Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Joints and arthritic conditions are among the most dangerous illnesses that humans have ever encountered and it is even more worrying that there is no recognized treatment for arthritis. The researchers looked for safer alternatives, such as herbal medicines, because the traditional treatments used to treat severe joint inflammatory issues have several negative side effects. A ligand-coated nanomedicine can bind to receptors that are overexpressed by cells in chronically inflammatory tissues, increasing its efficacy and reducing its systemic side effects. This is because the pathophysiology of rheumatoid arthritis suggests that macrophages and overexpressed molecules exist within inflamed tissues, which increases permeability and allows nanomedicines to accumulate in inflamed tissue and cause retention phenomena. The anti-arthritic properties of a variety of plants, their components, extracts, and phyto-isolates have been studied to date. These plant compounds can pose stability and delivery problems, which restricts their efficacy as a treatment for inflammatory diseases. The multifunctional and adaptable features of different nanoparticles can help herbal remedies based on nanotechnology get beyond the delivery constraints of different natural ingredients. The application of nanoformulations in tissue engineering is an additional strategy for delivering drugs directly to bone and cartilage in RA patients. The medication is more therapeutically effective due to nanoformulation's improved synovium and cartilage absorption, accumulation, and penetration at inflammatory joints. Herbal medications with a nanotechnology foundation exhibit superior pharmacokinetic and drug delivery qualities, aid in better oral absorption, regulate drug release, boost retention capacity, target delivery, and have synergistic effects. This review provides an update on the use of herbal medicines based on nanotechnology, which show promise in treating arthritis and other ailments.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010276916240308082328
2025-03-14
2025-09-30
Loading full text...

Full text loading...

References

  1. YanagisawaS. NagasakiK. CheaC. AndoT. AyuningtyasN.F. InubushiT. IshikadoA. ImanakaH. SugiyamaE. TakahashiI. MiyauchiM. TakataT. Oral administration of bovine lactoferrin suppresses the progression of rheumatoid arthritis in an SKG mouse model.PLoS One2022172e026325410.1371/journal.pone.0263254 35148358
    [Google Scholar]
  2. YanagisawaS. NagasakiK. CheaC. AndoT. AyuningtyasN.F. InubushiT. IshikadoA. ImanakaH. SugiyamaE. TakahashiI. MiyauchiM. TakataT. Review on anti-rheumatoid arthritis potential of medicinal plants.Int. J. Curr. Res. Rev.202113131330310.31782/IJCRR.2021.13303
    [Google Scholar]
  3. Turesson WadellA. BärebringL. HulanderE. GjertssonI. HagbergL. LindqvistH.M. WinkvistA. Effects on health-related quality of life in the randomized, controlled crossover trial ADIRA (Anti-inflammatory Diet In Rheumatoid Arthritis).PLoS One20211610e025871610.1371/journal.pone.0258716 34648598
    [Google Scholar]
  4. Yen-JuL. MartinaA. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis.Cells20202020988010.3390/cells9040880
    [Google Scholar]
  5. AnitaC. MuniraM. MuralQ. ShailyL. Topical nanocarriers for management of rheumatoid arthritis: A review.Biomed. Pharmacother.202114111188010.1016/j.biopha.2021.111880 34328101
    [Google Scholar]
  6. PagliaM.D.G. SilvaM.T. LopesL.C. Barberato-FilhoS. MazzeiL.G. AbeF.C. de Cássia BergamaschiC. Use of corticoids and non-steroidal anti-inflammatories in the treatment of rheumatoid arthritis: Systematic review and network meta-analysis.PLoS One2021164e024886610.1371/journal.pone.0248866 33826610
    [Google Scholar]
  7. DeyabG. ReineT.M. VuongT.T. JenssenT. HjeltnesG. AgewallS. MikkelsenK. FørreØ. FagerlandM.W. KolsetS.O. HollanI. Antirheumatic treatment is associated with reduced serum syndecan-1 in rheumatoid arthritis.PLoS One2021167e025324710.1371/journal.pone.0253247 34242246
    [Google Scholar]
  8. JanakiramanK. KrishnaswamiV. RajendranV. NatesanS. KandasamyR. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights.Mater. Today Commun.20181720021310.1016/j.mtcomm.2018.09.011 32289062
    [Google Scholar]
  9. ZengZhihao. HuJiaoting. Jiang, Jieyi Network pharmacology and molecular docking-based prediction of the mechanism of qianghuo shengshi decoction against rheumatoid arthritis.Biomed Res. Int.20212021662391210.1155/2021/6623912
    [Google Scholar]
  10. KourG. HaqS.A. BajajB.K. GuptaP.N. AhmedZ. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends.Pharmacol. Res.202116910561810.1016/j.phrs.2021.105618 33878447
    [Google Scholar]
  11. ArzooP. Naringenin: A promising flavonoid for herbal treatment of rheumatoid arthritis and associated inflammatory disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases.Academic Press201934335410.1016/B978‑0‑12‑813820‑5.00020‑9
    [Google Scholar]
  12. AdityaS. Applications of nanotechnology in nutrition: Potential and safety issues. In: Novel Approaches of Nanotechnology in Food.Academic Press201610.1016/B978‑0‑12‑804308‑0.00015‑7
    [Google Scholar]
  13. JainS. VaidyaA. GuptaP.K. RosenholmJ.M. BansalK.K. Antiarthritic activities of herbal isolates: A comprehensive review.Coatings20211111132910.3390/coatings11111329
    [Google Scholar]
  14. AletahaD. SmolenJ.S. Diagnosis and management of rheumatoid arthritis.JAMA2018320131360137210.1001/jama.2018.13103 30285183
    [Google Scholar]
  15. ToussirotÉ. MichelF. BindaD. DumoulinG. The role of leptin in the pathophysiology of rheumatoid arthritis.Life Sci.2015140293610.1016/j.lfs.2015.05.001
    [Google Scholar]
  16. RaduA.F. BungauS.G. Management of rheumatoid arthritis: An overview.Cells20211011285710.3390/cells10112857 34831081
    [Google Scholar]
  17. DerksenV.F.A.M. HuizingaT.W.J. van der WoudeD. The role of autoantibodies in the pathophysiology of rheumatoid arthritis.Semin. Immunopathol.201739443744610.1007/s00281‑017‑0627‑z 28451788
    [Google Scholar]
  18. HuangJ. FuX. ChenX. LiZ. HuangY. LiangC. Promising therapeutic targets for treatment of rheumatoid arthritis.Front. Immunol.20211268615510.3389/fimmu.2021.686155 34305919
    [Google Scholar]
  19. FriedmanB. CronsteinB. Methotrexate mechanism in treatment of rheumatoid arthritis.Joint Bone Spine2018xxxxxxxxx10.1016/j.jbspin.2018.07.004 30081197
    [Google Scholar]
  20. KumarV. KanwarJ.R. VermaA.K. Rheumatoid arthritis: Basic pathophysiology and role of chitosan nanoparticles in therapy; Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents.Academic Press202010.1016/B978‑0‑12‑819666‑3.00016‑X
    [Google Scholar]
  21. JoshiM. PathakK. DhaneshwarS. Nanotechnology-based strategies for effective delivery of phytoconstituents for the management of rheumatoid arthritis.Pharmacol. Res. Modern. Chinese. Med.2022210006110.1016/j.prmcm.2022.100061
    [Google Scholar]
  22. Mobashar, Aisha Evaluation of immunomodulatory and antiarthritic potential of trigonella gharuensis extracts.Evid. Based Complement. Alternat. Med.20202020883608010.1155/2020/8836080
    [Google Scholar]
  23. JurcaT. JózsaL. SuciuR. PallagA. MarianE. BácskayI. MureșanM. StanR.L. CeveiM. CioarăF. VicașL. FehérP. Formulation of topical dosage forms containing synthetic and natural anti-inflammatory agents for the treatment of rheumatoid arthritis.Molecules20202612410.3390/molecules26010024 33374575
    [Google Scholar]
  24. SHIMAILA E. A review on phytopharmacological activity of alpinia galanga.Int. J. Pharm. Pharm. Sci.201911361110.22159/ijpps.2019v11i3.31352
    [Google Scholar]
  25. Tilak, Amita Screening of leaf extracts of argemone mexicana for it’s antiarthritic activity in experimental animals.WJPR20187310541063
    [Google Scholar]
  26. MishraA.P. SaklaniS. ChandraS. MathurA. MilellaL. TiwariP. Aphanamixis polystachya (wall.) parker, phytochemistry, pharmacological properties and medicinal uses: An overview.World J. Pharma. Pharmaceut.. Sci.20143622422252
    [Google Scholar]
  27. AmineDaoudi. MohamedBammou. JamalIbijbijen. Laila, Nassiri Antibacterial activity of aqueous extracts of anacyclus pyrethrum (L) link and corrigiola telephiifolia pourr. From the middle atlas region-morocco.Europ. Sci. J.2017133310.19044/esj.2017.v13n33p116
    [Google Scholar]
  28. Habibur RahmanM. Anti-arthritic activity of leaves and oil of Aquilaria agallocha.Haya: Saudi J. Life Sci.2016113443
    [Google Scholar]
  29. ShivamanjunathM.P. SreenathK.P. Phytochemical studies on cardiospermum canescens wall.Available from: http://www.iasir.net 2013
    [Google Scholar]
  30. SinghS. GuptaY.K. NairV. Anti-granuloma activity of Coriandrum sativum in experimental models.J. Ayurveda Integr. Med.201341131810.4103/0975‑9476.109544 23741156
    [Google Scholar]
  31. TriantafillidisJ.K. TriantafyllidiA. VagianosC. PapaloisA. Favorable results from the use of herbal and plant products in inflammatory bowel disease: Evidence from experimental animal studies.Ann. Gastroenterol.201629326828110.20524/aog.2016.0059 27366027
    [Google Scholar]
  32. LeeD. KimS.J. KimH.A. 12 week, randomized, double-blind, placebo-controlled clinical trial for the evaluation of the efficacy and safety of HT083 on mild osteoarthritis.Medicine 20209928e2090710.1097/MD.0000000000020907
    [Google Scholar]
  33. RahmatullahMohammed. Jahan, Rownak A randomized survey of medicinal plants used by folk medicinal practitioners in six districts of bangladesh to treat rheumatoid arthritis.Adv. Nat. Appl. Sci.201042124127
    [Google Scholar]
  34. MaliP.Y. PanchalS.S. (2017):. Review on botany, ethnomedicinal uses, phytochemistry and biological activities.Asian Pac. J. Trop. Med.201710.1016/j.apjtm.2017.05.003 28647179
    [Google Scholar]
  35. VivekD. Antiarthritic activity of ethanolic extract of ficus religiosa leaves in fca induced arthritis in rats.WJPR20187210661
    [Google Scholar]
  36. SinghKanwaljeet. Kumar, Pankaj Morpho-anatomical and palynological standardization and dna barcoding of fritillaria cirrhosa D. DON (SYN. Fritillaria roylei hook.).Plant Arch.202020Suppl. 213041313
    [Google Scholar]
  37. KhandokarL. BariM.S. SeidelV. HaqueM.A. Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicological profile of Glycosmis pentaphylla (Retz.) DC.: A review.J. Ethnopharmacol.202127811431310.1016/j.jep.2021.114313 34116186
    [Google Scholar]
  38. Ali Esmail A-S Therapeutic importance of Hyoscyamus species grown in Iraq (Hyoscyamus albus, Hyoscyamus niger and Hyoscyamus reticulates)- A review.IOSR J. Pharma.2018861832
    [Google Scholar]
  39. Srivastava, Deepa Ipomoea cairica: A medicinal weed with promising health benefits.Int. J. Inform. Res. Rev.2015205687694
    [Google Scholar]
  40. Ait BabahmadR. AghrazA. BoutafdaA. PapazoglouE.G. TarantilisP.A. KanakisC. HafidiM. OuhdouchY. OutzourhitA. OuhammouA. Chemical composition of essential oil of Jatropha curcas L. leaves and its antioxidant and antimicrobial activities.Ind. Crops Prod.201812140541010.1016/j.indcrop.2018.05.030
    [Google Scholar]
  41. NairP. NairB. Muscle relaxant activity of hydroalcoholic extract of Mimosa pudica whole plant in mice.Natl. J. Physiol. Pharm. Pharmacol.201774110.5455/njppp.2017.7.1235704012017
    [Google Scholar]
  42. ShahrajabianM.H. SunW. ChengQ. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review.Int. J. Food Prop.20202311961197010.1080/10942912.2020.1828456
    [Google Scholar]
  43. Pulipati, Sowjanya A phyto pharmacological review on a versatile medicinal plant: Pongamia pinnata (L.) pierre.J. Pharmacogn. Phytochem.201874459463
    [Google Scholar]
  44. MariusM. Anti-arthritic property of crude extracts of Piptadeniastrum africanum (Mimosaceae) in complete Freund’s adjuvant-induced arthritis in rats.BMC Complement. Altern. Med.201717111110.1186/s12906‑017‑1623‑5
    [Google Scholar]
  45. PallelaP.N.V.K. UmmeyS. RuddarajuL.K. PammiS.V.N. YoonS.G. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity.Microb. Pathog.2018124636910.1016/j.micpath.2018.08.026 30121359
    [Google Scholar]
  46. AkterS. JahanI. KhatunM.R. KhanM.F. ArshadL. JakariaM. HaqueM.A. Pharmacological insights into Merremia vitifolia (Burm.f.) Hallier f. leaf for its antioxidant, thrombolytic, anti-arthritic and anti-nociceptive potential.Biosci. Rep.2021411BSR2020302210.1042/BSR20203022 33324970
    [Google Scholar]
  47. DariushM. Improvement of fertility parameters with tribulus terrestris and anacyclus pyrethrum treatment in male rats.Int. Braz J Urol20194510431054
    [Google Scholar]
  48. SunS. LiS. DuY. WuC. ZhangM. LiJ. ZhangX. Anti-inflammatory effects of the root, stem and leaf extracts of Chloranthus serratus on adjuvant-induced arthritis in rats.Pharm. Biol.202058152853710.1080/13880209.2020.1767159 32503379
    [Google Scholar]
  49. AryaV. GuptaV.K. KaurR. A review on plants having anti-arthritic potential.Int. J. Pharmaceut. Sci. Rev. Res.20207224
    [Google Scholar]
  50. IndhumathiM. A review of anti arthiritic medicinal plants.EJPMR201853217224
    [Google Scholar]
  51. SinghS. SedhaS. Medicinal plants and their pharmacological aspects.FPI 12018156170
    [Google Scholar]
  52. SinghS. SinghT.G. MahajanK. DhimanS. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis.J. Pharm. Pharmacol.202072101306132710.1111/jphp.13326 32812250
    [Google Scholar]
  53. KhanA. AliS. MuradW. HayatK. SirajS. JawadM. KhanR.A. UddinJ. Al-HarrasiA. KhanA. Phytochemical and pharmacological uses of medicinal plants to treat cancer: A case study from Khyber Pakhtunkhwa, North Pakistan.J. Ethnopharmacol.202128111443710.1016/j.jep.2021.114437 34391861
    [Google Scholar]
  54. Tona Marzia Rahman; Tareq, Abu Montakim; Sayeed, Mohammed Aktar Phytochemical screening and in vitro pharmacological activities of methanolic leaves extract of Caryota mitis.J. Adv. Biotechnol. Exp. Ther.20203210911510.5455/jabet.2020.d114
    [Google Scholar]
  55. SaleemS. MuhammadG. HussainM.A. AltafM. BukhariS.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective.Iran. J. Basic Med. Sci.202023121501152610.22038/IJBMS.2020.44254.10378 33489024
    [Google Scholar]
  56. Sahoo, Ambika EST-SSR marker-based genetic diversity and population structure analysis of Indian Curcuma species: Significance for conservation. Brazil.J. Bot.202144210.1007/s40415‑021‑00711‑1
    [Google Scholar]
  57. JoshiD.R. ShresthaA.C. AdhikariN. A review on diversified use of the king of spices: Piper nigrum (Black pepper).Int. J. Pharm. Sci. Res.20189104089410110.13040/IJPSR.0975‑8232.9(10).4089‑01
    [Google Scholar]
  58. Rehman, Najeeb Ur; Hussain, Hidayat; Khan, Husain Yar; Csuk, Rene; Abbas, Ghulam; Green, Ivan R. A norterpenoid and tripenoids from Commiphora mukul: Isolation and biological activity.Z. Naturforsch2017721111510.1515/znb‑2016‑0062
    [Google Scholar]
  59. FunkJ.L. FryeJ.B. OyarzoJ.N. ChenJ. ZhangH. TimmermannB.N. Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis.PharmaNutrition20164312313110.1016/j.phanu.2016.02.004
    [Google Scholar]
  60. SinghDivya. VaghelaJai Singh Kumar, Arun Comparative evaluation of anti-arthritic activity of pongamia pinnata, bryophyllum pinnata and their combined formulation in Fca induced arthritis rat model.J. Pharmaceut. Negat. Results2022135246
    [Google Scholar]
  61. HuJ. ZhaoL. LiN. YangY. QuT. RenH. CuiX. TaoH. ChenZ. PengY. Investigation of the active ingredients and pharmacological mechanisms of Porana sinensis Hemsl. Against rheumatoid arthritis using network pharmacology and experimental validation.PLoS One2022173e026478610.1371/journal.pone.0264786 35235611
    [Google Scholar]
  62. PerumalS.S. EkambaramS.P. DhanamT. In vivo antiarthritic activity of the ethanol extracts of stem bark and seeds of Calophyllum inophyllum in Freund’s complete adjuvant induced arthritis.Pharm. Biol.20175511330133610.1080/13880209.2016.1226346 27593261
    [Google Scholar]
  63. SubramaniyanV. Hemidesmus indicus and usage for arthritic conditions.In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases.Academic Press201910.1016/B978‑0‑12‑813820‑5.00029‑5
    [Google Scholar]
  64. NawghareC.G. TaurA.T. SawateA.R. Studies on the physico-phytochemical and anti-arthritic properties of hadjod (Cissus quadrangularis) Stem Powder.J. Pharmacogn. Phytochem.201765443445
    [Google Scholar]
  65. JogpalV. SandujaM. DuttR. GargV. Tinku, Advancement of nanomedicines in chronic inflammatory disorders.Inflammopharmacology202230235536810.1007/s10787‑022‑00927‑x 35217901
    [Google Scholar]
  66. BernardiAndressa. BraganholElizandra. JägerEliézer. FigueiróFabrício. EdelweissMaria Isabel. PohlmannAdriana R. GuterresSílvia S. BattastiniAna. M.O. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model.Cancer Lett.20092811536310.1016/j.canlet.2009.02.018
    [Google Scholar]
  67. FriedrichR.B. CoradiniK. FonsecaF.N. GuterresS.S. BeckR.C.R. PohlmannA.R. Lipid-core nanocapsules improved antiedematogenic activity of tacrolimus in adjuvant-induced arthritis model.J. Nanosci. Nanotechnol.20161621265127410.1166/jnn.2016.11673 27433576
    [Google Scholar]
  68. GuterresS. OliveiraC. TarragôA. GuimarãesA. MalheiroA. PohlmannA. BoechatA.L. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model.Int. J. Nanomedicine201510106603661410.2147/IJN.S85369 26543364
    [Google Scholar]
  69. CoradiniK. FriedrichR.B. FonsecaF.N. VencatoM.S. AndradeD.F. OliveiraC.M. BattistelA.P. GuterresS.S. da RochaM.I.U.M. PohlmannA.R. BeckR.C.R. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies.Eur. J. Pharm. Sci.20157816317010.1016/j.ejps.2015.07.012 26206297
    [Google Scholar]
  70. RollettA. ReiterT. NogueiraP. CardinaleM. LoureiroA. GomesA. Cavaco-PauloA. MoreiraA. CarmoA.M. GuebitzG.M. Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages.Int. J. Pharm.2012427246046610.1016/j.ijpharm.2012.02.028 22374516
    [Google Scholar]
  71. BhalekarM.R. MadgulkarA.R. DesaleP.S. MariumG. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis.Drug Dev. Ind. Pharm.20174361003101010.1080/03639045.2017.1291666 28161984
    [Google Scholar]
  72. AmalrajA. JudeS. SukumaranN.P. GopiS. Nanomaterials in nutraceutical and phytonutrient industries. In: Industrial Applications of Nanomaterials.Elsevier201910.1016/B978‑0‑12‑815749‑7.00016‑5
    [Google Scholar]
  73. NouriZ. HajialyaniM. IzadiZ. BahramsoltaniR. FarzaeiM.H. AbdollahiM. Nanophytomedicines for the prevention of metabolic syndrome: A pharmacological and biopharmaceutical review.Front. Bioeng. Biotechnol.2020842510.3389/fbioe.2020.00425 32478050
    [Google Scholar]
  74. GuptaD. ShrivastavaS.K. MalviyaR.K. Nanoliposome: An overview of types, preparation, evaluation and application. IJPLCP, 2022131
    [Google Scholar]
  75. MahtabA. RabbaniS.A. NeupaneY.R. PandeyS. AhmadA. KhanM.A. GuptaN. MadaanA. JaggiM. SandalN. RawatH. AqilM. TalegaonkarS. Facile functionalization of Teriflunomide-loaded nanoliposomes with Chondroitin sulphate for the treatment of Rheumatoid arthritis.Carbohydr. Polym.202025011692610.1016/j.carbpol.2020.116926 33049840
    [Google Scholar]
  76. LuccaL.G. de MatosS.P. WeimerP. TeixeiraH.F. KoesterL.S. Improved skin delivery and validation of novel stability-indicating HPLC method for ketoprofen nanoemulsion.Arab. J. Chem.201910.1016/j.arabjc.2019.09.005
    [Google Scholar]
  77. HoscheidJ. OutukiP.M. KleinubingS.A. SilvaM.F. BruschiM.L. CardosoM.L.C. Development and characterization of Pterodon pubescens oil nanoemulsions as a possible delivery system for the treatment of rheumatoid arthritis.Colloids Surf. A Physicochem. Eng. Asp.2015484192710.1016/j.colsurfa.2015.07.040
    [Google Scholar]
  78. MahtabA. RizwanullahM. PandeyS. LeekhaA. RabbaniS.A. VermaA.K. AqilM. TalegaonkarS. Quality by design driven development and optimization of teriflunomide loaded nanoliposomes for treatment of rheumatoid arthritis: An in vitro and in vivo assessments.J. Drug Deliv. Sci. Technol.20195138339610.1016/j.jddst.2019.03.008
    [Google Scholar]
  79. GokhaleJ.P. MahajanH.S. SuranaS.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: in vivo and in vitro studies.Biomed. Pharmacother.201911210862210.1016/j.biopha.2019.108622 30797146
    [Google Scholar]
  80. ChandraA. AryaRKK. PalG.R. TewariB. Formulation and evaluation of ginger extract loaded nanoemulgel for the treatment of rheumatoid arthritis.J. Drug Deliv. Therapeut.201994559570
    [Google Scholar]
  81. BhupinderSingh. ShantanuBandopadhyay. RishiKapil. RamandeepSingh Self-Emulsifying. Drug Delivery Systems (SEDDS): Formulation development, characterization, and applications.Crit. Rev. Ther. Drug Carrier Syst.2009265427521
    [Google Scholar]
  82. PalS. MittapellyN. HusainA. KushwahaS. ChattopadhyayS. KumarP. RamakrishnaE. KumarS. MauryaR. SanyalS. GayenJ.R. MishraP.R. ChattopadhyayN. A butanolic fraction from the standardized stem extract of Cassia occidentalis L delivered by a self-emulsifying drug delivery system protects rats from glucocorticoid-induced osteopenia and muscle atrophy.Sci. Rep.202010119510.1038/s41598‑019‑56853‑6 31932603
    [Google Scholar]
  83. HanifM. AmeerN. MahmoodM.K. ShehzadA. AzeemM. RanaH.L. UsmanM. Improved antiinflammatory effect of curcumin by designing self-emulsifying drug delivery system.Drug Dev. Ind. Pharm.20222022200148610.1080/03639045.2021.2001486 34779318
    [Google Scholar]
  84. MahmoodS. BhattaraiP. KhanN.R. SubhanZ. RazaqueG. AlbarqiH.A. AlqahtaniA.A. AlasiriA. ZhuL. An investigation for skin tissue regeneration enhancement/augmentation by curcumin-loaded Self-Emulsifying Drug Delivery System (SEDDS).Polymers 20221414290410.3390/polym14142904 35890680
    [Google Scholar]
  85. ChuangS.Y. LinC.H. HuangT.H. FangJ.Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis.Nanomaterials 2018814210.3390/nano8010042 29342965
    [Google Scholar]
  86. GorantlaS. SinghviG. RapalliV.K. WaghuleT. DubeyS.K. SahaR.N. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status.Ther. Deliv.202011426928410.4155/tde‑2020‑0029 32434463
    [Google Scholar]
  87. MishraV. BansalK. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  88. ZhangFeng. LiuZhiyu. HeXijing. LiZhanqi. ShiBin. Cai, Fengmei β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: Involvement of NF-кB and HO-1/Nrf-2 pathway.Drug Deliv.20202711329134110.1080/10717544.2020.1818883
    [Google Scholar]
  89. GuY. TangX. YangM. YangD. LiuJ. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: preparation, pharmacokinetic, and evaluation for rheumatoid arthritis.Int. J. Pharm.201855423524410.1016/j.ijpharm.2018.11.024 30423415
    [Google Scholar]
  90. KangQian. LiuJia. ZhaoYing. LiuXin. LiuXin-Yan. Wang, Yong-Jie Transdermal delivery system of nanostructured lipid carriers loaded with Celastrol and Indomethacin: Optimization, characterization and efficacy evaluation for rheumatoid arthritis.Artif. Cells Nanomed. Biotechnol.201846S3S585S59710.1080/21691401.2018.1503599
    [Google Scholar]
  91. ZewailM. NafeeN. HelmyM.W. BoraieN. Coated nanostructured lipid carriers targeting the joints - An effective and safe approach for the oral management of rheumatoid arthritis.Int. J. Pharm.201956711844710.1016/j.ijpharm.2019.118447 31226475
    [Google Scholar]
  92. LiW. GongK. DingY. ChaurasiyaB. NiY. WuY. ZhaoP. ShenY. ZhangZ. WebsterT.J. Effects of triptolide and methotrexate nanosuspensions on left ventricular remodeling in autoimmune myocarditis rats.Int. J. Nanomedicine2019141485186310.2147/IJN.S191267 30774338
    [Google Scholar]
  93. HeJ. HanY. XuG. YinL. Ngandeu NeubiM. ZhouJ. DingY. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement.RSC Advances2017722130531306410.1039/C6RA28676C
    [Google Scholar]
  94. KarakucukA. TortS. HanS. OktayA.N. CelebiN. Etodolac nanosuspension based gel for enhanced dermal delivery: In vitro and in vivo evaluation.J. Microencapsul.202138421823210.1080/02652048.2021.1895344 33752553
    [Google Scholar]
  95. Ayse NurO. Preparation and in vitro/in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application.Eur. J. Pharm. Sci.202015510554810.1016/j.ejps.2020.105548 32937211
    [Google Scholar]
  96. ZhengX. XieJ. ZhangX. SunW. ZhaoH. LiY. WangC. An overview of polymeric nanomicelles in clinical trials and on the market.Chin. Chem. Lett.202132124325710.1016/j.cclet.2020.11.029
    [Google Scholar]
  97. FaryalJ. Mapping the potential of thiolated pluronic based nanomicelles for the safe and targeted delivery of vancomycin against staphylococcal blepharitis.J. Drug Deliv. Sci. Technol.20206110222010.1016/j.jddst.2020.102220
    [Google Scholar]
  98. PignatelloR. CorsaroR. BonaccorsoA. ZingaleE. CarboneC. MusumeciT. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs.Drug Deliv. Transl. Res.20221281991200610.1007/s13346‑022‑01182‑x 35604634
    [Google Scholar]
  99. FengX. YangM. DingJ. Polymer nanotherapeutics for rheumatoid arthritis therapy.Austin Arthritis.201721015
    [Google Scholar]
  100. FangG. ZhangQ. PangY. ThuH.E. HussainZ. Nanomedicines for improved targetability to inflamed synovium for treatment of rheumatoid arthritis: Multi-functionalization as an emerging strategy to optimize therapeutic efficacy.J. Control. Release201930318120810.1016/j.jconrel.2019.04.027 31015032
    [Google Scholar]
  101. JavadiMaryam . Haghighian Hossein Khadem.. GoodarzySima. AbbasiMahnaz. Nassiri, Marjan Effect of curcumin nanomicelle on the clinical symptoms of patients with rheumatoid arthritis: A randomized, double-blind, controlled trial.Int. J. Rheum. Dis.20182019001610.1111/1756‑185X.13688 31482684
    [Google Scholar]
  102. NegahdariR. BohlouliS. SharifiS. DizajS.M. SaadatY.R. KhezriK. JafariS. AhmadianE. JahandiziN.G. RaeesiS. Phytother. Res.2020202012010.1002/ptr.690
    [Google Scholar]
  103. KhanD. QindeelM. AhmedN. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis.Nanomedicine 201915660362410.2217/nnm‑2019‑0385
    [Google Scholar]
  104. ShivaprasadH. Control of autoimmune arthritis by herbal extracts and their bioactive components.Asian J. Pharmaceut. Sci.201611230130710.1016/j.ajps.2016.02.003
    [Google Scholar]
  105. MohammedJunaid Hussain Dowlath. Karuppannan, Sathish Kumar Effect of solvents on phytochemical composition and antioxidant activity of cardiospermum halicacabum (L.) extracts.Pharmacogn. J.20201261241125110.5530/pj.2020.12.173
    [Google Scholar]
  106. BanikB. DasS. DasM.K. Medicinal plants with potent anti-inflammatory and anti-arthritic properties found in eastern parts of the himalaya: An ethnomedicinal review.Pharmacogn. Rev.2020142812113710.5530/phrev.2020.14.16
    [Google Scholar]
  107. MurugesanSelvakumar. SrinivasanVenkatesan. LakshmananDinesh Kumar. VenkateswaranMeenakshi. R. JayabalSasidharan. Nadar, M. S. A. Muthukumar; Kathiravan, Arunkumar Evaluation of the anti-rheumatic properties of thymol using carbon dots as nanocarriers on FCA induced arthritic rats.Food Funct.2021125038505010.1039/D1FO00471A
    [Google Scholar]
  108. CaoF. Natural products action on pathogenic cues in autoimmunity: Efficacy insystemic lupus erythematosus and rheumatoid arthritis as compared to classical treatments.Pharmacol. Res.202016010505410.1016/j.phrs.2020.105054 32645358
    [Google Scholar]
  109. GhoshP. GhoshC. DasS. DasC. MandalS. ChatterjeeS. Botanical description, phytochemical constituents and pharmacological properties of euphorbia hirta linn: A review.Int. J. Health Sci. Res.201993331574523
    [Google Scholar]
  110. ShettyY. PrabhuP. PrabhakarB. Emerging vistas in theranostic medicine.Int. J. Pharmaceut.2018558294210.1016/j.ijpharm.2018.12.068
    [Google Scholar]
  111. QindeelMaimoona. Ullah, Muhammad Hameed Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy.J. Control. Rel.202032759561510.1016/j.jconrel.2020.09.016
    [Google Scholar]
  112. SalihuT. OlukunleJ.O. AdenubiO.T. MbaojiC. ZarmaM.H. Ethnomedicinal plant species commonly used to manage arthritis in North-West Nigeria.South African J. Bot.2018118334310.1016/j.sajb.2018.06.004
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010276916240308082328
Loading
/content/journals/cpb/10.2174/0113892010276916240308082328
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test