Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Under the umbrella of targeted drug delivery systems, several techniques are unleashed in the market that allow a drug or other pharmacologically active material to be delivered to the target cell to treat a condition or health problem. The improvement of the pharmaceutical delivery systems' effectiveness, safety, and stability is accomplished through the Formulation of the nano-gel-based delivery system. Nanogels are aqueous dispersions of submicron-sized, three-dimensional, strongly cross-linked networks of hydrophilic polymers that are inflated by water. Through a variety of delivery routes, such as oral, pulmonary, nasal, parenteral, and intraocular, an active pharmaceutical agent or therapeutic agent with a high or low molecular weight can be easily encapsulated into nanogels. Nanogels have been researched as drug delivery systems due to their beneficial qualities, such as biocompatibility, high stability, flexible particle size, drug loading capacity, and potential surface modification for active targeting by attaching ligands that recognize cognate receptors on target cells or tissues. By responding to internal or external stimuli, including pH, temperature, light, and redox, nano gels can be made to be stimulus-responsive, allowing for regulated drug release. Thus, in the fact of said characteristics’ of nano gels, this review manuscript aims to provide an overview of characterization, evaluation, formulation technique, recent applications, and patents of nano gels.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010281504240403053144
2024-04-18
2025-09-30
Loading full text...

Full text loading...

References

  1. EtheridgeM.L. CampbellS.A. ErdmanA.G. HaynesC.L. WolfS.M. McCulloughJ. The big picture on nanomedicine: the state of investigational and approved nanomedicine products.Nanomedicine 20139111410.1016/j.nano.2012.05.013 22684017
    [Google Scholar]
  2. SahooS.K. LabhasetwarV. Nanotech approaches to drug delivery and imaging.Drug Discov. Today20038241112112010.1016/S1359‑6446(03)02903‑9 14678737
    [Google Scholar]
  3. KabanovA.V. VinogradovS.V. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities.Angew. Chem. Int. Ed.200948305418542910.1002/anie.200900441 19562807
    [Google Scholar]
  4. KhoeeS. AsadiH. Nanogels: Chemical approaches to preparation. Handbook of Encapsulation and Controlled Release 20164852665293
    [Google Scholar]
  5. NeamtuI. GabrielaA. Basic concepts and recent advances in nanogels as carriers for medical application.Drug Deliv.201724153955710.1080/10717544.2016.1276232
    [Google Scholar]
  6. LabhasetwarV. DiandraL. Nanogels: Chemistry to drug delivery.Biomedical Applications of Nanotechnology.Hoboken, New JerseyWiley2007131171
    [Google Scholar]
  7. SultanaF. ManirujjamanMd. An overview of nanogel drug delivery system.J App I Pharm Sci20133895105
    [Google Scholar]
  8. KesharwaniD. MishraS. PaulS.D. PaliwalR. SatapathyT. The functional nanogel: an exalted carrier system.J. Drug Deliv. Ther.2019159570582
    [Google Scholar]
  9. DorwalD. Nanogels as novel and versatile pharmaceuticals.Int. J. Pharm. Pharm. Sci.2012436774
    [Google Scholar]
  10. BencherifS.A. SiegwartD.J. SrinivasanA. HorkayF. HollingerJ.O. WashburnN.R. MatyjaszewskiK. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization.Biomaterials200930295270527810.1016/j.biomaterials.2009.06.011 19592087
    [Google Scholar]
  11. AkiyoshiK. KangE.C. KurumadaS. SunamotoJ. PrincipiT. WinnikF.M. Controlled association of amphiphilic polymers in water: Thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (N-isopropylacrylamides).Macromolecules20003393244324910.1021/ma991798d
    [Google Scholar]
  12. AkiyoshiK. SasakiY. SunamotoJ. Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B.Bioconjug. Chem.199910332132410.1021/bc9801272 10346859
    [Google Scholar]
  13. SharmaA. GargT. AmanA. PanchalK. SharmaR. KumarS. MarkandeywarT. Nanogel—an advanced drug delivery tool: Current and future.Artif. Cells Nanomed. Biotechnol.201644116517710.3109/21691401.2014.930745 25053442
    [Google Scholar]
  14. NishikawaT. AkiyoshiK. SunamotoJ. Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides.J. Am. Chem. Soc.1996118266110611510.1021/ja953843c
    [Google Scholar]
  15. LiY.Y. ZhangX.Z. Kim, GC Thermosensitive Yshaped micelles of poly (oleic Acid-Y-N-isopropyl acrylamide) for drug delivery.Small200627917923
    [Google Scholar]
  16. AliyarH.A. HamiltonP.D. RemsenE.E. RaviN. Synthesis of polyacrylamide nanogels by intramolecular disulfide cross-linking.J. Bioact. Compat. Polym.200520216918110.1177/0883911505051659
    [Google Scholar]
  17. QiaoZ.Y. ZhangR. DuF.S. LiangD.H. LiZ.C. Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs.J. Control. Release20111521576610.1016/j.jconrel.2011.02.029 21392550
    [Google Scholar]
  18. LeeH. MokH. LeeS. OhY.K. ParkT.G. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels.J. Control. Release2007119224525210.1016/j.jconrel.2007.02.011 17408798
    [Google Scholar]
  19. SpruellJ.M. WolffsM. LeibfarthF.A. StahlB.C. HeoJ. ConnalL.A. HuJ. HawkerC.J. Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups.J. Am. Chem. Soc.201113341166981670610.1021/ja207635f 21919513
    [Google Scholar]
  20. SultanaF. An overview of nanogel drug delivery system.J. Appl. Pharm. Sci.201338S95S105
    [Google Scholar]
  21. ChunK.W. LeeJ.B. KimS.H. ParkT.G. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels.Biomaterials200526163319332610.1016/j.biomaterials.2004.07.055 15603827
    [Google Scholar]
  22. KolbH.C. FinnM.G. SharplessK.B. Click chemistry: Diverse chemical function from a few good reactions.Angew. Chem. Int. Ed.200140112004202110.1002/1521‑3773(20010601)40:11<2004::AID‑ANIE2004>3.0.CO;2‑5 11433435
    [Google Scholar]
  23. DemkoZ.P. SharplessK.B. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides.Angew. Chem. Int. Ed.200241122113211610.1002/1521‑3773(20020617)41:12<2113::AID‑ANIE2113>3.0.CO;2‑Q 19746613
    [Google Scholar]
  24. JoralemonM.J. O’ReillyR.K. HawkerC.J. WooleyK.L. Shell click-crosslinked (SCC) nanoparticles: a new methodology for synthesis and orthogonal functionalization.J. Am. Chem. Soc.200512748168921689910.1021/ja053919x 16316235
    [Google Scholar]
  25. O’ReillyR.K. JoralemonM.J. WooleyK.L. HawkerC.J. Functionalization of micelles and shell cross-linked nanoparticles using click chemistry.Chem. Mater.200517245976598810.1021/cm051047s
    [Google Scholar]
  26. ZhangJ. ZhouY. ZhuZ. GeZ. LiuS. Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via “click” chemistry.Macromolecules20084141444145410.1021/ma702199f
    [Google Scholar]
  27. PiogeS. NesterenkoA. BrotonsG. PascualS. Core cross-linking of dynamic di-block copolymer micelles: Quantitative study of photopolymerization efficiency and micelles structure.Macromolecules201144359460310.1021/ma102284y
    [Google Scholar]
  28. LehnJ.M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.Chem. Soc. Rev.200736215116010.1039/B616752G 17264919
    [Google Scholar]
  29. JacksonA.W. StakesC. FultonD.A. The formation of core cross-linked star polymer and nanogel assemblies facilitated by the formation of dynamic covalent imine bonds.Polym. Chem.20112112500251110.1039/c1py00261a
    [Google Scholar]
  30. CorbettP.T. LeclaireJ. VialL. WestK.R. WietorJ.L. SandersJ.K.M. OttoS. Dynamic combinatorial chemistry.Chem. Rev.200610693652371110.1021/cr020452p 16967917
    [Google Scholar]
  31. GrosL. RingsdorfH. SchuppH. Polymeric antitumour agents on a molecular and on a cellular level.Angew. Chem. Int. Ed. Engl.198120430532510.1002/anie.198103051
    [Google Scholar]
  32. ParkW. ParkS. NaK. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier.Colloids Surf. B Biointerfaces201079250150810.1016/j.colsurfb.2010.05.025 20541919
    [Google Scholar]
  33. FleigeE. QuadirM.A. HaagR. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications.Adv. Drug Deliv. Rev.201264986688410.1016/j.addr.2012.01.020 22349241
    [Google Scholar]
  34. SchwerdtA. ZintchenkoA. ConciaM. RoesenN. FisherK. LindnerL.H. IsselsR. WagnerE. OgrisM. Hyperthermia-induced targeting of thermosensitive gene carriers to tumors.Hum. Gene Ther.200819111283129210.1089/hum.2008.064 19866491
    [Google Scholar]
  35. RejinoldN.S. ChennazhiK.P. NairS.V. JayakumarR. Biodegradable and thermos-sensitive chitosan-g-poly (n-vinyl caprolactam) nanoparticles as a 5-fluorouracil carrier.Int. J. Biol. Macromol.2011492161172 21536066
    [Google Scholar]
  36. LaConteL. NitinN. BaoG. Magnetic nanoparticle probes.Mater. Today200585323810.1016/S1369‑7021(05)00893‑X
    [Google Scholar]
  37. TanJ.P. TanM.B. TamM.K. Application of nanogel systems in the administration of local anesthetics.Local Reg. Anesth.2010393100 22915875
    [Google Scholar]
  38. FominaN. SankaranarayananJ. AlmutairiA. Photochemical mechanisms of light-triggered release from nanocarriers.Adv. Drug Deliv. Rev.201264111005102010.1016/j.addr.2012.02.006 22386560
    [Google Scholar]
  39. SoniG. YadavK.S. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art.Saudi Pharm. J.201624213313910.1016/j.jsps.2014.04.001 27013905
    [Google Scholar]
  40. RigogliusoaS. SabatinobM.A. AdamoaG. GrimaldibN. DispenzabC. Nanogels: Nanocarriers for drug delivery application.Chem. Eng. Trans.201227247252
    [Google Scholar]
  41. SinghN. Nanogel Based Artificial Chaperone Technology: an overview.Am. J. Adv. Drug Deliv.201313217276
    [Google Scholar]
  42. ShahR. EldrigeD. PalomboE. HardingI. Lipid Nanoparticles: Production, characterization, and stability.Briefs Pharm Sci Drug Dev20151112310.1007/978‑3‑319‑10711‑0_2
    [Google Scholar]
  43. DasR.J. BaishyaK. PathakK. Recent advancement of lipid drug conjugates as nanoparticulate drug delivery system.Int Res J Pharm20134128131
    [Google Scholar]
  44. GabaB. FazilM. KhanS. AliA. BabootaS. AliJ. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride.Bull. Fac. Pharm. Cairo Univ.201553214715910.1016/j.bfopcu.2015.10.001
    [Google Scholar]
  45. AzadiA. HamidiM. KhoshayandM.R. AminiM. RouiniM.R. Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery.Carbohydr. Polym.201290146247110.1016/j.carbpol.2012.05.066 24751066
    [Google Scholar]
  46. VinogradovS.V. BatrakovaE.V. KabanovA.V. Nanogels for oligonucleotide delivery to the brain.Bioconjug. Chem.2004151506010.1021/bc034164r 14733583
    [Google Scholar]
  47. VinogradovS.V. PoluektovaL.Y. MakarovE. GersonT. SenanayakeM.T. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity.Antivir. Chem. Chemother.201021111410.3851/IMP1680 21045256
    [Google Scholar]
  48. BaklaushevV.P. NukolovaN.N. KhalanskyA.S. GurinaO.I. YusubalievaG.M. GrinenkoN.P. GubskiyI.L. MelnikovP.A. KardashovaK.S. KabanovA.V. ChekhoninV.P. Treatment of glioma by cisplatin-loaded nanogels conjugated with monoclonal antibodies against Cx43 and BSAT1.Drug Deliv.201522327628510.3109/10717544.2013.876460 24437962
    [Google Scholar]
  49. TamK. The Roles of Doxorubicin in Hepatocellular Carcinoma.ADMET DMPK201313294410.5599/admet.1.3.7
    [Google Scholar]
  50. HuynhH. ChowP.K.H. SooK.C. AZD6244 and doxorubicin induce growth suppression and apoptosis in mouse models of hepatocellular carcinoma.Mol. Cancer Ther.2007692468247610.1158/1535‑7163.MCT‑07‑0162 17876044
    [Google Scholar]
  51. DuanC. GaoJ. ZhangD. JiaL. LiuY. ZhengD. LiuG. TianX. WangF. ZhangQ. Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin.Biomacromolecules201112124335434310.1021/bm201270m 22077387
    [Google Scholar]
  52. LeeJ.H. LeeH. JoungY.K. JungK.H. ChoiJ.H. LeeD.H. ParkK.D. HongS.S. The use of low molecular weight heparin–pluronic nanogels to impede liver fibrosis by inhibition the TGF-β/Smad signaling pathway.Biomaterials20113251438144510.1016/j.biomaterials.2010.10.023 21074845
    [Google Scholar]
  53. DeshmukhM. KutscherH.L. GaoD. SunilV.R. MalaviyaR. VayasK. SteinS. LaskinJ.D. LaskinD.L. SinkoP.J. Biodistribution and renal clearance of biocompatible lung targeted poly(ethylene glycol) (PEG) nanogel aggregates.J. Control. Release20121641657310.1016/j.jconrel.2012.09.011 23041417
    [Google Scholar]
  54. SabithaM. Sanoj RejinoldN. NairA. LakshmananV.K. NairS.V. JayakumarR. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer.Carbohydr. Polym.2013911485710.1016/j.carbpol.2012.07.060 23044104
    [Google Scholar]
  55. BlackburnW.H. DickersonE.B. SmithM.H. McDonaldJ.F. LyonL.A. Peptide-functionalized nanogels for targeted siRNA delivery.Bioconjug. Chem.200920596096810.1021/bc800547c 19341276
    [Google Scholar]
  56. MallefetP. DweckA.C. The mechanism of wound healing.Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=45507601aa82d2cf96d2a463c75bd24bce550b89 2022
    [Google Scholar]
  57. ChenR.N. LeeL.W. ChenL.C. HoH.O. LuiS.C. SheuM.T. SuC.H. Wound-healing effect of micronized sacchachitin (mSC) nanogel on corneal epithelium.Int. J. Nanomedicine2012746974706 22956870
    [Google Scholar]
  58. ShahP.P. DesaiP.R. PatelA.R. SinghM.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs.Biomaterials20123351607161710.1016/j.biomaterials.2011.11.011 22118820
    [Google Scholar]
  59. SamahN.A. WilliamsN. HeardC.M. Nanogel particulates located within diffusion cell receptor phases following topical application demonstrates uptake into and migration across skin.Int. J. Pharm.20104011-2727810.1016/j.ijpharm.2010.08.011 20817080
    [Google Scholar]
  60. SingkaG.S.L. SamahN.A. ZulfakarM.H. YurdasiperA. HeardC.M. Enhanced topical delivery and anti-inflammatory activity of methotrexate from an activated nanogel.Eur. J. Pharm. Biopharm.201076227528110.1016/j.ejpb.2010.06.014 20600884
    [Google Scholar]
  61. SamahN.H.A. HeardC.M. Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc).Int. J. Pharm.2013453263064010.1016/j.ijpharm.2013.05.042 23727139
    [Google Scholar]
  62. MohammedN. RejinoldN.S. MangalathillamS. BiswasR. NairS.V. JayakumarR. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections.J. Biomed. Nanotechnol.2013991521153110.1166/jbn.2013.1647 23980500
    [Google Scholar]
  63. Abd El-RehimH.A. SwilemA.E. KlingnerA. HegazyE.S.A. HamedA.A. Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly(acrylic acid) nanogel dispersions prepared by γ radiation.Biomacromolecules201314368869810.1021/bm301742m 23414209
    [Google Scholar]
  64. KimH.J. ZhangK. MooreL. HoD. Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release.ACS Nano2014832998300510.1021/nn5002968 24506583
    [Google Scholar]
  65. JiangL. ZhouQ. MuK. XieH. ZhuY. ZhuW. ZhaoY. XuH. YangX. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats.Biomaterials201334307418742810.1016/j.biomaterials.2013.05.078 23810255
    [Google Scholar]
  66. HasegawaU. NomuraS.M. KaulS.C. HiranoT. AkiyoshiK. Nanogel-quantum dot hybrid nanoparticles for live cell imaging.Biochem. Biophys. Res. Commun.2005331491792110.1016/j.bbrc.2005.03.228 15882965
    [Google Scholar]
  67. NochiT. YukiY. TakahashiH. SawadaS. MejimaM. KohdaT. HaradaN. KongI.G. SatoA. KataokaN. TokuharaD. KurokawaS. TakahashiY. TsukadaH. KozakiS. AkiyoshiK. KiyonoH. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines.Nat. Mater.20109757257810.1038/nmat2784 20562880
    [Google Scholar]
  68. KageyamaS. KitanoS. HirayamaM. NagataY. ImaiH. ShiraishiT. AkiyoshiK. ScottA.M. MurphyR. HoffmanE.W. OldL.J. KatayamaN. ShikuH. Humoral immune responses in patients vaccinated with 1–146 HER2 protein complexed with cholesteryl pullulan nanogel.Cancer Sci.200899360160710.1111/j.1349‑7006.2007.00705.x 18081877
    [Google Scholar]
  69. DebacheK. KropfC. SchützC.A. HarwoodL.J. KäuperP. MonneyT. RossiN. LaueC. McCULLOUGH, K.C.; Hemphill, A. Vaccination of mice with chitosan nanogel‐associated recombinant NcPDI against challenge infection with Neospora caninum tachyzoites.Parasite Immunol.2011332819410.1111/j.1365‑3024.2010.01255.x 21226721
    [Google Scholar]
  70. Thomann-HarwoodL.J. KaeuperP. RossiN. MilonaP. HerrmannB. McCulloughK.C. Nanogel vaccines targeting dendritic cells: Contributions of the surface decoration and vaccine cargo on cell targeting and activation.J. Control. Release201316629510510.1016/j.jconrel.2012.11.015 23220107
    [Google Scholar]
  71. KongI.G. SatoA. YukiY. NochiT. TakahashiH. SawadaS. MejimaM. KurokawaS. OkadaK. SatoS. BrilesD.E. KunisawaJ. InoueY. YamamotoM. AkiyoshiK. KiyonoH. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae.Infect. Immun.20138151625163410.1128/IAI.00240‑13 23460513
    [Google Scholar]
  72. NukolovaN.V. YangZ. KimJ.O. KabanovA.V. BronichT.K. Polyelectrolyte nanogels decorated with monoclonal antibody for targeted drug delivery.React. Funct. Polym.201171331532310.1016/j.reactfunctpolym.2010.10.011 21503276
    [Google Scholar]
  73. TanJ.P.K. ZengA.Q.F. ChangC.C. TamK.C. Release kinetics of procaine hydrochloride (PrHy) from pH-responsive nanogels: Theory and experiments.Int. J. Pharm.20083571-230531310.1016/j.ijpharm.2008.01.058 18358651
    [Google Scholar]
  74. LiuJ. Long‐lasting infiltration anesthesia by lidocaine‐loaded biodegradable nanoparticles in hydrogel in rats.Acta Anaesthesiol. Scand.20095391207121310.1111/j.1399‑6576.2009.02030.x 19659681
    [Google Scholar]
  75. HoareT. SivakumaranD. StefanescuC.F. LawlorM.W. KohaneD.S. Nanogel scavengers for drugs: Local anesthetic uptake by thermoresponsive nanogels.Acta Biomater.2012841450145810.1016/j.actbio.2011.12.028 22244983
    [Google Scholar]
  76. HoareT. YoungS. LawlorM.W. KohaneD.S. Thermoresponsive nanogels for prolonged duration local anesthesia.Acta Biomater.20128103596360510.1016/j.actbio.2012.06.013 22732383
    [Google Scholar]
  77. GuZ. AimettiA.A. WangQ. DangT.T. ZhangY. VeisehO. ChengH. LangerR.S. AndersonD.G. Injectable nano-network for glucose-mediated insulin delivery.ACS Nano2013754194420110.1021/nn400630x 23638642
    [Google Scholar]
  78. GuZ. DangT.T. MaM. TangB.C. ChengH. JiangS. DongY. ZhangY. AndersonD.G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery.ACS Nano2013786758676610.1021/nn401617u 23834678
    [Google Scholar]
  79. WuW. MitraN. YanE.C.Y. ZhouS. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH.ACS Nano2010484831483910.1021/nn1008319 20731458
    [Google Scholar]
  80. LeeJ. LeeC. KimT.H. LeeE.S. ShinB.S. ChiS.C. ParkE.S. LeeK.C. YounY.S. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system.J. Control. Release2012161372873410.1016/j.jconrel.2012.05.029 22634071
    [Google Scholar]
  81. KimY. ThapaM. HuaD.H. ChangK.O. Biodegradable nanogels for oral delivery of interferon for norovirus infection.Antiviral Res.201189216517310.1016/j.antiviral.2010.11.016 21144866
    [Google Scholar]
  82. AhirraoS.P. GideP.S. ShrivastavB. SharmaP. Ionotropic gelation: a promising cross linking techniques for hydrogels.Res Rev J Pharm Nanotechnol2014216
    [Google Scholar]
  83. PatilP. A review on ionotropic gelation method: novel approach for controlled gastro retantive gelispheres.Int. J. Pharm. Pharm. Sci.2012442732
    [Google Scholar]
  84. AgarwalM. NagarD.P. SrivastavaN. AgarwalsM.K. Chitosan nanoparticles based drug delivery: An uptake.Int J Adv Multidiscip Res201524113
    [Google Scholar]
  85. PandeV. PawarS. Oleic acid coated gelatin nanoparticles impregnated gel for sustained delivery of Zaltoprofen: formulation and textural characterization.Adv. Pharm. Bull.20155453754810.15171/apb.2015.073 26819927
    [Google Scholar]
  86. OhJ.K. DrumrightR. SiegwartD.J. MatyjaszewskiK. The development of microgels/nanogels for drug delivery applications.Prog. Polym. Sci.200833444847710.1016/j.progpolymsci.2008.01.002
    [Google Scholar]
  87. AgarwalM. NagarD.P. SrivastavaN. AgarwalM.K. Chitosan nanoparticles based drug delivery: Uptake. Int.J Adv Multidiscip Res201524113
    [Google Scholar]
  88. PandeyA. PandeyG. Pharmaceutical nanotechnology: A rising tide of challenge and opportunities.Pharm. Nanotechnol.20164223477849
    [Google Scholar]
  89. GaneshK. ArchanaD. PreetiK. Review article on targeted polymeric nanoparticles: an overview.Am. J. Adv. Drug Deliv.201533196215
    [Google Scholar]
  90. MiladiK SfarS Fessi, S Nanoprecipitation process: From particle preparation to in vivo application.Polymer Nanoparticles for Nanomedicine; Springer: Chem,2016
    [Google Scholar]
  91. TaleleS. NikamP. GhoshB. DeoreC. JaybhaveA. JadhavA. A research article on nanogel as topical promising drug delivery for diclofenac sodium.Indian Journal of Pharmaceutical Education and Research2017514ss580s58710.5530/ijper.51.4s.86
    [Google Scholar]
  92. ParveenS. SahooS.K. Polymeric nanoparticles for cancer therapy.J. Drug Target.200816210812310.1080/10611860701794353 18274932
    [Google Scholar]
  93. JenningV. ThünemannA.F. GohlaS.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids.Int. J. Pharm.2000199216717710.1016/S0378‑5173(00)00378‑1 10802410
    [Google Scholar]
  94. CastelliF. PugliaC. SarpietroM.G. RizzaL. BoninaF. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry.Int. J. Pharm.20053041-223123810.1016/j.ijpharm.2005.08.011 16188405
    [Google Scholar]
  95. YuanH. WangL.L. DuY.Z. YouJ. HuF.Q. ZengS. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification.Colloids Surf. B Biointerfaces200760217417910.1016/j.colsurfb.2007.06.011 17656075
    [Google Scholar]
  96. JoshiM. PatravaleV. Nanostructured lipid carrier (NLC) based gel of celecoxib.Int. J. Pharm.20083461-212413210.1016/j.ijpharm.2007.05.060 17651933
    [Google Scholar]
  97. SawantK. DodiyaS. Recent advances and patents on solid lipid nanoparticles.Recent Pat. Drug Deliv. Formul.20082212013510.2174/187221108784534081 19075903
    [Google Scholar]
  98. FornyL. SalehK. DenoyelR. PezronI. Contact angle assessment of hydrophobic silica nanoparticles related to the mechanisms of dry water formation.Langmuir20102642333233810.1021/la902759s 20141200
    [Google Scholar]
  99. HuF.Q. JiangS.P. DuY.Z. YuanH. YeY.Q. ZengS. Preparation and characteristics of monostearin nanostructured lipid carriers.Int. J. Pharm.20063141838910.1016/j.ijpharm.2006.01.040 16563671
    [Google Scholar]
  100. HwangT.L. LinY.K. ChiC.H. HuangT.H. FangJ.Y. Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery.J. Pharm. Sci.200998103735374710.1002/jps.21687 19156914
    [Google Scholar]
  101. SitterbergJ. ÖzcetinA. EhrhardtC. BakowskyU. Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems.Eur. J. Pharm. Biopharm.201074121310.1016/j.ejpb.2009.09.005 19755155
    [Google Scholar]
  102. WissingS.A. MüllerR.H. MantheiL. MayerC. Structural characterization of Q10-loaded solid lipid nanoparticles by NMR spectroscopy.Pharm. Res.200421340040510.1023/B:PHAM.0000019291.36636.c1 15070088
    [Google Scholar]
  103. SchubertM.A. HarmsM. Müller-GoymannC.C. Structural investigations on lipid nanoparticles containing high amounts of lecithin.Eur. J. Pharm. Sci.2006272-322623610.1016/j.ejps.2005.10.004 16298113
    [Google Scholar]
  104. SivaramakrishnanR. NakamuraC. MehnertW. KortingH. KramerK. SchäferkortingM. Glucocorticoid entrapment into lipid carriers — characterisation by parelectric spectroscopy and influence on dermal uptake.J. Control. Release200497349350210.1016/S0168‑3659(04)00169‑5 15212881
    [Google Scholar]
  105. SaupeA. GordonK.C. RadesT. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy.Int. J. Pharm.20063141566210.1016/j.ijpharm.2006.01.022 16574354
    [Google Scholar]
  106. JoresK. HaberlandA. WartewigS. MäderK. MehnertW. Solid lipid nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and Raman spectroscopy.Pharm. Res.200522111887189710.1007/s11095‑005‑7148‑5 16132349
    [Google Scholar]
  107. SatoK. Crystallization behaviour of fats and lipids — a review.Chem. Eng. Sci.20015672255226510.1016/S0009‑2509(00)00458‑9
    [Google Scholar]
  108. TeeranachaideekulV. MüllerR. JunyaprasertV. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—Effects of formulation parameters on physicochemical stability.Int. J. Pharm.20073401-219820610.1016/j.ijpharm.2007.03.022 17482778
    [Google Scholar]
  109. SchäferkortingM. MehnertW. KortingH. Lipid nanoparticles for improved topical application of drugs for skin diseases.Adv. Drug Deliv. Rev.200759642744310.1016/j.addr.2007.04.006 17544165
    [Google Scholar]
  110. ShrinivasG. RamnathkarP. Polymer based microgels/nanogels: Development & application in drug delivery.Am J Pharmatech Res201441270282
    [Google Scholar]
  111. PhatakA. ChaudhariP. Development & evaluation of nanogel as carrier for transdermal drug delivery of aceclofenac.Asian J Pharm Tech201242126127
    [Google Scholar]
  112. AvasatthiV. PawarH. DoraC.P. BansodP. GillM.S. SureshS. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: optimization, in vitro and in vivo evaluation.Pharm. Dev. Technol.201621555456210.3109/10837450.2015.1026605 26024238
    [Google Scholar]
  113. WuL. HuiZ. Hao-JanS. Thermoresponsive bc whisker/poly (nipam-co-bma) nanogel complexes: synthesis, characterization.Biomacromolecules20131441078108410.1021/bm3019664 23458422
    [Google Scholar]
  114. KhuranaS. BediP.M.S. JainN.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam.Chem. Phys. Lipids2013175-176657210.1016/j.chemphyslip.2013.07.010 23994283
    [Google Scholar]
  115. LigongL ShaojunP XiaoJ YongjieX WeiZ Preparation and application method of hypoxic degradable phosphorylcholine polymer nanogel. CN Patent 111499888A,2020
    [Google Scholar]
  116. ZhaohuiT WantongS XinghuiS ShenM Polymer, nanogel for carrying protein drug and application of nanogel.CN Patent 111378146A,2020
    [Google Scholar]
  117. JunjieD ZhenW WeideX LinglingW JianxinL Nano gel based on dynamic chemical bond crosslinking and preparation method and application thereof.CN Patent 111269443A,2020
    [Google Scholar]
  118. ZhengZ YunshengC YixinZ Hyaluronic acid nanogel capable of being administered transdermally and preparation method thereof.CN Patent 111249472A,2020
    [Google Scholar]
  119. MinyiS JingwenD Delivery system and preparation method of polymerized chloroquine fluorene methyl carbonyl nanogel.CN Patent 111249473A,2020
    [Google Scholar]
  120. WenshuaiL WeiweiW CollarC PingshengH Nanogel with antibacterial repair performance and preparation method and application thereof.CN Patent 111234163A,2020
    [Google Scholar]
  121. JidongW LibinW YabiaoG ShengquanH ZehuaG PenghuiJ DaoqingM Novel drug-loaded nano hydrogel and preparation method and application thereof.CN Patent 111184686A,2020
    [Google Scholar]
  122. ShanwenH WanqingT ShushengZ Tumour-targeted composite nano-drug carrier, drug, preparation method and application.CN Patent 111166728A,2020
    [Google Scholar]
  123. WeiM DonghuiK ShufenZ Photonic crystal mercury ion detector based on sulfur-containing nanogel and preparation method thereof.CN Patent 111157519,2020
    [Google Scholar]
  124. YulinL BingZ DongZ KaikaiZ Preparation method and application of gold nanoparticle in-situ growth type sodium alginate nanogel.CN Patent 111000797A,2020
    [Google Scholar]
  125. MingfangH JindongL ZhengguoT Preparation method and application of lutein nanoparticles.CN Patent 110947005A,2020
    [Google Scholar]
  126. JianhongY XiangshuaiG YangN Transdermal gel patch for promoting low-absorption-capacity medicine of skin and preparation method thereof.CN Patent 110787152A,2020
    [Google Scholar]
  127. GuopingL Calcium carbonate wraps up DNA-fluorescent dye composite nanogel double anti-counterfeit preparation method for coating.CN Patent 110499665A,2019
    [Google Scholar]
  128. YunhuiX HongfeiZ ZhaofangD YingZ A kind of mono carboxylic chitosan/alkannin composite nanometer particle and preparation method thereof.CN Patent 110384684A,2019
    [Google Scholar]
  129. YapingL The synthesis and its application of carbon quantum dot molecular engram nanogel fluorescent optical sensor.CN Patent 110283275A,2019
    [Google Scholar]
  130. WeiC WenboX HongliangQ LinD DechunH ZhixiangW A kind of glucan base nanogel and its The synthesis and its application of carbon quantum dot molecular engram nanogel fluorescent optical sensor.CN Patent 110283275A,2019
    [Google Scholar]
  131. XiaoshanW XiaW QigangW A kind of preparation method of gold nanorods base engineering nanogel.CN Patent 109999196A,2019
    [Google Scholar]
  132. JingweiS XiaoyuH ChangyongD YanG A kind of ginsenoside-warfarin self-assembled nanometer gel and its application.CN Patent 109875956A,2019
    [Google Scholar]
  133. YuchaoL DefengY YunT YanxiaZ MingW ZhongjunF HaofeiH TianZ NingZ NingC ZishiD JunT ZichaoZ The preparation of the Raney nickel of oxidation of aldehydes lactate synthesis ester and its application that catalyst system is total to ionic liquid.CN Patent 109772345A,2019
    [Google Scholar]
  134. FahmyTM LookM CraftJ Methods of treating inflammatory and autoimmune diseases and disorders.CN Patent 10195144B2,2019
    [Google Scholar]
  135. JieY LinglingZ DongweiZ JingxiaZ YajuanZ RuiW HongzeL A kind of the thrombolytic drug targeted nano gel and its preparation method and use of pH responses.CN Patent 104758945B,2018
    [Google Scholar]
  136. QuanchenX ZhiguoW XiaoyanX ChangqingY QiuxiaJ Xiulei FujinY Preparation method of hyaluronic acid nanogel.CN Patent 104958251A,2018
    [Google Scholar]
  137. KimS Chang-geunL HuhJ Geun-sooJ Oxamide nanogel, a preparation method of the same and use thereof.KR Patent 101823490B1,2018
    [Google Scholar]
  138. ThayumanavanS RamireddyRR Polymeric nanogels with degradable backbones and from gras components, and compositions and methods thereof.US Patent 9868821B2,2018
    [Google Scholar]
  139. YeL A kind of preparation method of plant skin element nanogel.CN Patent 107811966A,2017
    [Google Scholar]
  140. Kwan-youngJ Cosmetic composition stabilizing ceramides with multi-layer nano gel emulsion and manufacturing method thereof.KR Patent 101780772B1,2017
    [Google Scholar]
  141. HellerDA ShamayY Fucoidan nanogels and methods of their use and manufacture.US Patent 9737614B2,2017
    [Google Scholar]
  142. XiaowenS JianweiZ HongbingD YuminD A kind of preparation method of chitin nanogel.CN Patent 107141494A,2017
    [Google Scholar]
  143. MittalR RoySB KothariJS SheikhS PatelJD PancholiJS Method for treatment of acne using pharmaceutical compositions of clindamycin and adapalene.US Patent 9636353B2,2017
    [Google Scholar]
  144. KonoA KitamuraS ShojoA AkiyoshiI SawadaS Polysaccharide nanogel, method for producing the same, and wound healing agent using the same.JP Patent 6082633B22,2017
    [Google Scholar]
  145. TaoW XuemeiT JunyanH ChuzhangZ MinX WenzhongC A kind of pH and temperature dual sensitiveness intelligent nano-gel and preparation method thereof.CN Patent 104371066B,2016
    [Google Scholar]
  146. HansooP MuhammedK NoppadolU Poly NIsopropylacrylamide Based Nanogel Enhanced Antifungal Activity.KR Patent 101616400B1,2016
    [Google Scholar]
  147. CaihuaN LinX LipingZ GangS Preparation method of modified carboxymethyl chitosan nano gel.CN Patent 104817660B,2015
    [Google Scholar]
  148. PetitJLV GonzalezRD BotelloAF Lipid nanoparticle capsules.WO Patent 2011116963A2,2011
    [Google Scholar]
  149. WangKKW WangJ GoodmanJV LarnerSF Antibody bound synthetic vesicle containing molecules for deliver to central and peripheral nervous system cells.US Patent 20110097392A1,2011
    [Google Scholar]
  150. AwasthiV LagisettyP Anionic lipids and lipid nano-structures and methods of producing and using same.US Patent 20110059157A1,2011
    [Google Scholar]
  151. BondiML GiammonaG CraparoEF DragoF Nanostructured lipid carriers containing riluzole and pharmaceutical formulations containing said particles.EP Patent 2037889A2,2010
    [Google Scholar]
  152. PetersenR Nanocrystals for use in topical cosmetic formulations and method of production thereof.US Patent 20100047297A1,2010
    [Google Scholar]
  153. SinghCU Solid nanoparticle formulation of water insoluble pharmaceutical substances with reduced ostwald ripening.US Patent 20090238878A1,2009
    [Google Scholar]
  154. KeckC MuchowM Nanonized testosterone formulations for improved bioavailability.EP Patent 2229936A1,2009
    [Google Scholar]
  155. ChenT VargeeseC VagleK WangW ZhangY Lipid nanoparticle-based compositions and methods for the delivery of biologically active molecules.US Patent 20080020058A1,2008
    [Google Scholar]
  156. KabanovAV VinogradovSV Nanogel networks including polyion polymer fragments and biological agent compositions thereof.US Patent US6696089B2,2004
    [Google Scholar]
  157. LeeT JayI Carrier-free bioactive protein nanostructures.JP Patent 7272664B2,2023
    [Google Scholar]
  158. EranG LeeT JayI Cell surface conjugate of nanoparticles.JP Patent 6887685B2,2021
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010281504240403053144
Loading
/content/journals/cpb/10.2174/0113892010281504240403053144
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cross-linking; drug delivery; Emulgel; nanogel; pH; recent patents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test