Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

, and non-tuberculous (NTM) are among the most significant human pathogens within the genus. These pathogens can infect people who come into contact with biomaterials or have chronic illnesses. A characteristic pathogenic trait of mycobacteria is the development of biofilms, which involves several molecules, such as the GroEL1 chaperone, glycopeptidolipids, and shorter-chain mycolic acids. Bacterial behavior is influenced by nutrients, ions, and carbon sources, which also play a regulatory role in biofilm development. Compared to their planktonic phase, mycobacterial biofilms are more resilient to environmental stresses and disinfectants. Mycobacteria that produce biofilms have been found in several environmental studies, particularly in water systems. NTM can cause respiratory problems in individuals with underlying illnesses such as cystic fibrosis, bronchiectasis, and old tuberculosis scars. Mycobacteria that grow slowly, like those in the complex (MAC), or rapidly, like , can be pathogens. Infections related to biomaterials represent a significant category of biofilm-associated infections, with rapidly growing mycobacteria being the most frequently identified organisms. A biofilm produced by can contribute to caseous necrosis and cavity formation in lung tissue. Additionally, forms biofilms on clinical biomaterials. Biofilm formation is a major contributor to antimicrobial resistance, providing defense against drugs that would typically be effective against these bacteria in their planktonic state. The antibiotic resistance of biofilm-forming microbes may render therapy ineffective, necessitating the physical removal of biofilms to cure the infection. Recently, new approaches have been developed with potential anti-biofilm compounds to increase treatment effectiveness. Understanding biofilms is crucial for the appropriate treatment of various NTM diseases, and the recent discovery of biofilms has opened up a new field of study. This review focuses on the biofilm formation of the Mycobacterial genus, the mechanisms of biofilm formation, and anti-mycobacterial biofilm agents.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010277107240227054933
2024-03-11
2025-05-18
Loading full text...

Full text loading...

References

  1. AzimiT. ShariatiA. FallahF. Imani FooladiA.A. HashemiA. GoudarziH. Mycobacterium tuberculosis genotyping using MIRU-VNTR typing.J. Mazandaran Univ. Med. Sci.2017271494048
    [Google Scholar]
  2. AzimiT. MosadeghM. NasiriM.J. SabourS. KarimaeiS. NasserA. Phage therapy as a renewed therapeutic approach to mycobacterial infections: A comprehensive review.Infect. Drug Resist.2019122943295910.2147/IDR.S218638 31571947
    [Google Scholar]
  3. SchwartzT. KalmbachS. HoffmannS. SzewzykU. ObstU. PCR-based detection of mycobacteria in biofilms from a drinking water distribution system.J. Microbiol. Methods199834211312310.1016/S0167‑7012(98)00081‑5
    [Google Scholar]
  4. RichardsJ.P. CaiW. ZillN.A. ZhangW. OjhaA.K. Adaptation of mycobacterium tuberculosis to biofilm growth is genetically linked to drug tolerance.Antimicrob. Agents Chemother.20196311e01213e0121910.1128/AAC.01213‑19 31501144
    [Google Scholar]
  5. MullisS.N. FalkinhamJ.O. III Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials.J. Appl. Microbiol.2013115390891410.1111/jam.12272 23742161
    [Google Scholar]
  6. HaK.Y. ChungY.G. RyooS.J. Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants.Spine2005301384310.1097/01.brs.0000147801.63304.8a 15626979
    [Google Scholar]
  7. CoxK.E. MelanderC. Anti-biofilm activity of quinazoline derivatives against Mycobacterium smegmatis.MedChemComm20191071177117910.1039/C9MD00156E 31391891
    [Google Scholar]
  8. FloresV.C. SiqueiraF.S. MizdalC.R. BonezP.C. AgerttV.A. StefanelloS.T. RossiG.G. CamposM.M.A. Antibiofilm effect of antimicrobials used in the therapy of mycobacteriosis.Microb. Pathog.20169922923510.1016/j.micpath.2016.08.017 27554273
    [Google Scholar]
  9. AzimiT. NasiriM.J. ZamaniS. HashemiA. GoudarziH. FooladiA.A.I. FeizabadiM.M. FallahF. High genetic diversity among Mycobacterium tuberculosis strains in Tehran, Iran.J. Clin. Tuberc. Other Mycobact. Dis.2018111610.1016/j.jctube.2018.01.001 31720383
    [Google Scholar]
  10. DokicA. PetersonE. Arrieta-OrtizM.L. PanM. Di MaioA. BaligaN. BhattA. Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile.Cell Surf.2021710005110.1016/j.tcsw.2021.100051 33912773
    [Google Scholar]
  11. KumarA. AlamA. GroverS. PandeyS. TripathiD. KumariM. Peptidyl-prolyl isomerase-B is involved in Mycobacterium tuberculosis biofilm formation and is a generic target for drug repurposing-based intervention. npj Biofil.Microbio.20195113
    [Google Scholar]
  12. ChakrabortyP. KumarA. The extracellular matrix of mycobacterial biofilms: Could we shorten the treatment of mycobacterial infections?Microb. Cell20196210512210.15698/mic2019.02.667 30740456
    [Google Scholar]
  13. ZeilerM.J. MelanderR.J. MelanderC. Second‐generation meridianin analogues inhibit the formation of mycobacterium smegmatis biofilms and sensitize polymyxin‐resistant gram‐negative bacteria to colistin.ChemMedChem202015171672167910.1002/cmdc.202000438 32662926
    [Google Scholar]
  14. WolffK.A. de la PeñaA.H. NguyenH.T. PhamT.H. AmzelL.M. GabelliS.B. NguyenL. A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development.PLoS Pathog.2015114e100483910.1371/journal.ppat.1004839 25884716
    [Google Scholar]
  15. GhoshS. IndiS.S. NagarajaV. Regulation of lipid biosynthesis, sliding motility, and biofilm formation by a membrane-anchored nucleoid-associated protein of Mycobacterium tuberculosis.J. Bacteriol.201319581769177810.1128/JB.02081‑12 23396914
    [Google Scholar]
  16. VargasD. HagemanS. GulatiM. NobileC.J. RawatM. S -nitrosomycothiol reductase and mycothiol are required for survival under aldehyde stress and biofilm formation in Mycobacterium smegmatis.IUBMB Life201668862162810.1002/iub.1524 27321674
    [Google Scholar]
  17. López-RoaP. EstebanJ. Muñoz-EgeaM.C. Updated review on the mechanisms of pathogenicity in mycobacterium abscessus, a rapidly growing emerging pathogen.Microorganisms20221119010.3390/microorganisms11010090 36677382
    [Google Scholar]
  18. MartinS.E. NguyenC.M. BasarabaR.J. MelanderC. Analogue synthesis reveals decoupling of antibiofilm and β‐lactam potentiation activities of a lead 2‐aminoimidazole adjuvant against Mycobacterium smegmatis.Chem. Biol. Drug Des.20189221403140810.1111/cbdd.13208 29663670
    [Google Scholar]
  19. SinghV. ManiI. ChaudharyD.K. SomvanshiP. The β-ketoacyl-ACP synthase from mycobacterium tuberculosis as potential drug targets.Curr. Med. Chem.20111891318132410.2174/092986711795029636 21370994
    [Google Scholar]
  20. BosioS. LeekhaS. GambS.I. WrightA.J. TerrellC.L. MillerD.V. Mycobacterium fortuitum prosthetic valve endocarditis: A case for the pathogenetic role of biofilms.Cardiovasc. Pathol.201221436136410.1016/j.carpath.2011.11.001 22196518
    [Google Scholar]
  21. SousaS. BandeiraM. CarvalhoP.A. DuarteA. JordaoL. Nontuberculous mycobacteria pathogenesis and biofilm assembly.Int. J. Mycobacteriol.201541364310.1016/j.ijmyco.2014.11.065 26655196
    [Google Scholar]
  22. Hall StoodleyL. KeevilC.W. Lappin ScottH.M. Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions.Int. J. Lepr. Other Mycobact. Dis.1999674513
    [Google Scholar]
  23. RuanS.Y. ChuangY.C. WangJ.Y. LinJ.W. ChienJ.Y. HuangC.T. KuoY.W. LeeL.N. YuC.J.J. Revisiting tuberculous pleurisy: Pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area.Thorax201267982282710.1136/thoraxjnl‑2011‑201363 22436167
    [Google Scholar]
  24. BachmannN.L. SalamzadeR. MansonA.L. WhittingtonR. SintchenkoV. EarlA.M. MaraisB.J. Key transitions in the evolution of rapid and slow-growing mycobacteria identified by comparative genomics.Front. Microbiol.202010301910.3389/fmicb.2019.03019 32038518
    [Google Scholar]
  25. JonesR.S. ShierK.L. MasterR.N. BaoJ.R. ClarkR.B. Current significance of the Mycobacterium chelonae-abscessus group.Diagn. Microbiol. Infect. Dis.201994324825410.1016/j.diagmicrobio.2019.01.021 30954313
    [Google Scholar]
  26. KimS. YamadaW.M. DuncansonB. NoleJ. RogersS. ParkerS. BacciM. MtchedlidzeN. PeloquinC.A. LouieA. SchmidtS. DrusanoG.L. NeelyM.N. Building optimal three-drug combination chemotherapy regimens to eradicate Mycobacterium tuberculosis in its slow-growth acid phase.Antimicrob. Agents Chemother.20216510e00693e2110.1128/AAC.00693‑21 34339275
    [Google Scholar]
  27. PachecoS.A. HsuF.F. PowersK.M. PurdyG.E. MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis.J. Biol. Chem.201328833242132422210.1074/jbc.M113.473371 23836904
    [Google Scholar]
  28. RoseS.J. BabrakL.M. BermudezL.E. Mycobacterium avium possesses extracellular DNA that contributes to biofilm formation, structural integrity, and tolerance to antibiotics.PLoS One2015105e012877210.1371/journal.pone.0128772 26010725
    [Google Scholar]
  29. Gonzales ZamoraJ. MilikowskiC. Proctitis caused by mycobacterium avium-intracellulare in an HIV-infected patient.Diseases2018623610.3390/diseases6020036 29738438
    [Google Scholar]
  30. Vega-DominguezP. PetersonE. PanM. Di MaioA. SinghS. UmapathyS. SainiD.K. BaligaN. BhattA. Biofilms of the non-tuberculous Mycobacterium chelonae form an extracellular matrix and display distinct expression patterns.Cell Surf.2020610004310.1016/j.tcsw.2020.100043 32803022
    [Google Scholar]
  31. HondaJ.R. VirdiR. ChanE.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches.Front. Microbiol.20189202910.3389/fmicb.2018.02029 30214436
    [Google Scholar]
  32. ChakrabortyP. BajeliS. KaushalD. RadotraB.D. KumarA. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis.Nat. Commun.2021121160610.1038/s41467‑021‑21748‑6 33707445
    [Google Scholar]
  33. NayakN. Mycobacterium tuberculosis biofilm: A new perspective.Indian J. Tuberc.20156214610.1016/j.ijtb.2015.02.028 25857559
    [Google Scholar]
  34. TopilinaN.I. GreenC.M. JayachandranP. KelleyD.S. StangerM.J. PiazzaC.L. NayakS. BelfortM. SufB intein of Mycobacterium tuberculosis as a sensor for oxidative and nitrosative stresses.Proc. Natl. Acad. Sci. 201511233103481035310.1073/pnas.1512777112 26240361
    [Google Scholar]
  35. Muñoz-EgeaM.C. AkirA. EstebanJ. Mycobacterium biofilms.Biofilm2023510010710.1016/j.bioflm.2023.100107 36798742
    [Google Scholar]
  36. WangC. ZhangQ. TangX. AnY. LiS. XuH. LiY. WangX. LuanW. WangY. LiuM. YuL. Effects of CwlM on autolysis and biofilm formation in Mycobacterium tuberculosis and Mycobacterium smegmatis.Int. J. Med. Microbiol.20193091738310.1016/j.ijmm.2018.12.002 30563740
    [Google Scholar]
  37. ViljoenA. DufrêneY.F. NigouJ. Mycobacterial adhesion: From hydrophobic to receptor-ligand interactions.Microorganisms202210245410.3390/microorganisms10020454 35208908
    [Google Scholar]
  38. BoopathiS. RamasamyS. HaridevamuthuB. MuruganR. VeerabadhranM. JiaA.Q. ArockiarajJ. Intercellular communication and social behaviors in mycobacteria.Front. Microbiol.20221394327810.3389/fmicb.2022.943278 36177463
    [Google Scholar]
  39. Schulze-RöbbeckeR. JanningB. FischederR. Occurrence of mycobacteria in biofilm samples.Tuber. Lung Dis.199273314114410.1016/0962‑8479(92)90147‑C 1421346
    [Google Scholar]
  40. OjhaA.K. BaughnA.D. SambandanD. HsuT. TrivelliX. GuerardelY. AlahariA. KremerL. JacobsW.R.Jr HatfullG.F. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug‐tolerant bacteria.Mol. Microbiol.200869116417410.1111/j.1365‑2958.2008.06274.x 18466296
    [Google Scholar]
  41. BeumerA. KingD. DonohueM. MistryJ. CovertT. PfallerS. Detection of Mycobacterium avium subsp. Paratuberculosis in drinking water and biofilms by quantitative PCR.Appl. Environ. Microbiol.201076217367737010.1128/AEM.00730‑10 20817803
    [Google Scholar]
  42. MarrakchiH. LanéelleM.A. DafféM. Mycolic acids: Structures, biosynthesis, and beyond.Chem. Biol.2014211678510.1016/j.chembiol.2013.11.011 24374164
    [Google Scholar]
  43. DingC. HuM. GuoW. HuW. LiX. WangS. ShangguanY. ZhangY. YangS. XuK. Prevalence trends of latent tuberculosis infection at the global, regional, and country levels from 1990–2019.Int. J. Infect. Dis.2022122466210.1016/j.ijid.2022.05.029 35577247
    [Google Scholar]
  44. ChaiQ. ZhangY. LiuC.H. Mycobacterium tuberculosis: An adaptable pathogen associated with multiple human diseases.Front. Cell. Infect. Microbiol.2018815810.3389/fcimb.2018.00158 29868514
    [Google Scholar]
  45. PalR. BishtM.K. MukhopadhyayS. Secretory proteins of Mycobacterium tuberculosis and their roles in modulation of host immune responses: Focus on therapeutic targets.FEBS J.2022289144146417110.1111/febs.16369 35073464
    [Google Scholar]
  46. EhlersS. SchaibleU.E. The granuloma in tuberculosis: Dynamics of a host-pathogen collusion.Front. Immunol.2013341110.3389/fimmu.2012.00411 23308075
    [Google Scholar]
  47. DonlanR.M. CostertonJ.W. Biofilms: Survival mechanisms of clinically relevant microorganisms.Clin. Microbiol. Rev.200215216719310.1128/CMR.15.2.167‑193.2002 11932229
    [Google Scholar]
  48. AckartD.F. Hascall-DoveL. CaceresS.M. KirkN.M. PodellB.K. MelanderC. OrmeI.M. LeidJ.G. NickJ.A. BasarabaR.J. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis.Pathog. Dis.201470335936910.1111/2049‑632X.12144 24478060
    [Google Scholar]
  49. WolschendorfF. AckartD. ShresthaT.B. Hascall-DoveL. NolanS. LamichhaneG. WangY. BossmannS.H. BasarabaR.J. NiederweisM. Copper resistance is essential for virulence of Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. 201110841621162610.1073/pnas.1009261108 21205886
    [Google Scholar]
  50. RichardsJ.P. OjhaA.K. Mycobacterial biofilms.Microbiol. Spectr.,2014252.5.1610.1128/microbiolspec.MGM2‑0004‑201326104368
    [Google Scholar]
  51. MaitiK. SyalK. ChatterjiD. JayaramanN. Synthetic arabinomannan heptasaccharide glycolipids inhibit biofilm growth and augment isoniazid effects in mycobacterium smegmatis.ChemBioChem201718191959197010.1002/cbic.201700247 28771901
    [Google Scholar]
  52. MothibaM.T. AndersonR. FourieB. GermishuizenW.A. CholoM.C. Effects of clofazimine on planktonic and biofilm growth of Mycobacterium tuberculosis and Mycobacterium smegmatis.J. Glob. Antimicrob. Resist.201531131810.1016/j.jgar.2014.12.001 27873644
    [Google Scholar]
  53. MasheleS.A. SteelH.C. MatjokotjaM.T. RasehloS.S.M. AndersonR. CholoM.C. Assessment of the efficacy of clofazimine alone and in combination with primary agents against Mycobacterium tuberculosis in vitro.J. Glob. Antimicrob. Resist.20222934335210.1016/j.jgar.2022.03.008 35339735
    [Google Scholar]
  54. HuJ. ZhangH. ZhouS. LiW. HeZ.G. Characterization of a novel regulatory pathway for mannitol metabolism and its coordination with biofilm formation in Mycobacterium smegmatis.J. Genet. Genomics201845947748810.1016/j.jgg.2018.06.007 30279094
    [Google Scholar]
  55. SolokhinaA. BonkatG. KulchavenyaE. BraissantO. Drug susceptibility testing of mature Mycobacterium tuberculosis H37Ra and Mycobacterium smegmatis biofilms with calorimetry and laser spectroscopy.Tuberculosis 2018113919810.1016/j.tube.2018.09.010 30514518
    [Google Scholar]
  56. WangX. ZhaoX. WangH. HuangX. DuanX. GuY. LambertN. ZhangK. KouZ. XieJ. Mycobacterium tuberculosis toxin Rv2872 is an RNase involved in vancomycin stress response and biofilm development.Appl. Microbiol. Biotechnol.2018102167123713310.1007/s00253‑018‑9132‑0 29948114
    [Google Scholar]
  57. YangY. RichardsJ.P. GundrumJ. OjhaA.K. GlnR. GlnR activation induces peroxide resistance in mycobacterial biofilms.Front. Microbiol.20189142810.3389/fmicb.2018.01428 30022971
    [Google Scholar]
  58. Di SommaA. CaterinoM. SoniV. AgarwalM. di PasqualeP. ZanettiS. MolicottiP. CannasS. NandicooriV.K. DuilioA. The bifunctional protein GlmU is a key factor in biofilm formation induced by alkylating stress in Mycobacterium smegmatis.Res. Microbiol.20191704-517118110.1016/j.resmic.2019.03.002 30953691
    [Google Scholar]
  59. GhoshP. WuC. TalaatA.M. Key role for the alternative sigma factor, SigH, in the intracellular life of Mycobacterium avium subsp. Paratuberculosis during macrophage stress.Infect. Immun.20138162242225710.1128/IAI.01273‑12 23569115
    [Google Scholar]
  60. MahapaA. SamantaG.C. MaitiK. ChatterjiD. JayaramanN. Mannopyranoside glycolipids inhibit Mycobacterial and biofilm growth and potentiate isoniazid inhibition activities in M. smegmatis.ChemBioChem201920151966197610.1002/cbic.201900040 30951240
    [Google Scholar]
  61. IshidaS. AraiM. NiikawaH. KobayashiM. Inhibitory effect of cyclic trihydroxamate siderophore, desferrioxamine E, on the biofilm formation of Mycobacterium species.Biol. Pharm. Bull.201134691792010.1248/bpb.34.917 21628895
    [Google Scholar]
  62. AraiM. NiikawaH. KobayashiM. Marine-derived fungal sesterterpenes, ophiobolins, inhibit biofilm formation of Mycobacterium species.J. Nat. Med.201367227127510.1007/s11418‑012‑0676‑5 22684914
    [Google Scholar]
  63. NguyenT.V. MinrovicB.M. MelanderR.J. MelanderC. Identification of anti‐mycobacterial biofilm agents based on the 2‐aminoimidazole scaffold.ChemMedChem201914992793710.1002/cmdc.201900033 30834698
    [Google Scholar]
  64. Ortíz-PérezA. Martín-de-HijasN. Alonso-RodríguezN. Molina-MansoD. Fernández-RoblasR. EstebanJ. Importance of antibiotic penetration in the antimicrobial resistance of biofilm formed by non-pigmented rapidly growing mycobacteria against amikacin, ciprofloxacin and clarithromycin.Enferm. Infecc. Microbiol. Clin.2011292798410.1016/j.eimc.2010.08.016 21333405
    [Google Scholar]
  65. Muñoz-EgeaM.C. García-PedrazuelaM. GarcíaM.J. EstebanJ. Detection of autofluorescence in biofilms formed by rapidly growing mycobacteria.Clin. Microbiol. Infect.201218723
    [Google Scholar]
  66. LemassuA. Ortalo-MagnéA. BardouF. SilveG. LanéelleM.A. DafféM. Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria.Microbiology199614261513152010.1099/13500872‑142‑6‑1513 8704991
    [Google Scholar]
  67. TrivediA. MaviP.S. BhattD. KumarA. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis.Nat. Commun.2016711139210.1038/ncomms11392 27109928
    [Google Scholar]
  68. GreendykeR. ByrdT.F. Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria.Antimicrob. Agents Chemother.20085262019202610.1128/AAC.00986‑07 18378709
    [Google Scholar]
  69. YamazakiY. DanelishviliL. WuM. HidakaE. KatsuyamaT. StangB. PetrofskyM. BildfellR. BermudezL.E. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells.Cell. Microbiol.20068580681410.1111/j.1462‑5822.2005.00667.x 16611229
    [Google Scholar]
  70. SiqueiraF.S. RossiG.G. MachadoA.K. AlvesC.F.S. FloresV.C. SomavillaV.D. AgerttV.A. SiqueiraJ.D. DiasR.S. CopettiP.M. SagrilloM.R. BackD.F. de CamposM.M.A. Sulfamethoxazole derivatives complexed with metals: A new alternative against biofilms of rapidly growing mycobacteria.Biofouling201834889391110.1080/08927014.2018.1514497 30418037
    [Google Scholar]
  71. ClaryG. SasindranS.J. NesbittN. MasonL. ColeS. AzadA. McCoyK. SchlesingerL.S. Hall-StoodleyL. Mycobacterium abscessus smooth and rough morphotypes form antimicrobial-tolerant biofilm phenotypes but are killed by acetic acid.Antimicrob. Agents Chemother.2018623e01782e1710.1128/AAC.01782‑17 29311080
    [Google Scholar]
  72. GloagE.S. WozniakD.J. StoodleyP. Hall-StoodleyL. Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections.Sci. Rep.2021111502010.1038/s41598‑021‑84525‑x 33658597
    [Google Scholar]
  73. BardouniotisE. CeriH. OlsonM.E. Biofilm formation and biocide susceptibility testing of Mycobacterium fortuitum and Mycobacterium marinum.Curr. Microbiol.2003461283210.1007/s00284‑002‑3796‑4 12432460
    [Google Scholar]
  74. WilliamsM.M. YakrusM.A. ArduinoM.J. CookseyR.C. CraneC.B. BanerjeeS.N. HilbornE.D. DonlanR.M. Structural analysis of biofilm formation by rapidly and slowly growing nontuberculous mycobacteria.Appl. Environ. Microbiol.20097572091209810.1128/AEM.00166‑09 19201956
    [Google Scholar]
  75. GarrisonA.T. AbouelhassanY. NorwoodV.M.IV KallifidasD. BaiF. NguyenM.T. RolfeM. BurchG.M. JinS. LueschH. HuigensR.W.III Structure–activity relationships of a diverse class of halogenated phenazines that targets persistent, antibiotic-tolerant bacterial biofilms and mycobacterium tuberculosis.J. Med. Chem.20165983808382510.1021/acs.jmedchem.5b02004 27018907
    [Google Scholar]
  76. RoseS.J. BermudezL.E. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection.Infect. Immun.201482140541210.1128/IAI.00820‑13 24191301
    [Google Scholar]
  77. RiccardiN. MonticelliJ. AntonelloR.M. LuzzatiR. GabrielliM. FerrareseM. CodecasaL. Di BellaS. GiacobbeD.R. Mycobacterium chimaera infections: An update.J. Infect. Chemother.202026319920510.1016/j.jiac.2019.11.004 31843377
    [Google Scholar]
  78. JohnstonJ.C. ChiangL. ElwoodK. Mycobacterium kansasii.Tuberculosis and Nontuberculous Mycobacterial Infections2017725734
    [Google Scholar]
  79. FalkinhamJ.O. Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium.J. Med. Microbiol.200756225025410.1099/jmm.0.46935‑0 17244808
    [Google Scholar]
  80. Muñoz EgeaM. JiP. PrudenA. FalkinhamJ.III Inhibition of adherence of mycobacterium avium to plumbing surface biofilms of methylobacterium spp.Pathogens2017634210.3390/pathogens6030042 28906463
    [Google Scholar]
  81. ZhangJ. LeiferF. RoseS. ChunD.Y. ThaiszJ. HerrT. NashedM. JosephJ. PerkinsW.R. DiPetrilloK. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages.Front. Microbiol.2018991510.3389/fmicb.2018.00915 29867826
    [Google Scholar]
  82. LiY.Q. LiuH.F. TianZ.L. ZhuL.H. WuY.H. TangH.Q. Diesel pollution biodegradation: Synergetic effect of Mycobacterium and filamentous fungi.Biomed. Environ. Sci.200821318118710.1016/S0895‑3988(08)60026‑4 18714813
    [Google Scholar]
  83. MeersP. NevilleM. MalininV. ScottoA.W. SardaryanG. KurumundaR. MackinsonC. JamesG. FisherS. PerkinsW.R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections.J. Antimicrob. Chemother.200861485986810.1093/jac/dkn059 18305202
    [Google Scholar]
  84. MalininV. NevilleM. EagleG. GuptaR. PerkinsW.R. Pulmonary deposition and elimination of liposomal amikacin for inhalation and effect on macrophage function after administration in rats.Antimicrob. Agents Chemother.201660116540654910.1128/AAC.00700‑16 27550345
    [Google Scholar]
  85. AungT.T. ChorW.H.J. YamJ.K.H. GivskovM. YangL. BeuermanR.W. Discovery of novel antimycobacterial drug therapy in biofilm of pathogenic nontuberculous mycobacterial keratitis.Ocul. Surf.201715477078310.1016/j.jtos.2017.06.002 28662943
    [Google Scholar]
  86. AungT.T. YamJ.K.H. LinS. SallehS.M. GivskovM. LiuS. LwinN.C. YangL. BeuermanR.W. Biofilms of pathogenic nontuberculous mycobacteria targeted by new therapeutic approaches.Antimicrob. Agents Chemother.2016601243510.1128/AAC.01509‑15 26459903
    [Google Scholar]
  87. CarterG. YoungL.S. BermudezL.E. A subinhibitory concentration of clarithromycin inhibits Mycobacterium avium biofilm formation.Antimicrob. Agents Chemother.200448124907491010.1128/AAC.48.12.4907‑4910.2004 15561879
    [Google Scholar]
  88. CarterG. WuM. DrummondD.C. BermudezL.E. Characterization of biofilm formation by clinical isolates of Mycobacterium avium.J. Med. Microbiol.200352974775210.1099/jmm.0.05224‑0 12909649
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010277107240227054933
Loading
/content/journals/cpb/10.2174/0113892010277107240227054933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test