Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Globally, one of the leading causes of cancer-related deaths is colon cancer. As this form of cancer has a tremendous potential to metastasize, effective treatment is complicated and sometimes impossible. Despite the improvement of conventional chemotherapy and the advent of targeted therapies, overcoming multi-drug resistance (MDR) and side effects remain significant challenges. As a therapeutic intervention for targeted gene silencing in cancer, RNA technology shows promise and certain RNA-based formulations are currently undergoing clinical studies. Various studies have reported that RNA-based nanoparticles have demonstrated substantial promise for targeted medication delivery, gene therapy, and other biomedical applications. However, using RNA as a therapeutic tool presents severe limitations, mainly related to its low stability and poor cellular uptake. Nanotechnology offers a flexible and tailored alternative due to the difficulties in delivering naked RNA molecules safely , such as their short half-lives, low chemical stability, and susceptibility to nuclease degradation. In addition to shielding RNA molecules from immune system attacks and enzymatic breakdown, the nanoparticle-based delivery systems allow RNA accumulation at the tumor site. The potential of RNA and RNA-associated nanomedicines for the treatment of colon cancer, as well as the prospects for overcoming any difficulties related to mRNA, are reviewed in this study, along with the current progress of mRNA therapeutics and advancements in designing nanomaterials and delivery strategies.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010285554240303160500
2024-03-13
2025-09-30
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. PrimroseJ.N. Treatment of colorectal metastases: Surgery, cryotherapy, or radiofrequency ablation.Gut20025011510.1136/gut.50.1.1 11772955
    [Google Scholar]
  3. SiegelR.L. MillerK.D. FedewaS.A. AhnenD.J. MeesterR.G.S. BarziA. JemalA. Colorectal cancer statistics, 2017.CA Cancer J. Clin.201767317719310.3322/caac.21395 28248415
    [Google Scholar]
  4. EngstromP.F. ArnolettiJ.P. BensonA.B.III ChenY.J. ChotiM.A. CooperH.S. CoveyA. DilawariR.A. EarlyD.S. EnzingerP.C. FakihM.G. FleshmanJ.Jr FuchsC. GremJ.L. KielK. KnolJ.A. LeongL.A. LinE. MulcahyM.F. RaoS. RyanD.P. SaltzL. ShibataD. SkibberJ.M. SofocleousC. ThomasJ. VenookA.P. WillettC. Colon cancer.J. Natl. Compr. Canc. Netw.20097877883110.6004/jnccn.2009.0056 19755046
    [Google Scholar]
  5. NeugutA.I. MatasarM. WangX. McBrideR. JacobsonJ.S. TsaiW.Y. GrannV.R. HershmanD.L. Duration of adjuvant chemotherapy for colon cancer and survival among the elderly.J. Clin. Oncol.200624152368237510.1200/JCO.2005.04.5005 16618946
    [Google Scholar]
  6. MolsF. BeijersT. LemmensV. van den HurkC.J. VreugdenhilG. van de FranseP.L.V. Chemotherapy-induced neuropathy and its association with quality of life among 2- to 11-year colorectal cancer survivors: Results from the population-based PROFILES registry.J. Clin. Oncol.201331212699270710.1200/JCO.2013.49.1514 23775951
    [Google Scholar]
  7. JeughtK.V. XuH.C. LiY.J. LuX.B. JiG. Drug resistance and new therapies in colorectal cancer.World J. Gastroenterol.201824343834384810.3748/wjg.v24.i34.3834 30228778
    [Google Scholar]
  8. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.041 29071215
    [Google Scholar]
  9. WilsonP.M. El-KhoueiryA. IqbalS. FazzoneW. LaBonteM.J. GroshenS. YangD. DanenbergK.D. ColeS. KornackiM. LadnerR.D. LenzH.J. A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy.Cancer Chemother. Pharmacol.201065597998810.1007/s00280‑009‑1236‑x 20062993
    [Google Scholar]
  10. BumcrotD. ManoharanM. KotelianskyV. SahD.W.Y. RNAi therapeutics: A potential new class of pharmaceutical drugs.Nat. Chem. Biol.200621271171910.1038/nchembio839 17108989
    [Google Scholar]
  11. ZhangY. HuY. TianH. ChenX. Opportunities and challenges for mRNA delivery nanoplatforms.J. Phys. Chem. Lett.20221351314132210.1021/acs.jpclett.1c03898 35107010
    [Google Scholar]
  12. XiaoY. ChenJ. ZhouH. ZengX. RuanZ. PuZ. JiangX. MatsuiA. ZhuL. AmoozgarZ. ChenD.S. HanX. DudaD.G. ShiJ. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy.Nat. Commun.202213175810.1038/s41467‑022‑28279‑8 35140208
    [Google Scholar]
  13. ZhangD. WangG. YuX. WeiT. FarbiakL. JohnsonL.T. TaylorA.M. XuJ. HongY. ZhuH. SiegwartD.J. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy.Nat. Nanotechnol.202217777778710.1038/s41565‑022‑01122‑3 35551240
    [Google Scholar]
  14. ZhangP LiY TangW ZhaoJ JingL McHughKJ Theranostic nanoparticles with disease-specifc administration strategies.Nano Today, Theranostic nanopart. Dis. specifc admin. strat. 202242101335
    [Google Scholar]
  15. HajjK.A. WhiteheadK.A. Tools for translation: Non-viral materials for therapeutic mRNA delivery.Nat. Rev. Mater.20122101705610.1038/natrevmats.2017.56
    [Google Scholar]
  16. BrennerS. JacobF. MeselsonM. An unstable intermediate carrying information from genes to ribosomes for protein synthesis.Nature1961190477657658110.1038/190576a0 20446365
    [Google Scholar]
  17. KarimM.E. HaqueS.T. Al-BusaidiH. BakhtiarA. ThaK.K. HollM.M.B. ChowdhuryE.H. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment.Arch. Pharm. Res.2022451286589310.1007/s12272‑022‑01418‑x 36422795
    [Google Scholar]
  18. CenterM. SiegelR. JemalA. Global Cancer Facts and Figures 2010.Atlanta, GAAmerican Cancer Society2011
    [Google Scholar]
  19. OmranA.R. The epidemiologic transition. A theory of the epidemiology of population change.Milbank Mem. Fund Q.197149450953810.2307/3349375 5155251
    [Google Scholar]
  20. GerstenO. WilmothJ.R. The cancer transition in Japan since 1951.Demogr. Res.2002727130610.4054/DemRes.2002.7.5
    [Google Scholar]
  21. PaschkeS. JafarovS. StaibL. KreuserE.D. ArmstrongM.C. RoitmanM. HolmT. HarrisC. LinkK.H. KornmannM. Are colon and rectal cancer two different tumor entities? A proposal to abandon the term colorectal cancer.Int. J. Mol. Sci.2018199257710.3390/ijms19092577 30200215
    [Google Scholar]
  22. CentellesJ.J. General aspects of colorectal cancer.ISRN Oncol.2012201213926811910.5402/2012/139268 23209942
    [Google Scholar]
  23. FearonE.R. VogelsteinB. A genetic model for colorectal tumorigenesis.Cell199061575976710.1016/0092‑8674(90)90186‑I 2188735
    [Google Scholar]
  24. BrodskyF.M. Monoclonal antibodies as magic bullets.Pharm. Res.1988511910.1023/A:1015860525341 3072552
    [Google Scholar]
  25. LeeY.T. TanY.J. OonC.E. Molecular targeted therapy: Treating cancer with specificity.Eur. J. Pharmacol.201883418819610.1016/j.ejphar.2018.07.034 30031797
    [Google Scholar]
  26. OhD.Y. BangY.J. HER2-targeted therapies — A role beyond breast cancer.Nat. Rev. Clin. Oncol.2020171334810.1038/s41571‑019‑0268‑3 31548601
    [Google Scholar]
  27. FergusonF.M. GrayN.S. Kinase inhibitors: The road ahead.Nat. Rev. Drug Discov.201817535337710.1038/nrd.2018.21 29545548
    [Google Scholar]
  28. TarimanJ.D. Changes in cancer treatment.Nurs. Clin. North Am.2017521658110.1016/j.cnur.2016.10.004 28189167
    [Google Scholar]
  29. KuipersE.J. GradyW.M. LiebermanD. SeufferleinT. SungJ.J. BoelensP.G. van de VeldeC.J.H. WatanabeT. Colorectal cancer.Nat. Rev. Dis. Primers2015111506510.1038/nrdp.2015.65 27189416
    [Google Scholar]
  30. KeumN. GiovannucciE. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  31. GundínS.J. CarballidoF.A.M. ValdiviesoF.L. HernándezB.D. SuárezT.A.I. New trends in the therapeutic approach to metastatic colorectal cancer.Int. J. Med. Sci.201815765966510.7150/ijms.24453 29910669
    [Google Scholar]
  32. WolfA.M.D. FonthamE.T.H. ChurchT.R. FlowersC.R. GuerraC.E. LaMonteS.J. EtzioniR. McKennaM.T. OeffingerK.C. ShihY.C.T. WalterL.C. AndrewsK.S. BrawleyO.W. BrooksD. FedewaS.A. BaptisteM.D. SiegelR.L. WenderR.C. SmithR.A. Colorectal cancer screening for average‐risk adults: 2018 guideline update from the American Cancer Society.CA Cancer J. Clin.201868425028110.3322/caac.21457 29846947
    [Google Scholar]
  33. van der StokE.P. SpaanderM.C.W. GrünhagenD.J. VerhoefC. KuipersE.J. Surveillance after curative treatment for colorectal cancer.Nat. Rev. Clin. Oncol.201714529731510.1038/nrclinonc.2016.199 27995949
    [Google Scholar]
  34. MessersmithW.A. NCCN guidelines updates: Management of metastatic colorectal cancer. J. Natl. Compr. Canc. Netw., 2019175.5599601 31117039
    [Google Scholar]
  35. BrownK.G.M. SolomonM.J. MahonK. O’ShannassyS. Management of colorectal cancer.BMJ2019366l456110.1136/bmj.l4561 31439545
    [Google Scholar]
  36. LabiancaR. NordlingerB. BerettaG.D. MosconiS. MandalàM. CervantesA. ArnoldD. Early colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.2013246vi64vi7210.1093/annonc/mdt354 24078664
    [Google Scholar]
  37. Van CutsemE. CervantesA. NordlingerB. ArnoldD. Metastatic colorectal cancer: ESMO Clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201425S3iii1iii910.1093/annonc/mdu260 25190710
    [Google Scholar]
  38. LiangX. LiD. LengS. ZhuX. RNA-based pharmacotherapy for tumors: From bench to clinic and back.Biomed. Pharmacother.202012510999710.1016/j.biopha.2020.109997 32062550
    [Google Scholar]
  39. LedfordH. G ene-silencing technology gets first drug approval after 20-year wait.Nature2018560771829129210.1038/d41586‑018‑05867‑7 30108348
    [Google Scholar]
  40. MullardA. FDA approves landmark RNAi drug.Nat. Rev. Drug Discov.2018179613 30160250
    [Google Scholar]
  41. GhidiniM. SilvaS.G. EvangelistaJ. do ValeM.L.C. FarooqiA.A. PinheiroM. Nanomedicine for the delivery of RNA in Cancer.Cancers20221411267710.3390/cancers14112677 35681657
    [Google Scholar]
  42. Van HoeckeL. RooseK. How mRNA therapeutics are entering the monoclonal antibody field.J. Transl. Med.20191715410.1186/s12967‑019‑1804‑8 30795778
    [Google Scholar]
  43. IckensteinL.M. GaridelP. Lipid-based nanoparticle formulations for small molecules and RNA drugs.Expert Opin. Drug Deliv.201916111205122610.1080/17425247.2019.1669558 31530041
    [Google Scholar]
  44. EzkurdiaI. JuanD. RodriguezJ.M. FrankishA. DiekhansM. HarrowJ. VazquezJ. ValenciaA. TressM.L. Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes.Hum. Mol. Genet.201423225866587810.1093/hmg/ddu309 24939910
    [Google Scholar]
  45. HopkinsA.L. GroomC.R. The druggable genome.Nat. Rev. Drug Discov.20021972773010.1038/nrd892 12209152
    [Google Scholar]
  46. RussoE. Special Report: The birth of biotechnology.Nature2003421692145645710.1038/nj6921‑456a 12540923
    [Google Scholar]
  47. KimY.K. RNA therapy: rich history, various applications and unlimited future prospects.Exp. Mol. Med.202254445546510.1038/s12276‑022‑00757‑5 35440755
    [Google Scholar]
  48. FrankishA. DiekhansM. FerreiraA.M. JohnsonR. JungreisI. LovelandJ. MudgeJ.M. SisuC. WrightJ. ArmstrongJ. BarnesI. BerryA. BignellA. SalaC.S. ChrastJ. CunninghamF. DomenicoD.T. DonaldsonS. FiddesI.T. GirónG.C. GonzalezJ.M. GregoT. HardyM. HourlierT. HuntT. IzuoguO.G. LagardeJ. MartinF.J. MartínezL. MohananS. MuirP. NavarroF.C.P. ParkerA. PeiB. PozoF. RuffierM. SchmittB.M. StapletonE. SunerM.M. SychevaI. Uszczynska-RatajczakB. XuJ. YatesA. ZerbinoD. ZhangY. AkenB. ChoudharyJ.S. GersteinM. GuigóR. HubbardT.J.P. KellisM. PatenB. ReymondA. TressM.L. FlicekP. GENCODE reference annotation for the human and mouse genomes.Nucleic Acids Res.201947D1D766D77310.1093/nar/gky955 30357393
    [Google Scholar]
  49. SpringerA.D. DowdyS.F. GalNAc-siRNA conjugates: Leading the way for delivery of RNAi therapeutics.Nucleic Acid Ther.201828310911810.1089/nat.2018.0736 29792572
    [Google Scholar]
  50. RobertsT.C. LangerR. WoodM.J.A. Advances in oligonucleotide drug delivery.Nat. Rev. Drug Discov.2020191067369410.1038/s41573‑020‑0075‑7 32782413
    [Google Scholar]
  51. ThiT.T.H. SuysE.J.A. LeeJ.S. NguyenD.H. ParkK.D. TruongN.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines.Vaccines20219435910.3390/vaccines9040359 33918072
    [Google Scholar]
  52. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: an emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd2614 18758474
    [Google Scholar]
  53. YuanY. GuZ. YaoC. LuoD. YangD. Nucleic acid–based functional nanomaterials as advanced cancer therapeutics.Small20191526190017210.1002/smll.201900172 30972963
    [Google Scholar]
  54. LvZ. ZhuY. LiF. DNA functional nanomaterials for controlled delivery of nucleic acid-based drugs.Front. Bioeng. Biotechnol.2021972029110.3389/fbioe.2021.720291 34490226
    [Google Scholar]
  55. DeA. KoY.T. A tale of nucleic acid–ionizable lipid nanoparticles: Design and manufacturing technology and advancement.Expert Opin. Drug Deliv.2023201759110.1080/17425247.2023.2153832 36445261
    [Google Scholar]
  56. ZhuY. ZhuL. WangX. JinH. RNA-based therapeutics: An overview and prospectus.Cell Death Dis.202213764410.1038/s41419‑022‑05075‑2 35871216
    [Google Scholar]
  57. Hald AlbertsenC. KulkarniJ.A. WitzigmannD. LindM. PeterssonK. SimonsenJ.B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy.Adv. Drug Deliv. Rev.202218811441610.1016/j.addr.2022.114416 35787388
    [Google Scholar]
  58. PapiM. PozziD. PalmieriV. CaraccioloG. Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting.Nano Today20224310140310.1016/j.nantod.2022.101403 35079274
    [Google Scholar]
  59. YonezawaS. KoideH. AsaiT. Recent advances in siRNA delivery mediated by lipid-based nanoparticles.Adv. Drug Deliv. Rev.2020154-155647810.1016/j.addr.2020.07.022 32768564
    [Google Scholar]
  60. SamaridouE. HeyesJ. LutwycheP. Lipid nanoparticles for nucleic acid delivery: Current perspectives.Adv. Drug Deliv. Rev.2020154-155376310.1016/j.addr.2020.06.002 32526452
    [Google Scholar]
  61. BuescherJ. NovakA.W. KhanS.A. WeissA-V. LeeS. SchneiderM. PLGA-based nanoparticles for treatment of infectious diseases.In: Poly (Lactic-Co-glycolic Acid)(PLGA) Nanoparticles for Drug Delivery.Elsevier202330333310.1016/B978‑0‑323‑91215‑0.00014‑5
    [Google Scholar]
  62. ReviaR.A. StephenZ.R. ZhangM. Theranostic nanoparticles for RNA-based cancer treatment.Acc. Chem. Res.20195261496150610.1021/acs.accounts.9b00101 31135134
    [Google Scholar]
  63. HaleyR.M. GottardiR. LangerR. MitchellM.J. Cyclodextrins in drug delivery: Applications in gene and combination therapy.Drug Deliv. Transl. Res.202010366167710.1007/s13346‑020‑00724‑5 32077052
    [Google Scholar]
  64. ZhangP. ChenD. LiL. SunK. Charge reversal nano-systems for tumor therapy.J. Nanobiotechnology20222013110.1186/s12951‑021‑01221‑8 35012546
    [Google Scholar]
  65. NasirmoghadasP. MousakhaniA. BehzadF. BeheshtkhooN. HassanzadehA. NikooM. MehrabiM. KouhbananiM.A.J. Nanoparticles in cancer immunotherapies: An innovative strategy.Biotechnol. Prog.2021372e307010.1002/btpr.3070 32829506
    [Google Scholar]
  66. HashemiM. ShamshiriA. SaeediM. TayebiL. RobatiY.R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs.Arch. Biochem. Biophys.202069110848510.1016/j.abb.2020.108485 32712288
    [Google Scholar]
  67. NitikaW.J. WeiJ. HuiA.M. The delivery of mRNA vaccines for therapeutics.Life2022128125410.3390/life12081254 36013433
    [Google Scholar]
  68. YanesR.E. LuJ. TamanoiF. Chapter Nine - Nanoparticle-based delivery of siRNA and miRNA for cancer therapy.In: The Enzymes. 32. GuoF. TamanoiF. Academic Press2012185203
    [Google Scholar]
  69. TangY. ChenY. ZhangZ. TangB. ZhouZ. ChenH. Nanoparticle-based RNAi therapeutics targeting cancer stem cells: Update and prospective.Pharmaceutics20211312211610.3390/pharmaceutics13122116 34959397
    [Google Scholar]
  70. GanjuA. KhanS. HafeezB.B. BehrmanS.W. YallapuM.M. ChauhanS.C. JaggiM. miRNA nanotherapeutics for cancer.Drug Discov. Today201722242443210.1016/j.drudis.2016.10.014 27815139
    [Google Scholar]
  71. LutherD.C. HuangR. JeonT. ZhangX. LeeY.W. NagarajH. RotelloV.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles.Adv. Drug Deliv. Rev.202015618821310.1016/j.addr.2020.06.020 32610061
    [Google Scholar]
  72. De MatteisV. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation.Toxics2017542910.3390/toxics5040029 29051461
    [Google Scholar]
  73. ParisJ.L. BaezaA. Vallet-RegíM. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics.Expert Opin. Drug Deliv.201916101095111210.1080/17425247.2019.1662786 31469003
    [Google Scholar]
  74. TangX. SunC. The roles of MicroRNAs in neural regenerative medicine.Exp. Neurol.202033211339410.1016/j.expneurol.2020.113394 32628967
    [Google Scholar]
  75. ArtigaÁ. SevillaS.I. De MatteisL. MitchellS.G. de la FuenteJ.M. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery.J. Mater. Chem. B Mater. Biol. Med.20197687689610.1039/C8TB02484G 32255093
    [Google Scholar]
  76. Mahmoodi ChalbataniG. DanaH. GharagouzlooE. GrijalvoS. EritjaR. LogsdonC.D. MemariF. MiriS.R. Rezvani RadM. MarmariV. Small interfering RNAs (siRNAs) in cancer therapy: A nano-based approach.Int. J. Nanomedicine2019143111312810.2147/IJN.S200253 31118626
    [Google Scholar]
  77. FanR. TaoX. ZhaiX. ZhuY. LiY. ChenY. DongD. YangS. LvL. Application of aptamer-drug delivery system in the therapy of breast cancer.Biomed. Pharmacother.202316111444410.1016/j.biopha.2023.114444 36857912
    [Google Scholar]
  78. XiangD. ShigdarS. QiaoG. WangT. KouzaniA.Z. ZhouS.F. KongL. LiY. PuC. DuanW. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine.Theranostics201551234210.7150/thno.10202 25553096
    [Google Scholar]
  79. EversM.J.W. van de WakkerS.I. de GrootE.M. de JongO.G. Gitz-FrançoisJ.J.J. SeinenC.S. SluijterJ.P.G. SchiffelersR.M. VaderP. Functional siRNA delivery by extracellular vesicle–liposome hybrid nanoparticles.Adv. Healthc. Mater.2022115210120210.1002/adhm.202101202 34382360
    [Google Scholar]
  80. SivadasanD. SultanM.H. MadkhaliO. AlmoshariY. ThangavelN. Polymeric lipid hybrid nanoparticles (PLNs) as emerging drug delivery platform—A comprehensive review of their properties, preparation methods, and therapeutic applications.Pharmaceutics2021138129110.3390/pharmaceutics13081291 34452251
    [Google Scholar]
  81. JiaF. LiY. DengX. WangX. CuiX. LuJ. PanZ. WuY. Self-assembled fluorescent hybrid nanoparticles-mediated collaborative lncRNA CCAT1 silencing and curcumin delivery for synchronous colorectal cancer theranostics.J. Nanobiotechnology202119123810.1186/s12951‑021‑00981‑7 34380471
    [Google Scholar]
  82. ParisJ.L. GasparR. CoelhoF. De BeuleP.A. SilvaB.F. Understanding hybrid lipid-polymer gene delivery nanoparticle assembly with fluorescence cross correlation spectroscopy.bioRxiv20222022.02
    [Google Scholar]
  83. HouX. ZaksT. LangerR. DongY. Lipid nanoparticles for mRNA delivery.Nat. Rev. Mater.20216121078109410.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  84. ManeshJ.A. MousazadehM. TajiS. BahmaniA. ZarepourA. ZarrabiA. SharifiE. AzimzadehM. Gold nanorods for drug and gene delivery: An overview of recent advancements.Pharmaceutics202214366410.3390/pharmaceutics14030664 35336038
    [Google Scholar]
  85. LiC. SamulskiR.J. Engineering adeno-associated virus vectors for gene therapy.Nat. Rev. Genet.202021425527210.1038/s41576‑019‑0205‑4 32042148
    [Google Scholar]
  86. AnsonD.S. The use of retroviral vectors for gene therapy-what are the risks? A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery.Genet. Vaccines Ther.200421910.1186/1479‑0556‑2‑9 15310406
    [Google Scholar]
  87. CalcedoR. WilsonJ.M. Humoral immune response to AAV.Front. Immunol.2013434110.3389/fimmu.2013.00341 24151496
    [Google Scholar]
  88. CaiH. ShuklaS. SteinmetzN.F. The antitumor efficacy of CpG oligonucleotides is improved by encapsulation in plant virus‐like particles.Adv. Funct. Mater.20203015190874310.1002/adfm.201908743 34366757
    [Google Scholar]
  89. HuangJ. LiY. OrzaA. LuQ. GuoP. WangL. YangL. MaoH. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image‐guided approaches.Adv. Funct. Mater.201626223818383610.1002/adfm.201504185 27790080
    [Google Scholar]
  90. SunC. LeeJ.S.H. ZhangM. Magnetic nanoparticles in MR imaging and drug delivery.Adv. Drug Deliv. Rev.200860111252126510.1016/j.addr.2008.03.018 18558452
    [Google Scholar]
  91. LeeS.Y. YangC.Y. PengC.L. WeiM.F. ChenK.C. YaoC.J. ShiehM.J. A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy.Biomaterials2016869210510.1016/j.biomaterials.2016.01.068 26896610
    [Google Scholar]
  92. SelimovicA. KaraG. DenkbasE.B. Magnetic gelatin nanoparticles as a biocompatible carrier system for small interfering RNA in human colorectal cancer: Synthesis, optimization, characterization, and cell viability studies.Mater. Today Commun.20223310461610.1016/j.mtcomm.2022.104616
    [Google Scholar]
  93. CondeJ. OlivaN. ZhangY. ArtziN. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model.Nat. Mater.201615101128113810.1038/nmat4707 27454043
    [Google Scholar]
  94. ChandramohanK. BalanD.J. DeviK.P. NabaviS.F. ReshadatS. KhayatkashaniM. MahmoodifarS. FilosaR. AmirkhaliliN. PishvaeiS. Sargazi-AvalO. NabaviS.M. Short interfering RNA in colorectal cancer: Is it wise to shoot the messenger?Eur. J. Pharmacol.202394917569910.1016/j.ejphar.2023.175699 37011722
    [Google Scholar]
  95. McCubreyJ.A. RakusD. GizakA. SteelmanL.S. AbramsS.L. LertpiriyapongK. FitzgeraldT.L. YangL.V. MontaltoG. CervelloM. LibraM. NicolettiF. ScalisiA. TorinoF. FengaC. NeriL.M. MarmiroliS. CoccoL. MartelliA.M. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer.Biochim. Biophys. Acta Mol. Cell Res.20161863122942297610.1016/j.bbamcr.2016.09.004 27612668
    [Google Scholar]
  96. SinghR. LillardJ.W. Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  97. YanL. ShenJ. WangJ. YangX. DongS. LuS. Nanoparticle-based drug delivery system: A patient-friendly chemotherapy for oncology.Dose Response202018310.1177/1559325820936161 32699536
    [Google Scholar]
  98. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  99. BanerjeeA. PathakS. SubramaniumV.D. G, D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives.Drug Discov. Today20172281224123210.1016/j.drudis.2017.05.006 28545838
    [Google Scholar]
  100. SoodA. GuptaA. BharadwajR. RanganathP. SilvermanN. AgrawalG. Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer.Carbohydr. Polym.202229411983310.1016/j.carbpol.2022.119833 35868778
    [Google Scholar]
  101. Nguyen-TrinhQ.N. TrinhK.X.T. TrinhN.T. VoV.T. LiN. NagasakiY. VongL.B. A silica-based antioxidant nanoparticle for oral delivery of Camptothecin which reduces intestinal side effects while improving drug efficacy for colon cancer treatment.Acta Biomater.202214345947010.1016/j.actbio.2022.02.036 35235866
    [Google Scholar]
  102. RychahouP. BaeY. ReichelD. ZaytsevaY.Y. LeeE.Y. NapierD. WeissH.L. RollerN. FrohmanH. LeA.T. EversM.B. Colorectal cancer lung metastasis treatment with polymer–drug nanoparticles.J. Control. Release2018275859110.1016/j.jconrel.2018.02.008 29421609
    [Google Scholar]
  103. OrtizR. PradosJ. MelguizoC. AriasJ.L. RuizM.A. ÁlvarezP.J. CabaO. LuqueR. SeguraA. AránegaA. 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer.Int. J. Nanomedicine2012795107 22275826
    [Google Scholar]
  104. LiuJ. GuoB. RNA-based therapeutics for colorectal cancer: Updates and future directions.Pharmacol. Res.202015210455010.1016/j.phrs.2019.104550 31866285
    [Google Scholar]
  105. FaghfuriE. PourfarziF. FaghfouriA.H. Abdoli ShadbadM. HajiasgharzadehK. BaradaranB. Recent developments of RNA-based vaccines in cancer immunotherapy.Expert Opin. Biol. Ther.202121220121810.1080/14712598.2020.1815704 32842798
    [Google Scholar]
  106. XueV.W. WongS.C.C. SongG. ChoW.C.S. Promising RNA-based cancer gene therapy using extracellular vesicles for drug delivery.Expert Opin. Biol. Ther.202020776777710.1080/14712598.2020.1738377 32125904
    [Google Scholar]
  107. SunH. TanW. ZuY. Aptamers: Versatile molecular recognition probes for cancer detection.Analyst 2016141240341510.1039/C5AN01995H 26618445
    [Google Scholar]
  108. BurnettJ.C. RossiJ.J. RNA-based therapeutics: Current progress and future prospects.Chem. Biol.2012191607110.1016/j.chembiol.2011.12.008 22284355
    [Google Scholar]
  109. AldosariB.N. AlfagihI.M. AlmurshediA.S. Lipid nanoparticles as delivery systems for RNA-based vaccines.Pharmaceutics202113220610.3390/pharmaceutics13020206 33540942
    [Google Scholar]
  110. VeigaN. DiesendruckY. PeerD. Targeted lipid nanoparticles for RNA therapeutics and immunomodulation in leukocytes.Adv. Drug Deliv. Rev.202015936437610.1016/j.addr.2020.04.002 32298783
    [Google Scholar]
  111. AggarwalP. HallJ.B. McLelandC.B. DobrovolskaiaM.A. McNeilS.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.Adv. Drug Deliv. Rev.200961642843710.1016/j.addr.2009.03.009 19376175
    [Google Scholar]
  112. DumkováJ. SmutnáT. VrlíkováL. Le CoustumerP. VečeřaZ. DočekalB. MikuškaP. ČapkaL. FictumP. HamplA. BuchtováM. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs.Part. Fibre Toxicol.20171415510.1186/s12989‑017‑0236‑y 29268755
    [Google Scholar]
  113. SunT. ZhangY.S. PangB. HyunD.C. YangM. XiaY. Engineered nanoparticles for drug delivery in cancer therapy.Angew. Chem. Int. Ed.20145346123201236410.1002/anie.201403036 25294565
    [Google Scholar]
  114. Abd EllahN.H. AbouelmagdS.A. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges.Expert Opin. Drug Deliv.201714220121410.1080/17425247.2016.1213238 27426638
    [Google Scholar]
  115. RagelleH. DanhierF. PréatV. LangerR. AndersonD.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures.Expert Opin. Drug Deliv.201714785186410.1080/17425247.2016.1244187 27730820
    [Google Scholar]
  116. CristR.M. DasaS.S.K. LiuC.H. ClogstonJ.D. DobrovolskaiaM.A. SternS.T. Challenges in the development of nanoparticle‐based imaging agents: Characterization and biology.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021131e166510.1002/wnan.1665 32830448
    [Google Scholar]
  117. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  118. ChenY. ZhuX. ZhangX. LiuB. HuangL. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy.Mol. Ther.20101891650165610.1038/mt.2010.136 20606648
    [Google Scholar]
  119. ZhangH. MenK. PanC. GaoY. LiJ. LeiS. ZhuG. LiR. WeiY. DuanX. Treatment of colon cancer by degradable rrPPC nano-conjugates delivered STAT3 siRNA.Int. J. Nanomedicine2020159875989010.2147/IJN.S277845 33324056
    [Google Scholar]
  120. MalhotraM. DuchesneauT.C. SahaS. PrakashS. Systemic siRNA delivery via peptide-tagged polymeric nanoparticles, targeting PLK1 gene in a mouse xenograft model of colorectal cancer.Int. J. Biomater.2013201311310.1155/2013/252531 24159333
    [Google Scholar]
  121. YangH. LiuY. QiuY. DingM. ZhangY. MiRNA-204-5p and oxaliplatin-loaded silica nanoparticles for enhanced tumor suppression effect in CD44-overexpressed colon adenocarcinoma.Int. J. Pharm.201956658559310.1016/j.ijpharm.2019.06.020 31181310
    [Google Scholar]
  122. ZhuC. JungS. LuoS. MengF. ZhuX. ParkT.G. ZhongZ. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers.Biomaterials20103182408241610.1016/j.biomaterials.2009.11.077 19963269
    [Google Scholar]
  123. SadreddiniS. SafaralizadehR. BaradaranB. MalekiA.L. FeiziH.M.A. ShanehbandiD. NiaraghJ.F. SadreddiniS. KafilH.S. YounesiV. YousefiM. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer.Immunol. Lett.2017181798610.1016/j.imlet.2016.11.013 27916629
    [Google Scholar]
  124. IbrahimA.F. WeirauchU. ThomasM. GrünwellerA. HartmannR.K. AignerA. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma.Cancer Res.201171155214522410.1158/0008‑5472.CAN‑10‑4645 21690566
    [Google Scholar]
  125. WangG. HuW. ChenH. ShouX. YeT. XuY. Cocktail strategy based on NK cell-derived exosomes and their biomimetic nanoparticles for dual tumor therapy.Cancers 20191110156010.3390/cancers11101560 31615145
    [Google Scholar]
  126. XuJ. ZhangG. LuoX. WangD. ZhouW. ZhangY. ZhangW. ChenJ. MengQ. ChenE. ChenH. SongZ. Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts.Theranostics20211152475248910.7150/thno.52076 33500737
    [Google Scholar]
  127. AmrithaC.A. KumaraveluP. ChellathaiD.D. Evaluation of anti cancer effects of DPP-4 inhibitors in colon cancer- an in vitro study.J. Clin. Diagn. Res.2015912FC14FC16 26816911
    [Google Scholar]
  128. KapralM. WawszczykJ. JesseK. Paul-SamojednyM. KuśmierzD. WęglarzL. Inositol hexaphosphate inhibits proliferation and induces apoptosis of colon cancer cells by suppressing the AKT/mTOR signaling pathway.Molecules20172210165710.3390/molecules22101657 28972559
    [Google Scholar]
  129. MahajnaS. KadanS. TietelZ. SaadB. KhasibS. TumehA. GinsbergD. ZaidH. In vitro evaluation of chemically analyzed hypericum triquetrifolium extract efficacy in apoptosis induction and cell cycle arrest of the HCT-116 colon cancer cell line.Molecules20192422413910.3390/molecules24224139 31731693
    [Google Scholar]
  130. RenS.N. ZhangZ.Y. GuoR.J. WangD.R. ChenF.F. ChenX.B. FangX.D. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer.World J. Gastroenterol.202329131911194110.3748/wjg.v29.i13.1911 37155531
    [Google Scholar]
  131. ZhengB. ChenL. PanC.C. WangJ.Z. LuG.R. YangS.X. XueZ.X. WangF.Y. XuC.L. Targeted delivery of miRNA-204-5p by PEGylated polymer nanoparticles for colon cancer therapy.Nanomedicine 201813776978510.2217/nnm‑2017‑0345 29460671
    [Google Scholar]
  132. CenariuD. ZimtaA.A. MunteanuR. OnaciuA. MoldovanC.S. JurjA. RadulyL. MoldovanA. FloreaA. BudisanL. PopL.A. MagdoL. AlbuM.T. ToneaR.B. MuresanM.S. IonescuC. PetrutB. BuigaR. IrimieA. GuleiD. NeagoeB.I. Hsa-miR-125b therapeutic role in colon cancer is dependent on the mutation status of the TP53 gene.Pharmaceutics202113566410.3390/pharmaceutics13050664 34066331
    [Google Scholar]
  133. GrigolettoA. MartinezG. GabbiaD. TedeschiniT. ScaffidiM. MartinS.D. PasutG. Folic acid-targeted paclitaxel-polymer conjugates exert selective cytotoxicity and modulate invasiveness of colon cancer cells.Pharmaceutics202113792910.3390/pharmaceutics13070929 34201494
    [Google Scholar]
  134. TupiniC. ZurloM. GasparelloJ. LodiI. FinottiA. ScattolinT. VisentinF. GambariR. LamprontiI. Combined treatment of cancer cells using allyl palladium complexes bearing purine-based NHC ligands and molecules targeting MicroRNAs miR-221-3p and miR-222-3p: Synergistic effects on apoptosis.Pharmaceutics2023155133210.3390/pharmaceutics15051332 37242574
    [Google Scholar]
  135. ZhangM. YueJ. CuiR. MaZ. WanH. WangF. ZhuS. ZhouY. KuangY. ZhongY. PangD.W. DaiH. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging.Proc. Natl. Acad. Sci. 2018115266590659510.1073/pnas.1806153115 29891702
    [Google Scholar]
  136. KhanF.A. AlbalawiR. PottooF.H. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment.Med. Res. Rev.202242122725810.1002/med.21809 33891325
    [Google Scholar]
  137. TanakaT. Colorectal carcinogenesis: Review of human and experimental animal studies.J. Carcinog.200981510.4103/1477‑3163.49014 19332896
    [Google Scholar]
  138. JohnsonR.L. FleetJ.C. Animal models of colorectal cancer.Cancer Metastasis Rev.2013321-2396110.1007/s10555‑012‑9404‑6 23076650
    [Google Scholar]
  139. SumanS. FornaceA. Animal models of colorectal cancer in chemoprevention and therapeutics development. In: Colorectal Cancer - From Prevention to Patient Care.IntechOpen2012
    [Google Scholar]
  140. Nascimento-GonçalvesE. MendesB.A.L. ReisS.R. RochaF.A.I. GamaA. OliveiraP.A. Animal models of colorectal cancer: From spontaneous to genetically engineered models and their applications.Vet. Sci.2021845910.3390/vetsci8040059 33916402
    [Google Scholar]
  141. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: From history to therapeutic applications.Nanomaterials 20221224449410.3390/nano12244494 36558344
    [Google Scholar]
  142. PengH. WuW. YangD. JingR. LiJ. ZhouF. JinY. WangS. ChuY. Role of B7-H4 siRNA in proliferation, migration, and invasion of LOVO colorectal carcinoma cell line.BioMed Res. Int.2015201511010.1155/2015/326981 26078947
    [Google Scholar]
  143. BäumerS. BäumerN. AppelN. TerheydenL. FremereyJ. SchelhaasS. WardelmannE. BuchholzF. BerdelW.E. Müller-TidowC. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer.Clin. Cancer Res.20152161383139410.1158/1078‑0432.CCR‑13‑2017 25589625
    [Google Scholar]
  144. DingJ. ZhangZ-M. XiaY. LiaoG-Q. PanY. LiuS. ZhangY. YanZ-S. LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer.Br. J. Cancer20131094994100310.1038/bjc.2013.364 23900215
    [Google Scholar]
  145. ValentinoJ.D. ElliottV.A. ZaytsevaY.Y. RychahouP.G. MustainW.C. WangC. GaoT. EversB.M. Novel small interfering RNA cotargeting strategy as treatment for colorectal cancer.Surgery2012152227728510.1016/j.surg.2012.05.006 22828149
    [Google Scholar]
  146. TangQ. ZouZ. ZouC. ZhangQ. HuangR. GuanX. LiQ. HanZ. WangD. WeiH. GaoX. WangX. MicroRNA-93 suppress colorectal cancer development via Wnt/β-catenin pathway downregulating.Tumour Biol.20153631701171010.1007/s13277‑014‑2771‑6 25371073
    [Google Scholar]
  147. PatersonB.M. RobertsB.E. KuffE.L. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation.Proc. Natl. Acad. Sci. 197774104370437410.1073/pnas.74.10.4370 270678
    [Google Scholar]
  148. TaoY.J. LiY. ZhengW. ZhaoJ. GuoM. ZhouY. QinN. ZhengJ. XuL. Antisense oligonucleotides against microRNA-21 reduced the proliferation and migration of human colon carcinoma cells.Cancer Cell Int.20151517710.1186/s12935‑015‑0228‑7 26236156
    [Google Scholar]
  149. ZhongY. DuS. DongY. mRNA delivery in cancer immunotherapy.Acta Pharm. Sin. B20231341348135710.1016/j.apsb.2023.03.001 37139419
    [Google Scholar]
  150. BuxtonD.B. LeeS.C. WicklineS.A. FerrariM. Recommendations of the national heart, lung, and blood institute nanotechnology working group.Circulation2003108222737274210.1161/01.CIR.0000096493.93058.E8 14656908
    [Google Scholar]
  151. FerrariM. Cancer nanotechnology: Opportunities and challenges.Nat. Rev. Cancer20055316117110.1038/nrc1566 15738981
    [Google Scholar]
  152. BormP.J.A. Particle toxicology: From coal mining to nanotechnology.Inhal. Toxicol.200214331132410.1080/08958370252809086 12028820
    [Google Scholar]
  153. NelA. XiaT. MädlerL. LiN. Toxic potential of materials at the nanolevel.Science2006311576162262710.1126/science.1114397 16456071
    [Google Scholar]
  154. de JongW.H. BormP.J.A. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S596 18686775
    [Google Scholar]
  155. ThomasC.E. EhrhardtA. KayM.A. Progress and problems with the use of viral vectors for gene therapy.Nat. Rev. Genet.20034534635810.1038/nrg1066 12728277
    [Google Scholar]
  156. MintzerM.A. SimanekE.E. Nonviral vectors for gene delivery.Chem. Rev.2009109225930210.1021/cr800409e 19053809
    [Google Scholar]
  157. FangJ. NakamuraH. MaedaH. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.Adv. Drug Deliv. Rev.201163313615110.1016/j.addr.2010.04.009 20441782
    [Google Scholar]
  158. TanguduN.K. VermaV.K. ClemonsT.D. BeeviS.S. HayT. MahidharaG. RajaM. NairR.A. AlexanderL.E. PatelA.B. JoseJ. SmithN.M. ZdyrkoB. BourdoncleA. LuzinovI. IyerK.S. ClarkeA.R. KumarD.L. RNA interference using c-Myc–conjugated nanoparticles suppresses breast and colorectal cancer models.Mol. Cancer Ther.20151451259126910.1158/1535‑7163.MCT‑14‑0970 25695957
    [Google Scholar]
  159. SurebanS.M. MayR. MondalekF.G. QuD. PonnurangamS. PantazisP. AnantS. RamanujamR.P. HouchenC.W. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism.J. Nanobiotechnology2011914010.1186/1477‑3155‑9‑40 21929751
    [Google Scholar]
  160. TiernanJ.P. PerryS.L. VergheseE.T. WestN.P. YeluriS. JayneD.G. HughesT.A. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting.Br. J. Cancer2013108366266710.1038/bjc.2012.605 23322207
    [Google Scholar]
  161. PerraudA. AkilH. NouailleM. PetitD. LabrousseF. JauberteauM.O. MathonnetM. Expression of p53 and DR5 in normal and malignant tissues of colorectal cancer: Correlation with advanced stages.Oncol. Rep.20112651091109710.3892/or.2011.1404 21805040
    [Google Scholar]
  162. SpanoJ.P. LagorceC. AtlanD. MilanoG. DomontJ. BenamouzigR. AttarA. BenichouJ. MartinA. MorereJ.F. RaphaelM. Penault-LlorcaF. BreauJ.L. FagardR. KhayatD. WindP. Impact of EGFR expression on colorectal cancer patient prognosis and survival.Ann. Oncol.200516110210810.1093/annonc/mdi006 15598946
    [Google Scholar]
  163. KimK.S. LeeY.K. KimJ.S. KooK.H. HongH.J. ParkY.S. Targeted gene therapy of LS174 T human colon carcinoma by anti-TAG-72 immunoliposomes.Cancer Gene Ther.200815533134010.1038/cgt.2008.11 18309354
    [Google Scholar]
  164. ShiaJ. KlimstraD.S. NitzkorskiJ.R. LowP.S. GonenM. LandmannR. WeiserM.R. FranklinW.A. PrendergastF.G. MurphyL. TangL.H. TempleL. GuillemJ.G. WongW.D. PatyP.B. Immunohistochemical expression of folate receptor α in colorectal carcinoma: patterns and biological significance.Hum. Pathol.200839449850510.1016/j.humpath.2007.09.013 18342661
    [Google Scholar]
  165. PiF. BinzelD.W. LeeT.J. LiZ. SunM. RychahouP. LiH. HaqueF. WangS. CroceC.M. GuoB. EversB.M. GuoP. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression.Nat. Nanotechnol.2018131828910.1038/s41565‑017‑0012‑z 29230043
    [Google Scholar]
  166. MaY. CreangaA. LumL. BeachyP.A. Prevalence of off-target effects in Drosophila RNA interference screens.Nature2006443710935936310.1038/nature05179 16964239
    [Google Scholar]
  167. LewisB.P. BurgeC.B. BartelD.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.Cell20051201152010.1016/j.cell.2004.12.035 15652477
    [Google Scholar]
  168. ParkJ. ParkJ. PeiY. XuJ. YeoY. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines.Adv. Drug Deliv. Rev.20161049310910.1016/j.addr.2015.12.004 26686832
    [Google Scholar]
  169. GearyR.S. NorrisD. YuR. BennettC.F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides.Adv. Drug Deliv. Rev.201587465110.1016/j.addr.2015.01.008 25666165
    [Google Scholar]
  170. MokhtariR.B. HomayouniT.S. BaluchN. MorgatskayaE. KumarS. DasB. YegerH. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.16723 28410237
    [Google Scholar]
  171. QinS. TangX. ChenY. ChenK. FanN. XiaoW. ZhengQ. LiG. TengY. WuM. SongX. mRNA-based therapeutics: Powerful and versatile tools to combat diseases.Signal Transduct. Target. Ther.20227116610.1038/s41392‑022‑01007‑w 35597779
    [Google Scholar]
  172. ErikainenS. ChanS. Contested futures: Envisioning “Personalized,” “Stratified,” and “Precision” medicine.New Genet. Soc.201938330833010.1080/14636778.2019.1637720 31708685
    [Google Scholar]
  173. VermaM. Personalized medicine and cancer.J. Pers. Med.20122111410.3390/jpm2010001 25562699
    [Google Scholar]
  174. MaghvanV.P. JeiboueiS. AkbariM.E. NiaziV. KaramiF. RezvaniA. AnsarinejadN. AbbasiniaM. SarvariG. ZaliH. TalaieR. Personalized medicine in colorectal cancer.Gastroenterol. Hepatol. Bed Bench202013S1S18S28 33585000
    [Google Scholar]
  175. ArnettA.B. WangT. EichlerE.E. BernierR.A. Reflections on the genetics-first approach to advancements in molecular genetic and neurobiological research on neurodevelopmental disorders.J. Neurodev. Disord.20211312410.1186/s11689‑021‑09371‑4 34148555
    [Google Scholar]
  176. ArshadR. FatimaI. SargaziS. RahdarA. JahromiK.M. PandeyS. Díez-PascualA.M. BilalM. Novel perspectives towards RNA-based nano-theranostic approaches for cancer management.Nanomaterials 20211112333010.3390/nano11123330 34947679
    [Google Scholar]
  177. JasinskiD. HaqueF. BinzelD.W. GuoP. Advancement of the emerging field of RNA nanotechnology.ACS Nano20171121142116410.1021/acsnano.6b05737 28045501
    [Google Scholar]
  178. BasuB. GaralaK. DuttaA. JoshiR. PrajapatiB.G. MukherjeeS. KaratiD. SinghS. PaliwalH. Micro and nanoemulsions in colorectal cancer. In: Colorectal Cancer.Academic Press2024259286
    [Google Scholar]
  179. KaratiD. MukherjeeS. PrajapatiB. Unveiling spanlastics as a novel carrier for drug delivery: A review.Pharm. Nanotechnol.20241210.2174/0122117385286921240103113543 38258763
    [Google Scholar]
  180. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities.Nanomedicine 20191419312610.2217/nnm‑2018‑0120 30451076
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010285554240303160500
Loading
/content/journals/cpb/10.2174/0113892010285554240303160500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test