Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Diabetes is a medical condition associated with impaired glucose regulation caused either due to insufficient insulin production or resistance to insulin (Type 2 diabetes, gestational diabetes) or the absence of insulin through the selective killing of beta cells in the pancreas (Type 1 diabetes). Irregular insulin production leads to various health complications. To prevent such complications, patients must adhere to medical recommendations before availing of any advanced insulin therapy(ies), considered productive for the treatment. Natural insulin, although highly effective in controlling blood glucose levels, patients are often at risk of developing hypoglycemia and many other complications. This has led to the development of insulin analogs, the modified variants of natural insulin having a minimal risk of causing hypoglycemia. Besides the development of analogs, the mode of insulin delivery is also considered critical in achieving better glycemic control in diabetic patients. Until recently, various exogenous insulin delivery methods were practiced, but effective glycemic control without any associated risk and ease of delivery remains a subject of paramount concern. It countered attenuation or delayed onset of diabetes-associated complications without a permanent cure, raising an unmet demand for insulin formulations and delivery methods that offer stability, biocompatibility, reproducibility, precision dosing, non-immunogenicity, and safety. The current practice utilizes non-physiological delivery methods with less invasive administration routes, offering glycemic stability and therapeutic effectiveness. This review focuses on the recent advances made and future perspectives envisioned about newer insulin therapies and delivery methods that tend to improve the management of diabetes by inculcating ideas to reduce the disease’s severity and improve the quality of life.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010287216240324050651
2024-04-02
2025-09-01
Loading full text...

Full text loading...

References

  1. IDF Diabetes around the world in 2021.Available from: https://www.diabetesatlas.org 2021
    [Google Scholar]
  2. DaviesM.J. D’AlessioD.A. FradkinJ. KernanW.N. MathieuC. MingroneG. RossingP. TsapasA. WexlerD.J. BuseJ.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).Diabetes Care201841122669270110.2337/dci18‑0033 30291106
    [Google Scholar]
  3. SangerF. Chemistry of insulin.Br. Med. Bull.196016318318810.1093/oxfordjournals.bmb.a069832 13746240
    [Google Scholar]
  4. SeetharamanR. PawarS. AdvaniM. One hundred years since insulin discovery: An update on current and future perspectives for pharmacotherapy of diabetes mellitus.Br. J. Clin. Pharmacol.20228841598161210.1111/bcp.15100 34608666
    [Google Scholar]
  5. NavaleA.M. ParanjapeA.N. Glucose transporters: Physiological and pathological roles.Biophys. Rev.2016815910.1007/s12551‑015‑0186‑2 28510148
    [Google Scholar]
  6. RorsmanP. AshcroftF.M. Pancreatic β-Cell electrical activity and insulin secretion: Of mice and men.Physiol. Rev.201898111721410.1152/physrev.00008.2017 29212789
    [Google Scholar]
  7. De MeytsP. The Insulin Receptor and Its Signal Transduction Network; Feingold, K.R.; Anawalt, B.; Blackman, M.R.; Boyce, A.; Chrousos, G. CorpasE. South Dartmouth, MAEndotext2000
    [Google Scholar]
  8. RosenfeldL. Insulin: Discovery and Controversy.Clin. Chem.200248122270228810.1093/clinchem/48.12.2270 12446492
    [Google Scholar]
  9. AkbarianM. GhasemiY. UverskyV.N. YousefiR. Chemical modifications of insulin: Finding a compromise between stability and pharmaceutical performance.Int. J. Pharm.20185471-245046810.1016/j.ijpharm.2018.06.023 29890260
    [Google Scholar]
  10. HomeP. The evolution of insulin therapy.Diabetes Res. Clin. Pract.202117510881610.1016/j.diabres.2021.108816 33862058
    [Google Scholar]
  11. RabinowitchI.M. FosterJ.S. FowlerA.F. CorcoranA.C. Clinical experiences with protamine-zinc-insulin and other mixtures of zinc and insulin in diabetes mellitus.Can. Med. Assoc. J.1936353239252 20320365
    [Google Scholar]
  12. BrangeJ. RibelU. HansenJ.F. DodsonG. HansenM.T. HavelundS. MelbergS.G. NorrisF. NorrisK. SnelL. SørensenA.R. VoigtH.O. Monomeric insulins obtained by protein engineering and their medical implications.Nature1988333617467968210.1038/333679a0 3287182
    [Google Scholar]
  13. FinebergS.E. RathbunM.J. HufferdS. FinebergN.S. SpradlinC.T. GallowayJ.A. FrankB.H. Immunologic aspects of human proinsulin therapy.Diabetes198837327628010.2337/diab.37.3.276 3286327
    [Google Scholar]
  14. KurtzhalsP. SchäfferL. SørensenA. KristensenC. JonassenI. SchmidC. TrübT. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use.Diabetes2000496999100510.2337/diabetes.49.6.999 10866053
    [Google Scholar]
  15. KlingJ. Inhaled insulin’s last gasp?Nat. Biotechnol.200826547948010.1038/nbt0508‑479 18464758
    [Google Scholar]
  16. TomasN.M. MasurK. PiechaJ.C. NiggemannB. ZänkerK.S. Akt and phospholipase Cγ are involved in the regulation of growth and migration of MDA-MB-468 breast cancer and SW480 colon cancer cells when cultured with diabetogenic levels of glucose and insulin.BMC Res. Notes20125121410.1186/1756‑0500‑5‑214 22554284
    [Google Scholar]
  17. WeiZ. LiangL. JunsongL. RuiC. ShuaiC. GuanglinQ. ShicaiH. ZexingW. JinW. XiangmingC. ShufengW. The impact of insulin on chemotherapeutic sensitivity to 5-fluorouracil in gastric cancer cell lines SGC7901, MKN45 and MKN28.J. Exp. Clin. Cancer Res.20153416410.1186/s13046‑015‑0151‑8 26084465
    [Google Scholar]
  18. LiuS. LiY. LinT. FanX. LiangY. HeemannU. High dose human insulin and insulin glargine promote T24 bladder cancer cell proliferation via PI3K-independent activation of Akt.Diabetes Res. Clin. Pract.201191217718210.1016/j.diabres.2010.11.009 21129803
    [Google Scholar]
  19. WongC.K.H. ManK.K.C. ChanE.W.Y. WuT. TseE.T.Y. WongI.C.K. LamC.L.K. DPP4i, thiazolidinediones, or insulin and risks of cancer in patients with type 2 diabetes mellitus on metformin–sulfonylurea dual therapy with inadequate control.BMJ Open Diabetes Res. Care202081e00134610.1136/bmjdrc‑2020‑001346 32532851
    [Google Scholar]
  20. TsengC.H. Human insulin therapy is associated with an increased risk of lung cancer: A population-based retrospective cohort study.Front. Endocrinol. (Lausanne)20191044310.3389/fendo.2019.00443 31354621
    [Google Scholar]
  21. DubroffL.M. DuckettJ.W.Jr CorriereJ.N.Jr Phytohemagglutinin lymphocyte stimulation in children with recurrent urinary tract infections.Urology19755674474610.1016/0090‑4295(75)90344‑1 1079657
    [Google Scholar]
  22. CerneaS. RazI. Insulin Therapy: Future Perspectives.Am. J. Ther.2020271e121e13210.1097/MJT.0000000000001076 31567147
    [Google Scholar]
  23. ChengR. TalebN. Stainforth-DuboisM. Rabasa-LhoretR. The promising future of insulin therapy in diabetes mellitus.Am. J. Physiol. Endocrinol. Metab.20213205E886E89010.1152/ajpendo.00608.2020 33719586
    [Google Scholar]
  24. HomeP. ItzhakB. Is Insulin Therapy Safe?Am. J. Ther.2020271e106e11410.1097/MJT.0000000000001077 31567197
    [Google Scholar]
  25. DingermannT. Recombinant therapeutic proteins: Production platforms and challenges.Biotechnol. J.200831909710.1002/biot.200700214 18041103
    [Google Scholar]
  26. RostèneW. De MeytsP. Insulin: A 100-Year-Old Discovery With a Fascinating History.Endocr. Rev.202142550352710.1210/endrev/bnab020 34273145
    [Google Scholar]
  27. CahnA. MiccoliR. DardanoA. Del PratoS. New forms of insulin and insulin therapies for the treatment of type 2 diabetes.Lancet Diabetes Endocrinol.20153863865210.1016/S2213‑8587(15)00097‑2 26051044
    [Google Scholar]
  28. KesavadevJ. SabooB. KrishnaM.B. KrishnanG. Evolution of insulin delivery devices: From syringes, pens, and pumps to diy artificial pancreas.Diabetes Ther.20201161251126910.1007/s13300‑020‑00831‑z 32410184
    [Google Scholar]
  29. OngS.C. BelgiA. van LieropB. DelaineC. AndrikopoulosS. MacRaildC.A. NortonR.S. HaworthN.L. RobinsonA.J. ForbesB.E. Probing the correlation between insulin activity and structural stability through introduction of the rigid A6–A11 bond.J. Biol. Chem.201829330119281194310.1074/jbc.RA118.002486 29899115
    [Google Scholar]
  30. TaylorJ.R. CampbellK.M. Insulin analogs for the management of type 2 diabetes.Am. J. Health Syst. Pharm.201370432033410.2146/ajhp110381 23370139
    [Google Scholar]
  31. JeitlerK. HorvathK. BergholdA. GratzerT.W. NeeserK. PieberT.R. SiebenhoferA. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: Systematic review and meta-analysis.Diabetologia200851694195110.1007/s00125‑008‑0974‑3 18351320
    [Google Scholar]
  32. FreckmannG. BuckS. WaldenmaierD. KulzerB. SchnellO. GelchsheimerU. ZieglerR. HeinemannL. Insulin pump therapy for patients with Type 2 Diabetes Mellitus: Evidence, current barriers, and new technologies.J. Diabetes Sci. Technol.202115490191510.1177/1932296820928100 32476471
    [Google Scholar]
  33. BoscariF. AvogaroA. Current treatment options and challenges in patients with Type 1 diabetes: Pharmacological, technical advances and future perspectives.Rev. Endocr. Metab. Disord.202122221724010.1007/s11154‑021‑09635‑3 33755854
    [Google Scholar]
  34. WoodsR.J. AlarcónJ. McVeyE. PettisR.J. Intrinsic fibrillation of fast-acting insulin analogs.J. Diabetes Sci. Technol.20126226527610.1177/193229681200600209 22538135
    [Google Scholar]
  35. BoughtonC.K. HartnellS. ThabitH. PoettlerT. HerzigD. WilinskaM.E. AshcroftN.L. SibayanJ. CohenN. CalhounP. BallyL. MaderJ.K. EvansM. LeelarathnaL. HovorkaR. Hybrid closed‐loop glucose control with faster insulin aspart compared with standard insulin aspart in adults with type 1 diabetes: A double‐blind, multicentre, multinational, randomized, crossover study.Diabetes Obes. Metab.20212361389139610.1111/dom.14355 33606901
    [Google Scholar]
  36. JacobyE. HuaQ.X. SternA.S. FrankB.H. WeissM.A. Structure and dynamics of a protein assembly. 1H-NMR studies of the 36 kDa R6 insulin hexamer.J. Mol. Biol.1996258113615710.1006/jmbi.1996.0239 8613983
    [Google Scholar]
  37. BlundellT.L. CutfieldJ.F. DodsonG.G. DodsonE. HodgkinD.C. MercolaD. The structure and biology of insulin.Biochem. J.1971125350P51P10.1042/bj1250050P 5169433
    [Google Scholar]
  38. BentleyG. DodsonE. DodsonG. HodgkinD. MercolaD. Structure of insulin in 4-zinc insulin.Nature1976261555616616810.1038/261166a0 1272390
    [Google Scholar]
  39. DerewendaU. DerewendaZ. DodsonE.J. DodsonG.G. ReynoldsC.D. SmithG.D. SparksC. SwensonD. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer.Nature1989338621659459610.1038/338594a0 2648161
    [Google Scholar]
  40. GillisR.B. SolomonH.V. GovadaL. OldhamN.J. DinuV. JiwaniS.I. Gyasi-AntwiP. CoffeyF. MealA. MorganP.S. HardingS.E. HelliwellJ.R. ChayenN.E. AdamsG.G. Analysis of insulin glulisine at the molecular level by X-ray crystallography and biophysical techniques.Sci. Rep.2021111173710.1038/s41598‑021‑81251‑2 33462295
    [Google Scholar]
  41. BlevinsT. ZhangQ. FriasJ.P. JinnouchiH. ChangA.M. Randomized Double-Blind Clinical Trial Comparing Ultra Rapid Lispro With Lispro in a Basal-Bolus Regimen in Patients With Type 2 Diabetes: PRONTO-T2D.Diabetes Care202043122991299810.2337/dc19‑2550 32616612
    [Google Scholar]
  42. LinnebjergH. ZhangQ. LaBellE. DellvaM.A. CoutantD.E. HövelmannU. Plum-MörschelL. HerbrandT. LeohrJ. Pharmacokinetics and Glucodynamics of Ultra Rapid Lispro (URLi) versus Humalog® (Lispro) in younger adults and elderly patients with Type 1 Diabetes Mellitus: A randomised controlled trial.Clin. Pharmacokinet.202059121589159910.1007/s40262‑020‑00903‑0 32468447
    [Google Scholar]
  43. HeiseT. MeiffrenG. AlluisB. SeroussiC. RansonA. ArrublaJ. CorreiaJ. GaudierM. SoulaO. SoulaR. DeVriesJ.H. KleinO. BodeB. BioChaperone Lispro versus faster aspart and insulin aspart in patients with type 1 diabetes using continuous subcutaneous insulin infusion: A randomized euglycemic clamp study.Diabetes Obes. Metab.20192141066107010.1111/dom.13621 30565407
    [Google Scholar]
  44. MannJ.L. MaikawaC.L. SmithA.A.A. GrosskopfA.K. BakerS.W. RothG.A. MeisC.M. GaleE.C. LiongC.S. CorreaS. ChanD. StapletonL.M. YuA.C. MuirB. HowardS. PostmaA. AppelE.A. An ultrafast insulin formulation enabled by high-throughput screening of engineered polymeric excipients.Sci. Transl. Med.202012550eaba667610.1126/scitranslmed.aba6676 32611683
    [Google Scholar]
  45. MaikawaC.L. d’AquinoA.I. LalR.A. BuckinghamB.A. AppelE.A. Engineering biopharmaceutical formulations to improve diabetes management.Sci. Transl. Med.202113578eabd672610.1126/scitranslmed.abd6726 33504649
    [Google Scholar]
  46. ThotaS. AkbarA. Insulin.Treasure Island, FLStatPearls2023
    [Google Scholar]
  47. WilsonL.M. CastleJ.R. Recent Advances in Insulin Therapy.Diabetes Technol. Ther.2020221292993610.1089/dia.2020.0065 32310681
    [Google Scholar]
  48. HeiseT. HermanskiL. NosekL. FeldmanA. RasmussenS. HaahrH. Insulin degludec: Four times lower pharmacodynamic variability than insulin glargine under steady‐state conditions in type 1 diabetes.Diabetes Obes. Metab.201214985986410.1111/j.1463‑1326.2012.01627.x 22594461
    [Google Scholar]
  49. RatnerR.E. GoughS.C.L. MathieuC. Del PratoS. BodeB. MersebachH. EndahlL. ZinmanB. Hypoglycaemia risk with insulin degludec compared with insulin glargine in type 2 and type 1 diabetes: A pre‐planned meta‐analysis of phase 3 trials.Diabetes Obes. Metab.201315217518410.1111/dom.12032 23130654
    [Google Scholar]
  50. HeiseT. NørskovM. NosekL. KaplanK. FamullaS. HaahrH.L. Insulin degludec: L ower day‐to‐day and within‐day variability in pharmacodynamic response compared with insulin glargine 300 U/ML in type 1 diabetes.Diabetes Obes. Metab.20171971032103910.1111/dom.12938 28295934
    [Google Scholar]
  51. HeiseT. MathieuC. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes.Diabetes Obes. Metab.201719131210.1111/dom.12782 27593206
    [Google Scholar]
  52. BaileyT.S. PettusJ. RousselR. SchmiderW. MarocciaM. NassrN. KleinO. BolliG.B. DahmenR. Morning administration of 0.4 U/kg/day insulin glargine 300 U/mL provides less fluctuating 24-hour pharmacodynamics and more even pharmacokinetic profiles compared with insulin degludec 100 U/mL in type 1 diabetes.Diabetes Metab.2018441152110.1016/j.diabet.2017.10.001 29153485
    [Google Scholar]
  53. RosenstockJ. ChengA. RitzelR. BosnyakZ. DevismeC. CaliA.M.G. SieberJ. StellaP. WangX. FríasJ.P. RousselR. BolliG.B. More similarities than differences testing insulin glargine 300 Units/mL Versus insulin degludec 100 Units/mL in insulin-naive Type 2 Diabetes: The randomized head-to-head BRIGHT trial.Diabetes Care201841102147215410.2337/dc18‑0559 30104294
    [Google Scholar]
  54. Philis-TsimikasA. StrattonI. Nørgård TroelsenL. Anker BakB. LeiterL.A. Efficacy and Safety of Degludec Compared to Glargine 300 Units/mL in Insulin-Experienced Patients With Type 2 Diabetes: Trial Protocol Amendment (NCT03078478).J. Diabetes Sci. Technol.201913349850610.1177/1932296819841585 30974986
    [Google Scholar]
  55. Philis-TsimikasA. KlonoffD.C. KhuntiK. BajajH.S. LeiterL.A. HansenM.V. TroelsenL.N. LadelundS. HellerS. PieberT.R. Risk of hypoglycaemia with insulin degludec versus insulin glargine U300 in insulin-treated patients with type 2 diabetes: The randomised, head-to-head CONCLUDE trial.Diabetologia202063469871010.1007/s00125‑019‑05080‑9 31984443
    [Google Scholar]
  56. HeerspinkH.J.L. SattarN. PavoI. HauptA. DuffinK.L. YangZ. WieseR.J. TuttleK.R. CherneyD.Z.I. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: Post-hoc analysis of an open-label, randomised, phase 3 trial.Lancet Diabetes Endocrinol.2022101177478510.1016/S2213‑8587(22)00243‑1 36152639
    [Google Scholar]
  57. NathanD.M. BuseJ.B. DavidsonM.B. FerranniniE. HolmanR.R. SherwinR. ZinmanB. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes.Diabetes Care200932119320310.2337/dc08‑9025 18945920
    [Google Scholar]
  58. HandelsmanY. MechanickJ.I. BlondeL. GrunbergerG. BloomgardenZ.T. BrayG.A. Dagogo-JackS. DavidsonJ.A. EinhornD. GandaO. GarberA.J. HirschI.B. HortonE.S. Ismail-BeigiF. JellingerP.S. JonesK.L. JovanovičL. LebovitzH. LevyP. MoghissiE.S. OrzeckE.A. VinikA.I. WyneK.L. GarberA.J. HurleyD.L. ZangenehF. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for developing a diabetes mellitus comprehensive care plan.Endocr. Pract.201117Suppl. 215310.4158/EP.17.S2.1 21474420
    [Google Scholar]
  59. KerrD. WizemannE. SenstiusJ. ZachoM. Ampudia-BlascoF.J. Stability and performance of rapid-acting insulin analogs used for continuous subcutaneous insulin infusion: A systematic review.J. Diabetes Sci. Technol.2013761595160610.1177/193229681300700620 24351186
    [Google Scholar]
  60. EbelingP. TuominenJ.A. KoivistoV.A. Insulin analogues and carcinoma of the breast.Diabetologia199639112412510.1007/BF00400425 8720615
    [Google Scholar]
  61. TennagelsN. WernerU. The metabolic and mitogenic properties of basal insulin analogues.Arch. Physiol. Biochem.2013119111410.3109/13813455.2012.754474 23373726
    [Google Scholar]
  62. VarewijckA.J. Yki-JärvinenH. SchmidtR. TennagelsN. JanssenJ.A.M.J.L. Concentrations of insulin glargine and its metabolites during long-term insulin therapy in type 2 diabetic patients and comparison of effects of insulin glargine, its metabolites, IGF-I, and human insulin on insulin and igf-I receptor signaling.Diabetes20136272539254410.2337/db12‑1773 23569175
    [Google Scholar]
  63. HsiehM.C. LeeT.C. ChengS.M. TuS.T. YenM.H. TsengC.H. The influence of type 2 diabetes and glucose-lowering therapies on cancer risk in the Taiwanese.Exp. Diabetes Res.201220121610.1155/2012/413782 22719752
    [Google Scholar]
  64. CurrieC.J. PooleC.D. GaleE.A.M. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes.Diabetologia20095291766177710.1007/s00125‑009‑1440‑6 19572116
    [Google Scholar]
  65. HanefeldM. BramlageP. Insulin use early in the course of type 2 diabetes mellitus: The ORIGIN trial.Curr. Diab. Rep.201313334234910.1007/s11892‑013‑0366‑z 23397557
    [Google Scholar]
  66. ButlerP.C. Insulin glargine controversy: A tribute to the editorial team at Diabetologia.Diabetes200958112427242810.2337/db09‑9030 19875618
    [Google Scholar]
  67. BowkerS.L. MajumdarS.R. VeugelersP. JohnsonJ.A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin.Diabetes Care200629225425810.2337/diacare.29.02.06.dc05‑1558 16443869
    [Google Scholar]
  68. YangY.X. HennessyS. LewisJ.D. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients.Gastroenterology200412741044105010.1053/j.gastro.2004.07.011 15480982
    [Google Scholar]
  69. EvansJ.M.M. DonnellyL.A. Emslie-SmithA.M. AlessiD.R. MorrisA.D. Metformin and reduced risk of cancer in diabetic patients.BMJ200533075031304130510.1136/bmj.38415.708634.F7 15849206
    [Google Scholar]
  70. MarsoS.P. McGuireD.K. ZinmanB. PoulterN.R. EmersonS.S. PieberT.R. PratleyR.E. HaahrP.M. LangeM. Brown-FrandsenK. MosesA. SkibstedS. KvistK. BuseJ.B. Efficacy and safety of degludec versus glargine in Type 2 Diabetes.N. Engl. J. Med.2017377872373210.1056/NEJMoa1615692 28605603
    [Google Scholar]
  71. SeneshG. BushiD. NetaA. YodfatO. Compatibility of insulin Lispro, Aspart, and Glulisine with the Solo MicroPump, a novel miniature insulin pump.J. Diabetes Sci. Technol.20104110411010.1177/193229681000400113 20167173
    [Google Scholar]
  72. WhiteJ. GoldmanJ. Biosimilar and Follow-on Insulin: The Ins, Outs, and Interchangeability.J. Pharm. Technol.2019351253510.1177/8755122518802268 34861004
    [Google Scholar]
  73. Russell-JonesD. Insulin detemir: Improving the predictability of glycaemic control.Int. J. Obes.200428S2Suppl. 2S29S3410.1038/sj.ijo.0802747 15306835
    [Google Scholar]
  74. HövelmannU. BrøndstedL. KristensenN.R. Ribel-MadsenR. DevriesJ.H. HeiseT. HaahrH. 237-OR: Insulin Icodec: An Insulin Analog Suited for Once-Weekly Dosing in Type 2 Diabetes.Diabetes202069Suppl. 1237-OR10.2337/db20‑237‑OR
    [Google Scholar]
  75. LauJ. BlochP. SchäfferL. PetterssonI. SpetzlerJ. KofoedJ. MadsenK. KnudsenL.B. McGuireJ. SteensgaardD.B. StraussH.M. GramD.X. KnudsenS.M. NielsenF.S. ThygesenP. Reedtz-RungeS. KruseT. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1).Analogue Semaglutide. J. Med. Chem.201558187370738010.1021/acs.jmedchem.5b00726 26308095
    [Google Scholar]
  76. CheangJ.Y. MoyleP.M. Glucagon‐Like Peptide‐1 (GLP‐1)‐Based Therapeutics: Current status and future opportunities beyond type 2 diabetes.ChemMedChem201813766267110.1002/cmdc.201700781 29430842
    [Google Scholar]
  77. NauckM.A. WefersJ. MeierJ.J. Treatment of type 2 diabetes: Challenges, hopes, and anticipated successes.Lancet Diabetes Endocrinol.20219852554410.1016/S2213‑8587(21)00113‑3 34181914
    [Google Scholar]
  78. KjeldsenT.B. HubálekF. TagmoseT.M. PridalL. RefsgaardH.H.F. PorsgaardT. Gram-NielsenS. HovgaardL. ValoreH. MünzelM. HjørringgaardC.U. JeppesenC.B. ManfèV. Hoeg-JensenT. LudvigsenS. NielsenP.K. Lautrup-LarsenI. StidsenC.E. WulffE.M. GaribayP.W. KodraJ.T. NishimuraE. MadsenP. Engineering of orally available, ultralong-acting insulin analogues: Discovery of OI338 and OI320.J. Med. Chem.202164161662810.1021/acs.jmedchem.0c01576 33356257
    [Google Scholar]
  79. NishimuraE. KjeldsenT. HubalekF. GlendorfT. StidsenC. HansenB.F. PedersenT.A. LuetzenA. PridalL. MadsenP. 236-OR: Molecular and Biological Properties of Insulin Icodec, a New Insulin Analog Designed to Give a Long Half-Life Suitable for Once-Weekly Dosing.Diabetes202069Suppl. 1236-OR10.2337/db20‑236‑OR
    [Google Scholar]
  80. BajajH.S. BergenstalR.M. ChristoffersenA. DaviesM.J. GowdaA. IsendahlJ. LingvayI. SeniorP.A. SilverR.J. TrevisanR. RosenstockJ. Switching to once-weekly insulin icodec versus once-daily insulin glargine U100 in Type 2 Diabetes inadequately controlled on daily basal insulin: A phase 2 randomized controlled trial.Diabetes Care20214471586159410.2337/dc20‑2877 33875485
    [Google Scholar]
  81. RosenstockJ. BajajH.S. JanežA. SilverR. BegtrupK. HansenM.V. JiaT. GoldenbergR. Once-Weekly Insulin for Type 2 Diabetes without Previous Insulin Treatment.N. Engl. J. Med.2020383222107211610.1056/NEJMoa2022474 32960514
    [Google Scholar]
  82. Baghban TaraghdariZ. ImaniR. MohabatpourF. A Review on Bioengineering Approaches to Insulin Delivery: A Pharmaceutical and Engineering Perspective.Macromol. Biosci.2019194180045810.1002/mabi.201800458 30614193
    [Google Scholar]
  83. MooreM.C. SmithM.S. SinhaV.P. BealsJ.M. MichaelM.D. JacoberS.J. CherringtonA.D. Novel PEGylated basal insulin LY2605541 has a preferential hepatic effect on glucose metabolism.Diabetes201463249450410.2337/db13‑0826 24089512
    [Google Scholar]
  84. SinhaV.P. HoweyD.C. ChoiS.L. MaceK.F. HeiseT. Steady‐state pharmacokinetics and glucodynamics of the novel, long‐acting basal insulin LY2605541 dosed once‐daily in patients with type 2 diabetes mellitus.Diabetes Obes. Metab.201416434435010.1111/dom.12222 24118909
    [Google Scholar]
  85. HedringtonM.S. DavisS.N. Discontinued drug therapies to treat diabetes in 2015.Expert Opin. Investig. Drugs201726221922510.1080/13543784.2017.1274732 27997806
    [Google Scholar]
  86. HiroseT. Development of new basal insulin peglispro (LY2605541) ends in a disappointing result.Diabetol. Int.201671161710.1007/s13340‑016‑0255‑1 30603238
    [Google Scholar]
  87. HeiseT. ChienJ. BealsJ. BensonC. KleinO. Moyers, JS Basal Insulin Fc (BIF), a novel insulin suited for once weekly dosing for the treatment of patients with diabetes mellitus.J. Endocr. Soc.202151A329
    [Google Scholar]
  88. MoyersJ.S. HansenR.J. DayJ.W. DickinsonC.D. ZhangC. RuanX. DingL. BrownR.M. BakerH.E. BealsJ.M. Preclinical Characterization of LY3209590, a Novel Weekly Basal Insulin Fc-Fusion Protein.J. Pharmacol. Exp. Ther.2022382334635510.1124/jpet.122.001105 35840338
    [Google Scholar]
  89. RitzelR. RousselR. BolliG.B. VinetL. Brulle-WohlhueterC. GlezerS. Yki-JärvinenH. Patient‐level meta‐analysis of the EDITION 1, 2 and 3 studies: Glycaemic control and hypoglycaemia with new insulin glargine 300 U/ml versus glargine 100 U/ml in people with type 2 diabetes.Diabetes Obes. Metab.201517985986710.1111/dom.12485 25929311
    [Google Scholar]
  90. WyshamC. BhargavaA. ChaykinL. de la RosaR. HandelsmanY. TroelsenL.N. KvistK. NorwoodP. Effect of insulin degludec vs insulin glargine U100 on hypoglycemia in patients with Type 2 Diabetes.JAMA20173181455610.1001/jama.2017.7117 28672317
    [Google Scholar]
  91. ZhaoC. WangW. XuD. LiH. LiM. WangF. Insulin and risk of diabetic retinopathy in patients with type 2 diabetes mellitus: Data from a meta-analysis of seven cohort studies.Diagn. Pathol.20149113010.1186/1746‑1596‑9‑130 24972631
    [Google Scholar]
  92. Kroc Collaborative Study Group Blood glucose control and the evolution of diabetic retinopathy and albuminuria. A preliminary multicenter trial.N. Engl. J. Med.1984311636537210.1056/NEJM198408093110604 6377076
    [Google Scholar]
  93. Pop-BusuiR. LombarderoM. LavisV. ForkerA. GreenJ. KorytkowskiM. SobelB.E. JonesT.L.Z. Relation of severe coronary artery narrowing to insulin or thiazolidinedione use in patients with type 2 diabetes mellitus (from the Bypass Angioplasty Revascularization Investigation 2 Diabetes Study).Am. J. Cardiol.20091041525810.1016/j.amjcard.2009.02.046 19576321
    [Google Scholar]
  94. RosenstockJ. FonsecaV. McGillJ.B. RiddleM. HalléJ.P. HramiakI. JohnstonP. DavisM. Similar progression of diabetic retinopathy with insulin glargine and neutral protamine Hagedorn (NPH) insulin in patients with type 2 diabetes: A long-term, randomised, open-label study.Diabetologia20095291778178810.1007/s00125‑009‑1415‑7 19526210
    [Google Scholar]
  95. RasmussenK.L. LaugesenC.S. RingholmL. VestgaardM. DammP. MathiesenE.R. Progression of diabetic retinopathy during pregnancy in women with type 2 diabetes.Diabetologia20105361076108310.1007/s00125‑010‑1697‑9 20225131
    [Google Scholar]
  96. BlumA.K. Insulin Use in Pregnancy: An Update.Diabetes Spectr.2016292929710.2337/diaspect.29.2.92 27182178
    [Google Scholar]
  97. RendellM. Premix insulins in type 1 diabetes: The coming of degludec/aspart.Expert Opin. Drug Metab. Toxicol.201915434134810.1080/17425255.2019.1585427 30789066
    [Google Scholar]
  98. Philis-TsimikasA. AstamirovaK. GuptaY. HaggagA. RoulaD. BakB.A. FitaE.G. NielsenA.M. DemirT. Similar glycaemic control with less nocturnal hypoglycaemia in a 38-week trial comparing the IDegAsp co-formulation with insulin glargine U100 and insulin aspart in basal insulin-treated subjects with type 2 diabetes mellitus.Diabetes Res. Clin. Pract.201914715716510.1016/j.diabres.2018.10.024 30448451
    [Google Scholar]
  99. OnishiY. OnoY. RabølR. EndahlL. NakamuraS. Superior glycaemic control with once‐daily insulin degludec/insulin aspart versus insulin glargine in Japanese adults with type 2 diabetes inadequately controlled with oral drugs: A randomized, controlled phase 3 trial.Diabetes Obes. Metab.201315982683210.1111/dom.12097 23557077
    [Google Scholar]
  100. HeiseT. TackC.J. CuddihyR. DavidsonJ. GouetD. LieblA. RomeroE. MersebachH. DykielP. JordeR. A new-generation ultra-long-acting basal insulin with a bolus boost compared with insulin glargine in insulin-naive people with type 2 diabetes: A randomized, controlled trial.Diabetes Care201134366967410.2337/dc10‑1905 21285389
    [Google Scholar]
  101. NiskanenL. LeiterL.A. FranekE. WengJ. DamciT. Muñoz-TorresM. DonnetJ.P. EndahlL. SkjøthT.V. VaagA. Comparison of a soluble co-formulation of insulin degludec/insulin aspart vs biphasic insulin aspart 30 in type 2 diabetes: A randomised trial.Eur. J. Endocrinol.2012167228729410.1530/EJE‑12‑0293 22660026
    [Google Scholar]
  102. HirschI.B. BodeB. CourregesJ.P. DykielP. FranekE. HermansenK. KingA. MersebachH. DaviesM. Insulin degludec/insulin aspart administered once daily at any meal, with insulin aspart at other meals versus a standard basal-bolus regimen in patients with type 1 diabetes: A 26-week, phase 3, randomized, open-label, treat-to-target trial.Diabetes Care201235112174218110.2337/dc11‑2503 22933438
    [Google Scholar]
  103. RodbardH.W. CariouB. PieberT.R. EndahlL.A. ZachoJ. CooperJ.G. Treatment intensification with an insulin degludec (IDEG)/insulin aspart (IASP) co‐formulation twice daily compared with basal IDEG and prandial IASP in type 2 diabetes: A randomized, controlled phase III trial.Diabetes Obes. Metab.201618327428010.1111/dom.12609 26592732
    [Google Scholar]
  104. KesavadevJ. GowdaA. KumarH. YalamanchiS.R. LodhaS. SinghK.P. Safety of Insulin Degludec/Insulin Aspart in Patients with Diabetes Mellitus over a Period of 1 Year during Routine Clinical Care in India: SMART (Study of Management of Diabetes with Ryzodeg™ Treatment).Med. Sci.2022101
    [Google Scholar]
  105. Novo Nordisk Company Announcement Ryzodeg® (insulin degludec/insulin aspart) approved in Japan.Available from: https://www.europeanpharmaceuticalreview.com/news/16275/ryzodeg-insulin-degludecinsulin-aspart-approved-in-japan/ 2012
    [Google Scholar]
  106. Fierce Biotech FDA Approves Two New Drug Treatments for Diabetes Mellitus.Available from: https://www.fiercebiotech.com/biotech/fda-accepts-sanofi-new-drug-application-for-once-daily-fixed-ratio-combination-of-insulin 2015
    [Google Scholar]
  107. BakerD.E. Insulin Degludec/Liraglutide.Hosp. Pharm.201752537438010.1177/0018578717715383 28804155
    [Google Scholar]
  108. GujaC. KisJ.T. HaluzíkM. BonnemaireM. BigotG. TournayM. FreemantleN. SeufertJ. IGLARLIXI (insulin glargine 100 U/ML plus lixisenatide) is effective and well tolerated in people with uncontrolled type 2 diabetes regardless of age: A REALI pooled analysis of prospective real‐world data.Diabetes Obes. Metab.20232561723173010.1111/dom.15027 36810874
    [Google Scholar]
  109. RisovicI. DumanovicM.S. BojicM. DjekicD. Direct comparison two fixed-ratio combination glucagon-like peptide receptor agonist and basal insulin on glycemic and non glycemic parameters in type 2 diabetes.BMC Endocr. Disord.20232312810.1186/s12902‑023‑01282‑w 36726134
    [Google Scholar]
  110. Hoeg-JensenT. Review: Glucose-sensitive insulin.Mol. Metab.20214610110710.1016/j.molmet.2020.101107 33137487
    [Google Scholar]
  111. KaarsholmN.C. LinS. YanL. KellyT. van HeekM. MuJ. WuM. DaiG. CuiY. ZhuY. Carballo-JaneE. ReddyV. ZafianP. HuoP. ShiS. AntochshukV. OgawaA. LiuF. SouzaS.C. SeghezziW. DuffyJ.L. ErionM. NargundR.P. KelleyD.E. Engineering Glucose Responsiveness Into Insulin.Diabetes201867229930810.2337/db17‑0577 29097375
    [Google Scholar]
  112. MooreM.C. KelleyD.E. CamachoR.C. ZafianP. YeT. LinS. KaarsholmN.C. NargundR. KellyT.M. Van HeekM. PrevisS.F. MoyesC. SmithM.S. FarmerB. WilliamsP. CherringtonA.D. Superior Glycemic Control With a Glucose-Responsive Insulin Analog: Hepatic and Nonhepatic Impacts.Diabetes20186761173118110.2337/db18‑0099 29540491
    [Google Scholar]
  113. YangR. WuM. LinS. NargundR.P. LiX. KellyT. YanL. DaiG. QianY. Dallas-yangQ. FischerP.A. CuiY. ShenX. HuoP. FengD.D. ErionM.D. KelleyD.E. MuJ. A glucose-responsive insulin therapy protects animals against hypoglycemia.JCI Insight201831e9747610.1172/jci.insight.97476 29321379
    [Google Scholar]
  114. VisserS.A.G. KandalaB. FancourtC. KrugA.W. ChoC.R. A Model‐Informed Drug Discovery and Development Strategy for the Novel Glucose‐Responsive Insulin MK‐2640 Enabled Rapid Decision Making.Clin. Pharmacol. Ther.202010761296131110.1002/cpt.1729 31889297
    [Google Scholar]
  115. BrunelF.M. MayerJ.P. GelfanovV.M. ZaykovA.N. FinanB. Perez-TilveD. DiMarchiR.D. A Disulfide Scan of Insulin by [3 + 1] Methodology Exhibits Site-Specific Influence on Bioactivity.ACS Chem. Biol.20191481829183510.1021/acschembio.9b00420 31343157
    [Google Scholar]
  116. Hoeg-JensenT. HavelundS. NielsenP.K. MarkussenJ. Reversible insulin self-assembly under carbohydrate control.J. Am. Chem. Soc.2005127176158615910.1021/ja051038k 15853306
    [Google Scholar]
  117. DavisA.P. Biomimetic carbohydrate recognition.Chem. Soc. Rev.20204992531254510.1039/C9CS00391F 32191228
    [Google Scholar]
  118. ShahR. ShahV.N. PatelM. MaahsD.M. Insulin delivery methods: Past, present and future.Int. J. Pharm. Investig.2016611910.4103/2230‑973X.176456 27014614
    [Google Scholar]
  119. Gualandi-SignoriniA.M. GiorgiG. Insulin formulations-a review.Eur. Rev. Med. Pharmacol. Sci.2001537383 12004916
    [Google Scholar]
  120. WangJ. YeY. YuJ. KahkoskaA.R. ZhangX. WangC. SunW. CorderR.D. ChenZ. KhanS.A. BuseJ.B. GuZ. Core–Shell Microneedle Gel for Self-Regulated Insulin Delivery.ACS Nano20181232466247310.1021/acsnano.7b08152 29455516
    [Google Scholar]
  121. LeeI.C. LinW.M. ShuJ.C. TsaiS.W. ChenC.H. TsaiM.T. Formulation of two‐layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice.J. Biomed. Mater. Res. A20171051849310.1002/jbm.a.35869 27539509
    [Google Scholar]
  122. ChenC.H. ShyuV. ChenC.T. Dissolving Microneedle Patches for Transdermal Insulin Delivery in Diabetic Mice: Potential for Clinical Applications.Materials (Basel)2018119162510.3390/ma11091625 30189671
    [Google Scholar]
  123. YangJ. LiY. YeR. ZhengY. LiX. ChenY. XieX. JiangL. Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery.Microsyst. Nanoeng.20206111210.1038/s41378‑020‑00224‑z 34567719
    [Google Scholar]
  124. BariyaS.H. GohelM.C. MehtaT.A. SharmaO.P. Microneedles: An emerging transdermal drug delivery system.J. Pharm. Pharmacol.2011641112910.1111/j.2042‑7158.2011.01369.x 22150668
    [Google Scholar]
  125. McCoyR.G. Van HoutenH.K. ZiegenfussJ.Y. ShahN.D. WermersR.A. SmithS.A. Increased mortality of patients with diabetes reporting severe hypoglycemia.Diabetes Care20123591897190110.2337/dc11‑2054 22699297
    [Google Scholar]
  126. BastaG. MontanucciP. CalafioreR. Microencapsulation of cells and molecular therapy of type 1 diabetes mellitus: The actual state and future perspectives between promise and progress.J. Diabetes Investig.202112330130910.1111/jdi.13372 32700473
    [Google Scholar]
  127. MontanucciP. TerenziS. SantiC. PennoniI. BiniV. PescaraT. BastaG. CalafioreR. Insights in Behavior of Variably Formulated Alginate-Based Microcapsules for Cell Transplantation.BioMed Res. Int.2015201511110.1155/2015/965804 26078974
    [Google Scholar]
  128. LiuX. YuY. LiuD. LiJ. SunJ. WeiQ. ZhaoY. PandolS.J. LiL. Porous microcapsules encapsulating β cells generated by microfluidic electrospray technology for diabetes treatment.NPG Asia Mater.20221413910.1038/s41427‑022‑00385‑5
    [Google Scholar]
  129. LuoZ. DongY. YuM. FuX. QiuY. SunX. ChuX. A novel insulin delivery system by β cells encapsulated in microcapsules.Front Chem.202310110497910.3389/fchem.2022.1104979 36688040
    [Google Scholar]
  130. StagnoliS. Sosa AldereteL. LunaM.A. AgostiniE. FalconeR.D. NiebylskiA.M. CorreaN.M. Catanionic nanocarriers as a potential vehicle for insulin delivery.Colloids Surf. B Biointerfaces202018811075910.1016/j.colsurfb.2019.110759 31887645
    [Google Scholar]
  131. Russell-JonesD. CuddihyR.M. HanefeldM. KumarA. GonzálezJ.G. ChanM. WolkaA.M. BoardmanM.K. Efficacy and safety of exenatide once weekly versus metformin, pioglitazone, and sitagliptin used as monotherapy in drug-naive patients with type 2 diabetes (DURATION-4): A 26-week double-blind study.Diabetes Care201235225225810.2337/dc11‑1107 22210563
    [Google Scholar]
  132. Al-NemrawiN.K. AlsharifS.S.M. AlzoubiK.H. AlkhatibR.Q. Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films.Pharm. Dev. Technol.201924896797410.1080/10837450.2019.1619183 31092092
    [Google Scholar]
  133. KondiahP.P.D. ChoonaraY.E. TomarL.K. TyagiC. KumarP. du ToitL.C. MarimuthuT. ModiG. PillayV. Development of a Gastric Absorptive, Immediate Responsive, Oral Protein-Loaded Versatile Polymeric Delivery System.AAPS PharmSciTech20171872479249310.1208/s12249‑017‑0725‑1 28205143
    [Google Scholar]
  134. ChouH.S. LarssonM. HsiaoM.H. ChenY.C. RödingM. NydénM. LiuD.M. Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: In vitro characterization and in vivo observation.J. Control. Release2016224334210.1016/j.jconrel.2015.12.036 26723525
    [Google Scholar]
  135. LopesM. ShresthaN. CorreiaA. ShahbaziM.A. SarmentoB. HirvonenJ. VeigaF. SeiçaR. RibeiroA. SantosH.A. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin.J. Control. Release2016232294110.1016/j.jconrel.2016.04.012 27074369
    [Google Scholar]
  136. XieJ. LiA. LiJ. Advances in pH‐Sensitive Polymers for Smart Insulin Delivery.Macromol. Rapid Commun.20173823170041310.1002/marc.201700413 28976043
    [Google Scholar]
  137. CerneaS. RazI. Noninjectable methods of insulin administration.Drugs Today (Barc)200642640542410.1358/dot.2006.42.6.985632 16845444
    [Google Scholar]
  138. MansoorS. KondiahP.P.D. ChoonaraY.E. PillayV. Polymer-Based Nanoparticle Strategies for Insulin Delivery.Polymers (Basel)2019119138010.3390/polym11091380 31443473
    [Google Scholar]
  139. ChellappanD.K. YeneseY. WeiC.C. ChellianJ. GuptaG. Oral Insulin: Current status, challenges, and future perspectives.J. Environ. Pathol. Toxicol. Oncol.201736428329110.1615/JEnvironPatholToxicolOncol.2017020182 29431061
    [Google Scholar]
  140. GuoY. BaldelliA. SinghA. FathordoobadyF. KittsD. Pratap-SinghA. Production of high loading insulin nanoparticles suitable for oral delivery by spray drying and freeze drying techniques.Sci. Rep.2022121994910.1038/s41598‑022‑13092‑6 35705561
    [Google Scholar]
  141. BonifacioE. ZieglerA.G. KlingensmithG. SchoberE. BingleyP.J. RottenkolberM. TheilA. EugsterA. PuffR. PeplowC. BuettnerF. LangeK. HasfordJ. AchenbachP. Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: The Pre-POINT randomized clinical trial.JAMA2015313151541154910.1001/jama.2015.2928 25898052
    [Google Scholar]
  142. EldorR. NeutelJ. HomerK. KidronM. Efficacy and safety of 28‐day treatment with oral insulin (ORMD ‐0801) in patients with type 2 diabetes: A randomized, placebo‐controlled trial.Diabetes Obes. Metab.202123112529253810.1111/dom.14499 34310011
    [Google Scholar]
  143. EldorR. ArbitE. CorcosA. KidronM. Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: A pilot study.PLoS One201384e5952410.1371/journal.pone.0059524 23593142
    [Google Scholar]
  144. Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus.N. Engl. J. Med.2002346221685169110.1056/NEJMoa012350 12037147
    [Google Scholar]
  145. KrischerJ.P. SchatzD.A. BundyB. SkylerJ.S. GreenbaumC.J. Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients With Type 1 Diabetes.JAMA2017318191891190210.1001/jama.2017.17070 29164254
    [Google Scholar]
  146. LuzioS.D. DunseathG. LockettA. Broke-SmithT.P. NewR.R. OwensD.R. The glucose lowering effect of an oral insulin (Capsulin) during an isoglycaemic clamp study in persons with type 2 diabetes.Diabetes Obes. Metab.2010121828710.1111/j.1463‑1326.2009.01146.x 19788433
    [Google Scholar]
  147. AbramsonA. Caffarel-SalvadorE. SoaresV. MinahanD. TianR.Y. LuX. DellalD. GaoY. KimS. WainerJ. CollinsJ. TamangS. HaywardA. YoshitakeT. LeeH.C. FujimotoJ. FelsJ. FrederiksenM.R. RahbekU. RoxhedN. LangerR. TraversoG. A luminal unfolding microneedle injector for oral delivery of macromolecules.Nat. Med.201925101512151810.1038/s41591‑019‑0598‑9 31591601
    [Google Scholar]
  148. MatteucciE. GiampietroO. CovolanV. GiustariniD. FantiP. RossiR. Insulin administration: Present strategies and future directions for a noninvasive (possibly more physiological) delivery.Drug Des. Devel. Ther.201593109311810.2147/DDDT.S79322 26124635
    [Google Scholar]
  149. ZhangY. YuJ. KahkoskaA.R. WangJ. BuseJ.B. GuZ. Advances in transdermal insulin delivery.Adv. Drug Deliv. Rev.2019139517010.1016/j.addr.2018.12.006 30528729
    [Google Scholar]
  150. PandeyM. ChoudhuryH. YiC.X. MunC.W. PhingG.K. RouG.X. SinghB.J.K.A.P.A.J. JheeA.N.A. ChinL.K. KesharwaniP. GorainB. HussainZ. Recent updates on novel approaches in insulin drug delivery: A review of challenges and pharmaceutical implications.Curr. Drug Targets201819151782180010.2174/1389450119666180523092100 29792143
    [Google Scholar]
  151. FabbriL. Pulmonary safety of inhaled insulins: A review of the current data.Curr. Med. Res. Opin.200622S21S2810.1185/030079906X132712
    [Google Scholar]
  152. OleckJ. KassamS. GoldmanJ.D. Commentary: Why was inhaled insulin a failure in the market?Diabetes Spectr.201629318018410.2337/diaspect.29.3.180 27574374
    [Google Scholar]
  153. RashidJ. AbsarS. NaharK. GuptaN. AhsanF. Newer devices and improved formulations of inhaled insulin.Expert Opin. Drug Deliv.201512691792810.1517/17425247.2015.990436 25485886
    [Google Scholar]
  154. Le BrunP.P.H. de BoerA.H. FrijlinkH.W. HeijermanH.G.M. A review of the technical aspects of drug nebulization.Pharm. World Sci.2000223758110.1023/A:1008786600530 11028259
    [Google Scholar]
  155. KlonoffD.C. Afrezza inhaled insulin: The fastest-acting FDA-approved insulin on the market has favorable properties.J. Diabetes Sci. Technol.2014861071107310.1177/1932296814555820 25355710
    [Google Scholar]
  156. PettusJ. Santos CavaiolaT. EdelmanS.V. Recommendations for Initiating Use of Afrezza Inhaled Insulin in Individuals with Type 1 Diabetes.Diabetes Technol. Ther.201820644845110.1089/dia.2017.0463 29901406
    [Google Scholar]
  157. GoldbergT. WongE. Afrezza (Insulin Human) Inhalation Powder: A New Inhaled Insulin for the Management Of Type-1 or Type-2 Diabetes Mellitus.P&T20154011735741 26609206
    [Google Scholar]
  158. NeumillerJ.J. CampbellR.K. Technosphere® Insulin.BioDrugs201024316517210.2165/11536700‑000000000‑00000 20462282
    [Google Scholar]
  159. RaskinP. HellerS. HonkaM. ChangP.C. BossA.H. RichardsonP.C. AminN. Pulmonary function over 2 years in diabetic patients treated with prandial inhaled Technosphere Insulin or usual antidiabetes treatment: A randomized trial.Diabetes Obes. Metab.201214216317310.1111/j.1463‑1326.2011.01500.x 21951325
    [Google Scholar]
  160. BodeB.W. McGillJ.B. LorberD.L. GrossJ.L. ChangP.C. BregmanD.B. Inhaled technosphere insulin compared with injected prandial insulin in type 1 diabetes: A randomized 24-week trial.Diabetes Care201538122266227310.2337/dc15‑0075 26180109
    [Google Scholar]
  161. FinkJ.B. MolloyL. PattonJ.S. Galindo-FilhoV.C. de Melo BarcelarJ. AlcoforadoL. BrandãoS.C.S. de AndradeA.D. Good things in small packages: An innovative delivery approach for inhaled insulin.Pharm. Res.201734122568257810.1007/s11095‑017‑2215‑2 28718049
    [Google Scholar]
  162. HeiseT. BruggerA. CookC. EckersU. HutchcraftA. NosekL. RaveK. TroegerJ. ValaitisP. WhiteS. HeinemannL. PROMAXX ® inhaled insulin: Safe and efficacious administration with a commercially available dry powder inhaler.Diabetes Obes. Metab.200911545545910.1111/j.1463‑1326.2008.00961.x 19236443
    [Google Scholar]
  163. RaveK. NosekL. HeinemannL. GonzalesC. ErnestC.S. ChienJ. MuchmoreD. Inhaled micronized crystalline human insulin using a dry powder inhaler: Dose‐response and time‐action profiles.Diabet. Med.200421776376810.1111/j.1464‑5491.2004.01240.x 15209771
    [Google Scholar]
  164. MandalT.K. Inhaled insulin for diabetes mellitus.Am. J. Health Syst. Pharm.200562131359136410.2146/ajhp040249 15972377
    [Google Scholar]
  165. Aiman AhmadI.O. Anuar Zaini Md Zain and Ezharul Hoque Chowdhury. Recent Advances in Insulin Therapy for Diabetes.Int. J. Diabetes Clin. Res.201411
    [Google Scholar]
  166. EasaN. AlanyR.G. CarewM. VangalaA. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade.Drug Discov. Today201924244045110.1016/j.drudis.2018.11.010 30465877
    [Google Scholar]
  167. AanstootH.J. RodriguezH. WeinzimerS. VintN. KoenemanL. Precision Dosing of Rapid-Acting Insulin Matters.Diabetes Technol. Ther.202022534635110.1089/dia.2019.0374 32125891
    [Google Scholar]
  168. KhuntiK. AlsifriS. AronsonR. Cigrovski BerkovićM. Enters-WeijnenC. ForsénT. GalstyanG. Geelhoed-DuijvestijnP. GoldfrachtM. GydesenH. KapurR. LalicN. LudvikB. MobergE. Pedersen-BjergaardU. RamachandranA. Rates and predictors of hypoglycaemia in 27 585 people from 24 countries with insulin‐treated type 1 and type 2 diabetes: The global HAT study.Diabetes Obes. Metab.201618990791510.1111/dom.12689 27161418
    [Google Scholar]
  169. GinH. Hanaire-BroutinH. Reproducibility and variability in the action of injected insulin.Diabetes Metab.200531171310.1016/S1262‑3636(07)70160‑X 15803107
    [Google Scholar]
  170. WeinstockR.S. XingD. MaahsD.M. MichelsA. RickelsM.R. PetersA.L. BergenstalR.M. HarrisB. DuBoseS.N. MillerK.M. BeckR.W. Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: Results from the T1D Exchange clinic registry.J. Clin. Endocrinol. Metab.20139883411341910.1210/jc.2013‑1589 23760624
    [Google Scholar]
  171. TasciniG. BerioliM. CerquigliniL. SantiE. ManciniG. RogariF. ToniG. EspositoS. Carbohydrate Counting in Children and Adolescents with Type 1 Diabetes.Nutrients201810110910.3390/nu10010109 29361766
    [Google Scholar]
  172. BahendekaS. KaushikR. SwaiA.B. OtienoF. BajajS. KalraS. BavumaC.M. KarigireC. EADSG Guidelines: Insulin Storage and Optimisation of Injection Technique in Diabetes Management.Diabetes Ther.201910234136610.1007/s13300‑019‑0574‑x 30815830
    [Google Scholar]
  173. KongmalaiT. PreechasukL. JunnuS. ManocheewaS. SrisawatC. SriwijitkamolA. The Effect of Temperature on the Stability of In-Use Insulin Pens.Exp. Clin. Endocrinol. Diabetes2021129968368810.1055/a‑1010‑5466 31634960
    [Google Scholar]
  174. FaridN.A. AtkinsL.M. BeckerG.W. DinnerA. HeineyR.E. MinerD.J. RigginR.M. Liquid chromatographic control of the identity, purity and “potency” of biomolecules used as drugs.J. Pharm. Biomed. Anal.19897218518810.1016/0731‑7085(89)80082‑2 2488619
    [Google Scholar]
  175. ArpaiaP. CesaroU. FrosoloneM. MoccaldiN. TaglialatelaM. A micro-bioimpedance meter for monitoring insulin bioavailability in personalized diabetes therapy.Sci. Rep.20201011365610.1038/s41598‑020‑70376‑5 32788632
    [Google Scholar]
  176. VoelkerR. Insulin Pumps Could Be Hacked.JAMA20193225393 31386118
    [Google Scholar]
  177. MasierekM. NabrdalikK. JanotaO. KwiendaczH. MacherskiM. GumprechtJ. The Review of Insulin Pens—Past, Present, and Look to the Future.Front. Endocrinol. (Lausanne)20221382748410.3389/fendo.2022.827484 35355552
    [Google Scholar]
  178. LeeS.H. AhnJ.W. ChoY.C. KimS.N. LeeC. KuG.W. Bin ChoyY. KimH.C. Wirelessly Controlled Implantable System for On-demand and Pulsatile Insulin Administration.Sci. Rep.201991500910.1038/s41598‑019‑41430‑8 30899066
    [Google Scholar]
  179. StewartZ.A. WilinskaM.E. HartnellS. TempleR.C. RaymanG. StanleyK.P. SimmonsD. LawG.R. ScottE.M. HovorkaR. MurphyH.R. Closed-Loop Insulin Delivery during Pregnancy in Women with Type 1 Diabetes.N. Engl. J. Med.2016375764465410.1056/NEJMoa1602494 27532830
    [Google Scholar]
  180. ThabitH. TauschmannM. AllenJ.M. LeelarathnaL. HartnellS. WilinskaM.E. AceriniC.L. DellwegS. BeneschC. HeinemannL. MaderJ.K. HolzerM. KojzarH. ExallJ. YongJ. PichierriJ. BarnardK.D. KollmanC. ChengP. HindmarshP.C. CampbellF.M. ArnoldsS. PieberT.R. EvansM.L. DungerD.B. HovorkaR. Home Use of an Artificial Beta Cell in Type 1 Diabetes.N. Engl. J. Med.2015373222129214010.1056/NEJMoa1509351 26379095
    [Google Scholar]
  181. HoodK.K. Garcia-WillinghamN. HanesS. TanenbaumM.L. WareJ. BoughtonC.K. AllenJ.M. WilinskaM.E. TauschmannM. DenvirL. ThankamonyA. CampbellF. WadwaR.P. BuckinghamB.A. DavisN. DiMeglioL.A. MaurasN. BesserR.E.J. GhatakA. WeinzimerS.A. FoxD.S. KanapkaL. KollmanC. SibayanJ. BeckR.W. HovorkaR. Lived experience of CAMAPS FX closed loop system in youth with type 1 diabetes and their parents.Diabetes Obes. Metab.202224122309231810.1111/dom.14815 35837984
    [Google Scholar]
  182. Domingo-LopezD.A. LattanziG. H J SchreiberL. WallaceE.J. WylieR. O’SullivanJ. DolanE.B. DuffyG.P. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus.Adv. Drug Deliv. Rev.202218511428010.1016/j.addr.2022.114280 35405298
    [Google Scholar]
  183. ThompsonB. CookC.B. Insulin Pumping Patches: Emerging Insulin Delivery Systems.J. Diabetes Sci. Technol.201913181010.1177/1932296818814541 30466305
    [Google Scholar]
  184. Kishor SharmaJ. SharmaD. GuptaA. A glorious past, dynamic present and a promising future: Insulin at 100.J. R. Coll. Phys. Edinb.2022521596410.1177/14782715221088981 36146959
    [Google Scholar]
  185. BergenstalR.M. NimriR. BeckR.W. CriegoA. LaffelL. SchatzD. BattelinoT. DanneT. WeinzimerS.A. SibayanJ. JohnsonM.L. BaileyR.J. CalhounP. CarlsonA. IsganaitisE. BelloR. Albanese-O’NeillA. DovcK. BiesterT. WeymanK. HoodK. PhillipM. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): A multicentre, randomised, crossover trial.Lancet20213971027020821910.1016/S0140‑6736(20)32514‑9 33453783
    [Google Scholar]
  186. NgS.M. KatkatN. DayH. HubbardR. QuinnM. FinniganL. Real‐world prospective observational single‐centre study: Hybrid closed loop improves HbA1c, time‐in‐range and quality of life for children, young people and their carers.Diabet. Med.2022397e1486310.1111/dme.14863 35488481
    [Google Scholar]
  187. NgS.M. WrightN.P. YardleyD. CampbellF. RandellT. TrevelyanN. GhatakA. HindmarshP.C. Real world use of hybrid‐closed loop in children and young people with type 1 diabetes mellitus—a National Health Service pilot initiative in England.Diabet. Med.2023402e1501510.1111/dme.15015 36424877
    [Google Scholar]
  188. AkbarianM. Insulin therapy; a valuable legacy and its future perspective.Int. J. Biol. Macromol.20211811224123010.1016/j.ijbiomac.2021.05.052 33989689
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010287216240324050651
Loading
/content/journals/cpb/10.2174/0113892010287216240324050651
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Diabetes; insulin analogs; insulin delivery; insulin pump; insulin therapy; microneedles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test