Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

This review highlights the effect of combining bioactive agents, especially nanoparticles, in carrageenan coating to increase the quality and stability of foods. This study is designed based on a review of previous studies. Biopolymer coatings and films are suitable for food and non-food packaging due to their degradability, renewable and edible nature. Edible coatings and films are based on polysaccharides, proteins, and lipids. They confer some beneficial effects on foods, such as improvement of appearance and texture, reducing the amount of moisture loss and oxidation, prevention of the release of gases and control of microbial growth, delaying ripening and adverse changes in color and taste, improvement of nutritional value, and increasing the shelf life of the product. These improvements lead to the prevention of food spoilage and increase the shelf life of various foods. In addition, nanomaterials and food additives such as antimicrobial and antioxidant agents, flavorings, and colors can be incorporated into food coatings and films to expand their applications. Nanotechnology can be applied in coatings and food films using nanoparticles. However, more research is still needed to gather information about coating formulations, especially when new materials are incorporated into them.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010287269240222054020
2025-03-04
2025-08-18
Loading full text...

Full text loading...

References

  1. DhanapalA. Edible films from polysaccharides.Food science and quality management201239
    [Google Scholar]
  2. DurangoA.M. SoaresN.F.F. BenevidesS. TeixeiraJ. CarvalhoM. WobetoC. AndradeN.J. Development and evaluation of an edible antimicrobial film based on yam starch and chitosan.Packag. Technol. Sci.2006191555910.1002/pts.713
    [Google Scholar]
  3. SouzaM.P. VazA.F.M. CostaT.B. CerqueiraM.A. De CastroC.M.M.B. VicenteA.A. Carneiro-da-CunhaM.G. Construction of a biocompatible and antioxidant multilayer coating by layer-by-layer assembly of κ-carrageenan and quercetin nanoparticles.Food Bioprocess Technol.20181151050106010.1007/s11947‑018‑2077‑6
    [Google Scholar]
  4. LiuJ. ZhanX. WanJ. WangY. WangC. Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects.Carbohydr. Polym.2015121273610.1016/j.carbpol.2014.11.06325659668
    [Google Scholar]
  5. NecasJ. BartosikovaL. Carrageenan: A review.Vet. Med.2013586
    [Google Scholar]
  6. ZiaK.M. TabasumS. NasifM. SultanN. AslamN. NoreenA. ZuberM. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites.Int. J. Biol. Macromol.20179628230110.1016/j.ijbiomac.2016.11.09527914965
    [Google Scholar]
  7. RoyS. RhimJ.W. Preparation of gelatin/carrageenan-based color-indicator film integrated with shikonin and propolis for smart food packaging applications.ACS Appl. Bio Mater.20214177077910.1021/acsabm.0c01353
    [Google Scholar]
  8. VarelaP. FiszmanS.M. Hydrocolloids in fried foods. A review.Food Hydrocoll.20112581801181210.1016/j.foodhyd.2011.01.016
    [Google Scholar]
  9. McHughD.J. A guide to the seaweed industry FAO Fisheries Technical Paper 441Food and Agriculture Organization of the United NationsRome2003110
    [Google Scholar]
  10. Su ChaD. ChoiJ.H. ChinnanM.S. ParkH.J. Antimicrobial films based on Na-alginate and κ-carrageenan.Lebensm. Wiss. Technol.200235871571910.1006/fstl.2002.0928
    [Google Scholar]
  11. NouriA. Tavakkoli YarakiM. GhorbanpourM. WangS. Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance.Int. J. Biol. Macromol.201811522723510.1016/j.ijbiomac.2018.04.05129660461
    [Google Scholar]
  12. KassabZ. AzizF. HannacheH. Ben YoucefH. El AchabyM. Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals.Int. J. Biol. Macromol.20191231248125610.1016/j.ijbiomac.2018.12.03030529205
    [Google Scholar]
  13. Shojaee-AliabadiS. MohammadifarM.A. HosseiniH. MohammadiA. GhasemlouM. HosseiniS.M. HaghshenasM. KhaksarR. Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay.Int. J. Biol. Macromol.20146928228910.1016/j.ijbiomac.2014.05.01524832987
    [Google Scholar]
  14. Shojaee-AliabadiS. HosseiniH. MohammadifarM.A. MohammadiA. GhasemlouM. OjaghS.M. HosseiniS.M. KhaksarR. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil.Int. J. Biol. Macromol.20135211612410.1016/j.ijbiomac.2012.08.02622959956
    [Google Scholar]
  15. ArvindG.K. AgarwalR. VishnurajM. Antimicrobial effect of oregano and thyme essential oils coated carrageenan based edible film.J. Pure Appl. Microbiol.20159216571663
    [Google Scholar]
  16. PraseptianggaD. Preparation and preliminary characterization of semi refined kappa carrageenan-based edible film incorporated with cinnamon essential oil.AIP Conf. Proc20161746102003610.1063/1.4953961
    [Google Scholar]
  17. ManuharaG.J. Preparation and characterization of semi-refined kappa carrageenan-based edible film for nano coating application on minimally processed food.AIP Conf. Proc20161710103004310.1063/1.4941509
    [Google Scholar]
  18. DagaleaF.M.S. Cui-LimK.M.R. Antimicrobial properties of biocomposite films from kappa-Carrageenan (kC) filled with nanorod-rich zinc oxide (ZnO-N).Adv. Pharm. J.201837073
    [Google Scholar]
  19. SaediS. RhimJ.W. Synthesis of Fe3O4@SiO2@PAMAM dendrimer@AgNP hybrid nanoparticles for the preparation of carrageenan-based functional nanocomposite film.Food Packag. Shelf Life20202410047310.1016/j.fpsl.2020.100473
    [Google Scholar]
  20. LiF. LiuY. CaoY. ZhangY. ZheT. GuoZ. SunX. WangQ. WangL. Copper sulfide nanoparticle-carrageenan films for packaging application.Food Hydrocoll.202010910609410.1016/j.foodhyd.2020.106094
    [Google Scholar]
  21. RoyS. RhimJ.W. Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin.Food Hydrocoll.20199050050710.1016/j.foodhyd.2018.12.056
    [Google Scholar]
  22. HouX. XueZ. LiuJ. YanM. XiaY. MaZ. Characterization and property investigation of novel eco‐friendly agar/carrageenan/TiO 2 nanocomposite films.J. Appl. Polym. Sci.2019136104711310.1002/app.47113
    [Google Scholar]
  23. KimY.H. Pine needle (Pinus densiflora) extract-mediated synthesis of silver nanoparticles and the preparation of carrageenan-based antimicrobial packaging films.J. Nanomater.2022115
    [Google Scholar]
  24. EzatiP. RiahiZ. RhimJ.W. Carrageenan-based functional films integrated with CuO-doped titanium nanotubes for active food-packaging applications.ACS Sustain. Chem.& Eng.20219289300930710.1021/acssuschemeng.1c01957
    [Google Scholar]
  25. NouriA. Tavakkoli YarakiM. LajevardiA. RahimiT. TanzifiM. GhorbanpourM. An investigation of the role of fabrication process in the physicochemical properties of κ-carrageenan-based films incorporated with Zataria multiflora extract and nanoclay.Food Packag. Shelf Life20202310043510.1016/j.fpsl.2019.100435
    [Google Scholar]
  26. RoyS. RhimJ.W. Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles.Colloids Surf. B Biointerfaces201917631732410.1016/j.colsurfb.2019.01.02330641303
    [Google Scholar]
  27. SaediS. ShokriM. PriyadarshiR. RhimJ-W. Carrageenan-based antimicrobial films integrated with sulfur-coated iron oxide nanoparticles (Fe3O4@ SNP).ACS Appl. Polym. Mater.20213104913492310.1021/acsapm.1c00690
    [Google Scholar]
  28. OunA.A. RhimJ.W. Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties.Food Hydrocoll.201767455310.1016/j.foodhyd.2016.12.040
    [Google Scholar]
  29. RhimJ.W. WangL.F. Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles.Appl. Clay Sci.201497-9817418110.1016/j.clay.2014.05.025
    [Google Scholar]
  30. VenkatesanR. RajeswariN. Thendral ThiyaguT. Preparation, characterization and mechanical properties of k-Carrageenan nanocomposite films for antimicrobial food packaging.Bull. Mater. Sci.201740360961410.1007/s12034‑017‑1403‑3
    [Google Scholar]
  31. PraseptianggaD. MufidaN. PanataraniC. JoniI.M. Enhanced multi functionality of semi-refined iota carrageenan as food packaging material by incorporating SiO2 and ZnO nanoparticles.Heliyon202175e0696310.1016/j.heliyon.2021.e0696334027169
    [Google Scholar]
  32. ShankarS. ReddyJ.P. RhimJ.W. KimH.Y. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films.Carbohydr. Polym.201511746847510.1016/j.carbpol.2014.10.01025498660
    [Google Scholar]
  33. RoyS. ShankarS. RhimJ.W. Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films.Food Hydrocoll.20198823724610.1016/j.foodhyd.2018.10.013
    [Google Scholar]
  34. Alizadeh SaniM. TavassoliM. SalimS.A. Azizi-lalabadiM. McClementsD.J. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films.Food Hydrocoll.202212410732410.1016/j.foodhyd.2021.107324
    [Google Scholar]
  35. SaediS. ShokriM. RhimJ.W. Preparation of carrageenan-based antimicrobial films incorporated with sulfur nanoparticles.Korean Journal of Packaging Science and Technology202026312513110.20909/kopast.2020.26.3.125
    [Google Scholar]
  36. YouS. ZhangX. WangY. JinY. WeiM. WangX. Development of highly stable color indicator films based on κ-carrageenan, silver nanoparticle and red grape skin anthocyanin for marine fish freshness assessment.Int. J. Biol. Macromol.202221665566910.1016/j.ijbiomac.2022.06.20635798081
    [Google Scholar]
  37. Yavari MaroufiL. GhorbaniM. TabibiazarM. MohammadiM. PezeshkiA. Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging.Int. J. Biol. Macromol.202118375375910.1016/j.ijbiomac.2021.04.16333932425
    [Google Scholar]
  38. HanY. ZhouM. McClementsD.J. LiuF. ChengC. XiongJ. ZhuM. ChenS. Investigation of a novel smart and active packaging materials: Nanoparticle-filled carrageenan-based composite films.Carbohydr. Polym.2023301Pt B12033110.1016/j.carbpol.2022.12033136446506
    [Google Scholar]
  39. MeindrawanB. SuyatmaN.E. WardanaA.A. PamelaV.Y. Nanocomposite coating based on carrageenan and ZnO nanoparticles to maintain the storage quality of mango.Food Packag. Shelf Life20181814014610.1016/j.fpsl.2018.10.006
    [Google Scholar]
  40. ZhangR. WangX. LiL. ChengM. ZhangL. Optimization of konjac glucomannan/carrageenan/nano-SiO2 coatings for extending the shelf-life of Agaricus bisporus.Int. J. Biol. Macromol.201912285786510.1016/j.ijbiomac.2018.10.16530392854
    [Google Scholar]
  41. VishnuvarthananM. RajeswariN. Preparation and characterization of carrageenan/silver nanoparticles/Laponite nanocomposite coating on oxygen plasma surface modified polypropylene for food packaging.J. Food Sci. Technol.20195652545255210.1007/s13197‑019‑03735‑431168136
    [Google Scholar]
  42. Shojaee-AliabadiS. HosseiniH. MohammadifarM.A. MohammadiA. GhasemlouM. HosseiniS.M. KhaksarR. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity.Carbohydr. Polym.201410158259110.1016/j.carbpol.2013.09.07024299814
    [Google Scholar]
  43. KhareA.K. AbrahamR.J.J. RaoV.A. BabuR.N. Utilization of carrageenan, citric acid and cinnamon oil as an edible coating of chicken fillets to prolong its shelf life under refrigeration conditions.Vet. World20169216617510.14202/vetworld.2016.166‑17527051203
    [Google Scholar]
  44. SoniA. KandeepanG. MendirattaS.K. ShuklaV. KumarA. Development and characterization of essential oils incorporated carrageenan based edible film for packaging of chicken patties.Nutr. Food Sci.2016461829510.1108/NFS‑05‑2015‑0065
    [Google Scholar]
  45. DewiE.N. PurnamayatiL. Carrageenan and garlic essensial oil edible film as protective coating on catfish sausage.Omni-Akuatika2019152758310.20884/1.oa.2019.15.2.575
    [Google Scholar]
  46. SimonaJ. DaniD. PetrS. MarcelaN. JakubT. BohuslavaT. Edible films from carrageenan/orange essential oil/trehalose—structure, optical properties, and antimicrobial activity.Polymers202113333210.3390/polym1303033233494246
    [Google Scholar]
  47. PrasetyaningrumA. UtomoD.P. RaemasA.F.A. KusworoT.D. JosB. DjaeniM. Alginate/κ-carrageenan-based edible films incorporated with clove essential oil: physico-chemical characterization and antioxidant-antimicrobial activity.Polymers (Basel)202113335410.3390/polym1303035433499188
    [Google Scholar]
  48. PraseptianggaD. Effects of plasticizer and cinnamon essential oil incorporation on mechanical and water barrier properties of semirefined iota-carrageenan-based edible film.IOP Conf. Ser.: Earth Environ. Sci.202182801203410.1088/1755‑1315/828/1/012034
    [Google Scholar]
  49. RoyS. RhimJ.W. Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and pickering emulsion of tea tree essential oil for active packaging applications.Int. J. Biol. Macromol.2021193Pt B2038204610.1016/j.ijbiomac.2021.11.03534774596
    [Google Scholar]
  50. HeS. WangY. Antimicrobial and antioxidant effects of kappa-carrageenan coatings enriched with cinnamon essential oil in pork meat.Foods20221118288510.3390/foods1118288536141013
    [Google Scholar]
  51. PraseptianggaD. FerichaniI.P. MufidaN. Development and characterization of bioactive edible films based on semi-refined kappa carrageenan incorporated with honey and kaempferia galanga l. essential oil.Trends in Sciences202219175761576110.48048/tis.2022.5761
    [Google Scholar]
  52. KaranthS. BenefoE.O. PatraD. PradhanA.K. Importance of artificial intelligence in evaluating climate change and food safety risk.J. Agric. Food Res.20231110048510.1016/j.jafr.2022.100485
    [Google Scholar]
  53. AmandaP. IsmadiI. NingrumR.S. NabilaS. PrasetyoK.W. Carrageenan functional film integrated with Pickering emulsion of oregano oil stabilized by cationic nanocellulose for active packaging.Food Sci. Technol. Int.2024301617210.1177/1082013222113291236259322
    [Google Scholar]
  54. ZhangX. ZhangB. MaoR. HuangZ. JingK. JinC. YangB. QiJ. YuM. XiongG. HuY. A novel multilayer film based on sodium alginate/k-carrageenan-gelatin incorporated with ZnO nanoparticles and oregano essential oil for active food packing.Prog. Org. Coat.202418710817010.1016/j.porgcoat.2023.108170
    [Google Scholar]
  55. Al-MusawiM.H. KhoshkalampourA. Adnan Shaker Al-NaymiH. Farooq ShafeeqZ. Pourvatan DoustS. GhorbaniM. Optimization and characterization of carrageenan/gelatin-based nanogel containing ginger essential oil enriched electrospun ethyl cellulose/casein nanofibers.Int. J. Biol. Macromol.202324812596910.1016/j.ijbiomac.2023.12596937494989
    [Google Scholar]
  56. KavoosiG. DerakhshanM. SalehiM. RahmatiL. Microencapsulation of zataria essential oil in agar, alginate and carrageenan.Innov. Food Sci. Emerg. Technol.20184541842510.1016/j.ifset.2017.12.010
    [Google Scholar]
  57. HenchionM. McCarthyM. ResconiV.C. TroyD. Meat consumption: Trends and quality matters.Meat Sci.201498356156810.1016/j.meatsci.2014.06.00725060586
    [Google Scholar]
  58. HuangM. WangH. XuX. LuX. SongX. ZhouG. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-l-lysine on the shelf life of ready-to-eat carbonado chicken.Food Hydrocoll.202010210557610.1016/j.foodhyd.2019.105576
    [Google Scholar]
  59. SeolK.H. LimD.G. JangA. JoC. LeeM. Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5°C.Meat Sci.200983347948310.1016/j.meatsci.2009.06.02920416673
    [Google Scholar]
  60. ZhouX. ZongX. ZhangM. GeQ. QiJ. LiangJ. XuX. XiongG. Effect of konjac glucomannan/carrageenan-based edible emulsion coatings with camellia oil on quality and shelf-life of chicken meat.Int. J. Biol. Macromol.202118333133910.1016/j.ijbiomac.2021.04.16533930444
    [Google Scholar]
  61. OlaimatA.N. FangY. HolleyR.A. Inhibition of Campylobacter jejuni on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract.Int. J. Food Microbiol.2014187778210.1016/j.ijfoodmicro.2014.07.00325058687
    [Google Scholar]
  62. NiazT. ShabbirS. NoorT. ImranM. Active composite packaging reinforced with nisin-loaded nano-vesicles for extended shelf life of chicken breast filets and cheese slices.Food Bioprocess Technol.20221561284129810.1007/s11947‑022‑02815‑235495090
    [Google Scholar]
  63. LiuY. QinY. BaiR. ZhangX. YuanL. LiuJ. Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract.Int. J. Biol. Macromol.2019134993100110.1016/j.ijbiomac.2019.05.17531129204
    [Google Scholar]
  64. Mutwakil GhalyA.E. Meat spoilage mechanisms and preservation techniques: A critical review.Am. J. Agric. Biol. Sci.20116448651010.3844/ajabssp.2011.486.510
    [Google Scholar]
  65. MartinyT.R. RaghavanV. MoraesC.C. RosaG.S. DottoG.L. Bio-based active packaging: Carrageenan film with olive leaf extract for lamb meat preservation.Foods2020912175910.3390/foods912175933261179
    [Google Scholar]
  66. FAOF. Fisheries and aquaculture information and statistics serviceFAO yearbook201072
    [Google Scholar]
  67. GhalyA.E. Fish spoilage mechanisms and preservation techniques.Am. J. Appl. Sci.20107785987710.3844/ajassp.2010.859.877
    [Google Scholar]
  68. SocaciuM.I. FogarasiM. SimonE.L. SemeniucC.A. SocaciS.A. PodarA.S. VodnarD.C. Effects of whey protein isolate-based film incorporated with tarragon essential oil on the quality and shelf-life of refrigerated brook trout.Foods202110240110.3390/foods1002040133670385
    [Google Scholar]
  69. VolpeM.G. SianoF. PaolucciM. SaccoA. SorrentinoA. MalinconicoM. VarricchioE. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchusmykiss) fillets.Lebensm. Wiss. Technol.201560161562210.1016/j.lwt.2014.08.048
    [Google Scholar]
  70. VolpeM. CocciaE. SianoF. Di StasioM. PaolucciM. Rapid evaluation methods for quality of trout (Oncorhynchus mykiss) fresh fillet preserved in an active edible coating.Foods20198411310.3390/foods804011330939822
    [Google Scholar]
  71. ShuiS. QiH. ShaimaaH. AubourgS.P. ZhangB. Kappa‐carrageenan and its oligosaccharides maintain the physicochemical properties of myofibrillar proteins in shrimp mud (Xia‐Hua) during frozen storage.J. Food Sci.202186114014810.1111/1750‑3841.1554733249562
    [Google Scholar]
  72. OtoniC.G. Avena-BustillosR.J. AzeredoH.M.C. LoreviceM.V. MouraM.R. MattosoL.H.C. McHughT.H. Recent advances on edible films based on fruits and vegetables—a review.Compr. Rev. Food Sci. Food Saf.20171651151116910.1111/1541‑4337.1228133371612
    [Google Scholar]
  73. JafarzadehS. Mohammadi NafchiA. SalehabadiA. Oladzad-abbasabadiN. JafariS.M. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables.Adv. Colloid Interface Sci.202129110240510.1016/j.cis.2021.10240533819726
    [Google Scholar]
  74. HamzahH.M. OsmanA. TanC.P. Mohamad GhazaliF. Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika).Postharvest Biol. Technol.20137514214610.1016/j.postharvbio.2012.08.012
    [Google Scholar]
  75. DuanJ. WuR. StrikB.C. ZhaoY. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions.Postharvest Biol. Technol.2011591717910.1016/j.postharvbio.2010.08.006
    [Google Scholar]
  76. DwivanyF.M. Carrageenan edible coating application prolongs Cavendish banana shelf life. Int. J. Food Sci.20202020886161010.1155/2020/8861610
    [Google Scholar]
  77. RizkA.E. RiyadY.M. HelmyM.M. Effect of mixing rotational speed on characteristics of edible film containing tangerine (citrus reticulate) essential oil to extend the shelf-life of mushroom (Agaricus bisporus).Suez Canal Univ. J. Food Sci.202071233410.21608/scuj.2020.119483
    [Google Scholar]
  78. JointF. AdditivesW.E.C.F. OrganizationW.H. Toxicological evaluation of certain food additives with a review of general principles and of specifications. Seventeenth report of the joint FAO-WHO expert committee on food additives.World Health Organ Tech Rep Ser.1974539140
    [Google Scholar]
  79. TobacmanJ.K. Review of harmful gastrointestinal effects of carrageenan in animal experiments.Environ. Health Perspect.20011091098399410.1289/ehp.0110998311675262
    [Google Scholar]
  80. JointF. AdditivesW.E.C.F. OrganizationW.H. Compendium of food additive specifications. Addendum 9/Joint FAO/WHO Expert Committee on Food Additives.57th sessionRome, Italy, 5-14 June 2001.
    [Google Scholar]
  81. AdditivesJ.F.W.E.C.F. Evaluation of Certain Food Additives: Fifty-first Report of the Joint FAO/WHO Expert Committee on Food Additives.World Health Organization200051
    [Google Scholar]
  82. WeinerM.L. Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies.Crit. Rev. Toxicol.201444324426910.3109/10408444.2013.86179824467586
    [Google Scholar]
  83. McKimJ.M. WilloughbyJ.A.Sr BlakemoreW.R. WeinerM.L. Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route.Crit. Rev. Food Sci. Nutr.201959193054307310.1080/10408398.2018.148182229902080
    [Google Scholar]
  84. KlischS. Safety of carrageenan.Environ. Sci. Agric. Food. Sci.201810.3733/ucanr.8642
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010287269240222054020
Loading
/content/journals/cpb/10.2174/0113892010287269240222054020
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antibacterial agents; antioxidants; carrageenan; coatings; Edible films; nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test