesis and mitosis. It is associated with various types of adverse effects ranging from simple nausea and appetite loss to serious ones like bone marrow depression and compromised immunity etc., due to their non-selectivity and inability to differentiate. The ideal feature of a delivery system is delivering the drug to the target place to achieve the most therapeutic impact while having the least toxicity. With the advent of novel drug delivery systems, it has been easier to deliver the drug to the target site. Utilizing new techniques and technology makes it a feasible approach to target cancer cells. Nanoemulsions are isotropic mixtures of transparent or translucent oil globules dispersed in an aqueous phase that is kinetically stable and supported by an interfacial coating of surfactant and co-surfactant molecules with droplet sizes in the nanometre range. Nanoemulsions are the delivery system of choice in case of cancer because of certain key attributes, including biodegradability, biocompatibility, large surface area non-immunogenicity, and release behavior control. At the same time, nanoemulsions have been engineered for various reasons, including enhanced biological half-life, target-specific binding ability, and imaging capability at different therapy levels by modifying the characteristics of nanoemulsions. This review focuses on current cancer treatment challenges and the role of nanoemulsions in treating cancer with their production methods, characterization methods, application, and quality attributes, which would help them make it to the clinics where cancer treatment is going on.
-
-
-
Cardioprotective Efficacy of Quercetin against Cardiotoxicity Induced by Different Diameters of Sphere Gold Nanoparticles (GNPs)
BackgroundGold nanoparticles (GNPs) have garnered significant attention in the biomedicine field due to their exceptional electrical, mechanical, chemical, and optical characteristics. The interaction of these remarkable potentials with biological tissues carries a risk of toxicity. Quercetin (Qur) is a natural flavonoid and exhibits numerous pharmacological impacts, especially anti-inflammatory, anti-apoptotic, and antioxidant.
ObjectivesThis investigation aimed to clarify the potential cardiotoxicity induced by different diameters of spherical GNPs as well as to evaluate the possible cardioprotective roles of Qur against the most toxic diameter of GNPs.
MethodsRats were randomly grouped and treated with or without sphere GNPs (10, 20 and 50 nm) and Qur (200 mg/kg b.wt.). Heart and blood samples were collected and subjected to histological, immunohistochemical and biochemical investigations.
ResultsWhen compared to the groups treated with 20 and 50 nm, the 10 nm GNPs dramatically increased the levels of cardiac biomarkers, including Troponin I, Creatine kinase isoenzyme-MB (CK-MB), CK-Total, lactate dehydrogenase (LDH). Histopathologically, 10 nm GNPs exhibited severe cardiomyocytes degenerations, atrophy, disorganization of myocardial fibers, focal hemorrhage, congested blood vessels and interstitial inflammatory cells infiltrations. Immunohistochemically, 10 nm GNPs exhibited strongly positive expressions against anti-caspase-3 antibody confirming extensive apoptosis of cardiomyocytes. However, the majority of these pathological changes were significantly improved upon Qur treatment.
ConclusionThe size of GNPs is crucial to their toxicological impact on cardiac tissues where 10 nm GNPs can induce severe histological damage, potent cytotoxicity, and apoptosis rather than larger particles. Otherwise, pre-co-treatment with Qur revealed a significant cardioprotective effect against GNPs cardiotoxicity.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
