Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Cancer is a complex disease characterized by the uncontrolled and unregulated growth of cells followed by invasion and proliferation from the site of origin to other sites of the body. Conventional chemotherapy largely kills rapidly expanding and dividing cancer cells by impairing DNA synthesis and mitosis. It is associated with various types of adverse effects ranging from simple nausea and appetite loss to serious ones like bone marrow depression and compromised immunity ., due to their non-selectivity and inability to differentiate. The ideal feature of a delivery system is delivering the drug to the target place to achieve the most therapeutic impact while having the least toxicity. With the advent of novel drug delivery systems, it has been easier to deliver the drug to the target site. Utilizing new techniques and technology makes it a feasible approach to target cancer cells. Nanoemulsions are isotropic mixtures of transparent or translucent oil globules dispersed in an aqueous phase that is kinetically stable and supported by an interfacial coating of surfactant and co-surfactant molecules with droplet sizes in the nanometre range. Nanoemulsions are the delivery system of choice in case of cancer because of certain key attributes, including biodegradability, biocompatibility, large surface area non-immunogenicity, and release behavior control. At the same time, nanoemulsions have been engineered for various reasons, including enhanced biological half-life, target-specific binding ability, and imaging capability at different therapy levels by modifying the characteristics of nanoemulsions. This review focuses on current cancer treatment challenges and the role of nanoemulsions in treating cancer with their production methods, characterization methods, application, and quality attributes, which would help them make it to the clinics where cancer treatment is going on.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010290622240322080633
2024-04-02
2025-11-07
Loading full text...

Full text loading...

References

  1. ChaturvediS. GargA. VermaA. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models.J. Drug Deliv. Sci. Technol.20205910189910189910.1016/j.jddst.2020.101899
    [Google Scholar]
  2. DeSantisC.E. LinC.C. MariottoA.B. SiegelR.L. SteinK.D. KramerJ.L. AlteriR. RobbinsA.S. JemalA. Cancer treatment and survivorship statistics, 2014.CA Cancer J. Clin.201464425227110.3322/caac.21235 24890451
    [Google Scholar]
  3. GantaS. SharmaP. PaxtonJ.W. BaguleyB.C. GargS. Pharmacokinetics and pharmacodynamics of chlorambucil delivered in long-circulating nanoemulsion.J. Drug Target.201018212513310.3109/10611860903244199 19728787
    [Google Scholar]
  4. GantaS. DevalapallyH. BaguleyB.C. GargS. AmijiM. Microfluidic preparation of chlorambucilnanoemulsion formulations and evaluation of cytotoxicity and pro-apoptotic activity in tumor cells.J. Biomed. Nanotechnol.200842165173
    [Google Scholar]
  5. BaeY.H. Drug targeting and tumor heterogeneity.J. Control. Release200913312310.1016/j.jconrel.2008.09.074 18848589
    [Google Scholar]
  6. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
    [Google Scholar]
  7. JainR.K. PerinelliD.R. PescosolidoL. SchoubbenA. CespiM. CossiR. Injectable nanoemulsions prepared by high pressure homogenization: Jain, R. K. Barriers to drug delivery in solid tumors.Sci. Am.19942711586510.1038/scientificamerican0794‑58
    [Google Scholar]
  8. GantaS. TalekarM. SinghA. ColemanT.P. AmijiM.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy.AAPS PharmSciTech201415369470810.1208/s12249‑014‑0088‑9 24510526
    [Google Scholar]
  9. QianC. McClementsD.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size.Food Hydrocoll.20112551000100810.1016/j.foodhyd.2010.09.017
    [Google Scholar]
  10. KumarG. DivyaA. Nanoemulsion based targeting in cancer therapeutics.Med. Chem.201555272284
    [Google Scholar]
  11. DavidJ.M. Seid MahdiJ. Chapter 1 - General aspects of nanoemulsions and their formulation.Nanoemulsions.Academic Press2018320
    [Google Scholar]
  12. TrimailleT. ChaixC. DelairT. PichotC. TeixeiraH. DubernetC. CouvreurP. Interfacial deposition of functionalized copolymers onto nanoemulsions produced by the solvent displacement method.Colloid Polym. Sci.2001279878479210.1007/s003960100493
    [Google Scholar]
  13. LefebvreG. RiouJ. BastiatG. RogerE. FrombachK. GimelJ-C. SaulnierP. CalvignacB. Spontaneous nano-emulsification: Process optimization and modeling for the prediction of the nanoemulsion’s size and polydispersity.Int. J. Pharm.20175341-222022810.1016/j.ijpharm.2017.10.017 29038063
    [Google Scholar]
  14. ModiS. AndersonB.D. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method.Mol. Pharm.20131083076308910.1021/mp400154a 23758289
    [Google Scholar]
  15. HarwanshR.K. DeshmukhR. RahmanM.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives.J. Drug Deliv. Sci. Technol.20195122423310.1016/j.jddst.2019.03.006
    [Google Scholar]
  16. ShinodaK. LindmanB. Organized surfactant systems: Microemulsions.Langmuir19873213514910.1021/la00074a001
    [Google Scholar]
  17. Sánchez-LópezE. GuerraM. Dias-FerreiraJ. Current applications of nanoemulsions in cancer therapeutics.Nanomaterials 201996821
    [Google Scholar]
  18. MdS. AlhakamyN.A. AldawsariH.M. HusainM. KottaS. AbdullahS.T. A FahmyU. AlfalehM.A. AsfourH.Z. Formulation design, statistical optimization, and in vitro evaluation of a Naringenin nanoemulsion to enhance apoptotic activity in A549 lungs cancer cells.Pharmaceuticals202013715210.3390/ph13070152 32679917
    [Google Scholar]
  19. BhosaleR.R. OsmaniR.A. GhodakeP.P. ShaikhS.M. ChavanS.R. Nanoemulsion: A review on novel profusion in advanced drug delivery.Indian Journal of Pharmaceutical and Biological Research20142112212710.30750/ijpbr.2.1.19
    [Google Scholar]
  20. GurpreetK. SinghS.K. Review of nanoemulsion formulation and optimization techniques.Indian J. Pharm. Sci.20188078178910.4172/pharmaceutical‑sciences.1000422
    [Google Scholar]
  21. BaliV. AliM. AliJ. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe.Colloids Surf. B Biointerfaces201076241042010.1016/j.colsurfb.2009.11.021 20042320
    [Google Scholar]
  22. FerlayJ. ShinH.R. BrayF. FormanD. MathersC. ParkinD.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.Int. J. Cancer2010127122893291710.1002/ijc.25516 21351269
    [Google Scholar]
  23. ConstantinidesP.P. LambertK.J. TustianA.K. SchneiderB. LaljiS. MaW. WentzelB. KesslerD. WorahD. QuayS.C. Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel.Pharm. Res.200017217518210.1023/A:1007565230130 10751032
    [Google Scholar]
  24. MohiteP. RajputT. PandhareR. SangaleA. SinghS. PrajapatiB.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects.Nanomanufacturing20233213916610.3390/nanomanufacturing3020010
    [Google Scholar]
  25. UedaK. IshidaM. InoueT. FujimotoM. KawaharaY. SakaedaT. IwakawaS. Effect of injection volume on the pharmacokinetics of oil particles and incorporated menatetrenone after intravenous injection as O/W lipid emulsions in rats.J. Drug Target.20019535336010.3109/10611860108998771 11770705
    [Google Scholar]
  26. HedemanM. BrøndstedH. MüllertzA. FrokjaerS. Fat emulsions based on structured lipids (1,3-specific triglycerides): An investigation of the in vivo fate.Pharm. Res.199613572572810.1023/A:1016095415849 8860427
    [Google Scholar]
  27. LinS.Y. WuW.H. LuiW.Y. In vitro release, pharmacokinetic and tissue distribution studies of doxorubicin hydrochloride (Adriamycin HCl) encapsulated in lipiodolized w/o emulsions and w/o/w multiple emulsions.Pharmazie1992476439443 1409841
    [Google Scholar]
  28. LedererS.E. ParascandolaJ. Screening Syphilis: Dr.J. Hist. Med. Allied Sci.199853434537010.1093/jhmas/53.4.345 9816818
    [Google Scholar]
  29. BielinskaA.U. JanczakK.W. LandersJ.J. MarkovitzD.M. MontefioriD.C. BakerJ.R. Jr Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates.AIDS Res. Hum. Retroviruses200824227128110.1089/aid.2007.0148 18260780
    [Google Scholar]
  30. ShiR. HongL. WuD. NingX. ChenY. LinT. FanD. WuK. Enhanced immune response to gastric cancer specific antigen peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion.Cancer Biol. Ther.20054222623210.4161/cbt.4.2.1472 15753659
    [Google Scholar]
  31. HangQ-L. DingJ. GongA-C. YuZ-C. QiaoT-D. ChenB-J. ZhangX.Y. FanD.M. Screening of bioactive peptide that mimic the epitope of gastric cancer associated antigenXibao Yu Fenzi Mianyixue Zazhi2003193308310 15155102
    [Google Scholar]
  32. XuL. JinB-Q. FanD-M. Selection and identification of mimic epitopes for gastric cancer-associated antigen MG7 Ag.Mol. Cancer Ther.20032330130610.4161/cbt.2.3.386 12657725
    [Google Scholar]
  33. HarrisM. Monoclonal antibodies as therapeutic agents for cancer.Lancet Oncol.20045529230210.1016/S1470‑2045(04)01467‑6 15120666
    [Google Scholar]
  34. AdamsG.P. WeinerL.M. Monoclonal antibody therapy of cancer.Nat. Biotechnol.20052391147115710.1038/nbt1137 16151408
    [Google Scholar]
  35. LundbergB.B. GriffithsG. HansenH.J. Cellular association and cytotoxicity of anti-CD74-targeted lipid drug-carriers in B lymphoma cells.J. Control. Release200494115516110.1016/j.jconrel.2003.09.016 14684279
    [Google Scholar]
  36. ZhangZ. DavidJ. Overview of nanoemulsion properties: Stability, rheology, and appearance. In: Nanoemulsions.Academic Press20182149
    [Google Scholar]
  37. ChungC. Characterization of physicochemical properties of nanoemulsions: Appearance, stability, and rheology. In: Nanoemulsions; Seid Mahdi Jafari, David Julian McClements.Academic Press201854757610.1016/B978‑0‑12‑811838‑2.00017‑5
    [Google Scholar]
  38. LundbergB.B. GriffithsG. HansenH.J. Conjugation of an anti-B-cell lymphoma monoclonal antibody, LL2, to long-circulating drug-carrier lipid emulsions.J. Pharm. Pharmacol.201051101099110510.1211/0022357991776787 10579680
    [Google Scholar]
  39. JaraczS. ChenJ. KuznetsovaL.V. OjimaI. Recent advances in tumor-targeting anticancer drug conjugates.Bioorg. Med. Chem.200513175043505410.1016/j.bmc.2005.04.084 15955702
    [Google Scholar]
  40. KumarM. PathakK. MisraA. Formulation and characterization of nanoemulsion-based drug delivery system of risperidone.Drug Dev. Ind. Pharm.200935438739510.1080/03639040802363704 19016058
    [Google Scholar]
  41. HoT.M. AbikF. MikkonenK.S. An overview of nanoemulsion characterization via atomic force microscopy.Crit. Rev. Food Sci. Nutr.202262184908492810.1080/10408398.2021.1879727 33543990
    [Google Scholar]
  42. JakabG. FülöpV. BozóT. BaloghE. KellermayerM. AntalI. Optimization of quality attributes and atomic force microscopy imaging of reconstituted nanodroplets in baicalin loaded self-nanoemulsifying formulations.Pharmaceutics201810427510.3390/pharmaceutics10040275 30551629
    [Google Scholar]
  43. WangX. AntonH. VandammeT. AntonN. Updated insight into the characterization of nano-emulsions.Expert Opin. Drug Deliv.20232019311410.1080/17425247.2023.2154075 36453201
    [Google Scholar]
  44. ElnakatH. RatnamM. Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy.Adv. Drug Deliv. Rev.20045681067108410.1016/j.addr.2004.01.001 15094207
    [Google Scholar]
  45. KamenB.A. WangM.T. StreckfussA.J. PeryeaX. AndersonR.G. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles.J. Biol. Chem.198826327136021360910.1016/S0021‑9258(18)68284‑5 3417674
    [Google Scholar]
  46. JainR.K. Delivery of molecular and cellular medicine to solid tumors.Adv. Drug Deliv. Rev.201264Suppl.35336510.1016/j.addr.2012.09.011 24511174
    [Google Scholar]
  47. KimJ.E. ParkY.J. Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer.Int. J. Nanomedicine20171264565810.2147/IJN.S124158 28176896
    [Google Scholar]
  48. LawlerJ. Introduction to the tumour microenvironment review series. J Cell Mol Med,2009138 A14031404
    [Google Scholar]
  49. SherwoodL.M. ParrisE.E. FolkmanJ. Tumor angiogenesis: Therapeutic implications.N. Engl. J. Med.1971285211182118610.1056/NEJM197111182852108 4938153
    [Google Scholar]
  50. KambaT. McDonaldD.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer.Br. J. Cancer200796121788179510.1038/sj.bjc.6603813 17519900
    [Google Scholar]
  51. TanW. WangH. ChenY. ZhangX. ZhuH. YangC. YangR. LiuC. Molecular aptamers for drug delivery.Trends Biotechnol.2011291263464010.1016/j.tibtech.2011.06.009 21821299
    [Google Scholar]
  52. KhanI. BhardwajM. ShuklaS. LeeH. OhM.H. BajpaiV.K. HuhY.S. KangS.C. Carvacrol encapsulated nanocarrier/nanoemulsion abrogates angiogenesis by downregulating COX-2, VEGF and CD31 in vitro and in vivo in a lung adenocarcinoma model.Colloids Surf. B Biointerfaces201918161262210.1016/j.colsurfb.2019.06.016 31202132
    [Google Scholar]
  53. DeheleanC.A. FefleaS. GheorgheosuD. GantaS. CimpeanA.M. MunteanD. AmijiM.M. Anti-angiogenic and anti-cancer evaluation of betulin nanoemulsion in chicken chorioallantoic membrane and skin carcinoma in Balb/c mice.J. Biomed. Nanotechnol.20139457758910.1166/jbn.2013.1563 23621016
    [Google Scholar]
  54. WinterP.M. SchmiederA.H. CaruthersS.D. KeeneJ.L. ZhangH. WicklineS.A. LanzaG.M. Minute dosages of αν β 3 ‐targeted fumagillin nanoparticles impair Vx‐2 tumor angiogenesis and development in rabbits.FASEB J.20082282758276710.1096/fj.07‑103929 18362202
    [Google Scholar]
  55. DevalapallyH. ShenoyD. LittleS. LangerR. AmijiM. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model.Cancer Chemother. Pharmacol.200759447748410.1007/s00280‑006‑0287‑5 16862429
    [Google Scholar]
  56. ShenoyD. LittleS. LangerR. AmijiM. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies.Pharm. Res.200522122107211410.1007/s11095‑005‑8343‑0 16254763
    [Google Scholar]
  57. NaK. BaeY.H. Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro.Pharm. Res.200219568168810.1023/A:1015370532543 12069173
    [Google Scholar]
  58. ObataY. TajimaS. TakeokaS. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo.J. Control. Release2010142226727610.1016/j.jconrel.2009.10.023 19861141
    [Google Scholar]
  59. MoR. SunQ. XueJ. LiN. LiW. ZhangC. PingQ. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery.Adv. Mater.201224273659366510.1002/adma.201201498 22678851
    [Google Scholar]
  60. RinaldiF. ForteJ. PontecorviG. HaniehP.N. CarèA. BellenghiM. TirelliV. AmmendoliaM.G. MattiaG. MarianecciC. PuglisiR. CarafaM. pH-responsive oleic acid based nanocarriers: Melanoma treatment strategies.Int. J. Pharm.202261312139112139110.1016/j.ijpharm.2021.121391 34923052
    [Google Scholar]
  61. ShankaranV. IkedaH. BruceA.T. WhiteJ.M. SwansonP.E. OldL.J. SchreiberR.D. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity.Nature200141068321107111110.1038/35074122 11323675
    [Google Scholar]
  62. HargadonK.M. JohnsonC.E. WilliamsC.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors.Int. Immunopharmacol.201862293910.1016/j.intimp.2018.06.001 29990692
    [Google Scholar]
  63. ChenL. FliesD.B. Molecular mechanisms of T cell co-stimulation and co-inhibition.Nat. Rev. Immunol.201313422724210.1038/nri3405 23470321
    [Google Scholar]
  64. JiaL. PangM. FanM. TanX. WangY. HuangM. LiuY. WangQ. ZhuY. YangX. A pH-responsive pickering nanoemulsion for specified spatial delivery of immune checkpoint inhibitor and chemotherapy agent to tumors.Theranostics202010229956996910.7150/thno.46089 32929327
    [Google Scholar]
  65. SenguptaP. ChoudhuryH. DuttaS. JacobS. KesharwaniP. GorainB. Current strategies in breast cancer therapy: Role of epigenetics and nanomedicine.Part. Part. Syst. Charact.2022397210027610.1002/ppsc.202100276
    [Google Scholar]
  66. PourmadadiM. AhmadiM. AbdoussM. YazdianF. RashediH. Navaei-NigjehM. HesariY. The synthesis and characterization of double nanoemulsion for targeted Co-Delivery of 5-fluorouracil and curcumin using pH-sensitive agarose/chitosan nanocarrier. J. Drug Deliv. Sci. Technol.202270102849102849. [Internet].10.1016/j.jddst.2021.102849
    [Google Scholar]
  67. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑5 10699287
    [Google Scholar]
  68. WuJ. AkaikeT. MaedaH. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger.Cancer Res.1998581159165 9426072
    [Google Scholar]
  69. HuynhE. ZhengG. Cancer nanomedicine: Addressing the dark side of the enhanced permeability and retention effect.Nanomedicine 201510131993199510.2217/nnm.15.86 26096565
    [Google Scholar]
  70. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  71. CaronW.P. LayJ.C. FongA.M. La-BeckN.M. KumarP. NewmanS.E. ZhouH. MonacoJ.H. Clarke-PearsonD.L. BrewsterW.R. Van LeL. Bae-JumpV.L. GehrigP.A. ZamboniW.C. Translational studies of phenotypic probes for the mononuclear phagocyte system and liposomal pharmacology.J. Pharmacol. Exp. Ther.2013347359960610.1124/jpet.113.208801 24042160
    [Google Scholar]
  72. KamalM.M. NazzalS. Novel sulforaphane-enabled self-microemulsifying delivery systems (SFN-SMEDDS) of taxanes: Formulation development and in vitro cytotoxicity against breast cancer cells.Int. J. Pharm.2018536118719810.1016/j.ijpharm.2017.11.063 29195916
    [Google Scholar]
  73. MaP. MumperR.J. Paclitaxel nano-delivery systems: A comprehensive review.J. Nanomed. Nanotechnol.201342100016410.4172/2157‑7439.1000164 24163786
    [Google Scholar]
  74. ShakhwarS. DarwishR. KamalM.M. NazzalS. PallerlaS. Abu FayyadA. Development and evaluation of paclitaxel nanoemulsion for cancer therapy.Pharm. Dev. Technol.202025451051610.1080/10837450.2019.1706564 31858867
    [Google Scholar]
  75. KhanI BahugunaA BhardwajM Pal KhaketT KangSC Carvacrolnanoemulsion evokes cell cycle arrest, apoptosis induction and autophagy inhibition in doxorubicin resistant-A549 cell line.Artif Cells NanomedBiotechnol ,201846sup 166467510.1080/21691401.2018.1434187
    [Google Scholar]
  76. WangX. WangY-W. HuangQ. Enhancing stability and oral bioavailability of polyphenols using nanoemulsions. In: Micro/ Nanoencapsulation of Active Food Ingredients; ACS National Meeting Book of Abstracts2009100719821210.1021/bk‑2009‑1007.ch013
    [Google Scholar]
  77. TagneJ.B. KakumanuS. OrtizD. SheaT. NicolosiR.J. A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line.Mol. Pharm.20085228028610.1021/mp700091j 18171014
    [Google Scholar]
  78. HuynhN.T. PassiraniC. SaulnierP. BenoitJ.P. Lipid nanocapsules: A new platform for nanomedicine.Int. J. Pharm.2009379220120910.1016/j.ijpharm.2009.04.026 19409468
    [Google Scholar]
  79. HoarauD. DelmasP. DavidS. RouxE. LerouxJ.C. Novel long-circulating lipid nanocapsules.Pharm. Res.200421101783178910.1023/B:PHAM.0000045229.87844.21 15553223
    [Google Scholar]
  80. JingX. DengL. GaoB. XiaoL. ZhangY. KeX. LianJ. ZhaoQ. MaL. YaoJ. ChenJ. A novel polyethylene glycol mediated lipid nanoemulsion as drug delivery carrier for paclitaxel.Nanomedicine 201410237138010.1016/j.nano.2013.07.018 23969104
    [Google Scholar]
  81. Mendes MirandaS.E. Alcântara LemosJ. FernandesR.S. SilvaJ.O. OttoniF.M. TownsendD.M. RubelloD. AlvesR.J. CassaliG.D. FerreiraL.A.M. de BarrosA.L.B. Enhanced antitumor efficacy of lapachol-loaded nanoemulsion in breast cancer tumor model.Biomed. Pharmacother.202113311093611093610.1016/j.biopha.2020.110936 33254016
    [Google Scholar]
  82. LiuM. ZhaoD. YanN. LiJ. ZhangH. LiuM. TangX. LiuX. DengY. SongY. ZhaoX. Evasion of the accelerated blood clearance phenomenon by branched PEG lipid derivative coating of nanoemulsions.Int. J. Pharm.202261212136512136510.1016/j.ijpharm.2021.121365 34896215
    [Google Scholar]
  83. MulikR.S. MönkkönenJ. JuvonenR.O. MahadikK.R. ParadkarA.R. Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis.Int. J. Pharm.20103981-219020310.1016/j.ijpharm.2010.07.021 20655375
    [Google Scholar]
  84. MilaneL. DuanZ. AmijiM. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells.Mol. Pharm.20118118520310.1021/mp1002653 20942457
    [Google Scholar]
  85. SchlessingerJ. Receptor tyrosine kinases: Legacy of the first two decades.Cold Spring Harb. Perspect. Biol.201463a00891210.1101/cshperspect.a008912 24591517
    [Google Scholar]
  86. YardenY. PinesG. The ERBB network: At last, cancer therapy meets systems biology.Nat. Rev. Cancer201212855356310.1038/nrc3309 22785351
    [Google Scholar]
  87. LemmonM.A. SchlessingerJ. FergusonK.M. The EGFR family: Not so prototypical receptor tyrosine kinases.Cold Spring Harb. Perspect. Biol.201464a02076810.1101/cshperspect.a020768 24691965
    [Google Scholar]
  88. GrandisJ.R. SokJ.C. Signaling through the epidermal growth factor receptor during the development of malignancy.Pharmacol. Ther.20041021374610.1016/j.pharmthera.2004.01.002 15056497
    [Google Scholar]
  89. GantaS. SinghA. KulkarniP. KeelerA.W. PiroyanA. SawantR.R. PatelN.R. DavisB. FerrisC. O’NealS. ZamboniW. AmijiM.M. ColemanT.P. EGFR targeted theranostic nanoemulsion for image-guided ovarian cancer therapy.Pharm. Res.20153282753276310.1007/s11095‑015‑1660‑z 25732960
    [Google Scholar]
  90. TalekarM. GantaS. SinghA. AmijiM. KendallJ. DennyW.A. GargS. Phosphatidylinositol 3-kinase inhibitor (PIK75) containing surface functionalized nanoemulsion for enhanced drug delivery, cytotoxicity and pro-apoptotic activity in ovarian cancer cells.Pharm. Res.201229102874288610.1007/s11095‑012‑0793‑6 22653667
    [Google Scholar]
  91. Le KimT.H. JunH. KimJ.H. ParkK. KimJ.S. NamY.S. Lipiodol nanoemulsions stabilized with polyglycerol-polycaprolactone block copolymers for theranostic applications.Biomater. Res.20172112110.1186/s40824‑017‑0108‑4 29075510
    [Google Scholar]
  92. DanielsT.R. BernabeuE. RodríguezJ.A. PatelS. KozmanM. ChiappettaD.A. HollerE. LjubimovaJ.Y. HelgueraG. PenichetM.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer.Biochim. Biophys. Acta, Gen. Subj.20121820329131710.1016/j.bbagen.2011.07.016 21851850
    [Google Scholar]
  93. TortorellaS. KaragiannisT.C. Transferrin receptor-mediated endocytosis: A useful target for cancer therapy.J. Membr. Biol.2014247429130710.1007/s00232‑014‑9637‑0 24573305
    [Google Scholar]
  94. NakaseI. GallisB. Takatani-NakaseT. OhS. LacosteE. SinghN.P. GoodlettD.R. TanakaS. FutakiS. LaiH. SasakiT. Transferrin receptor-dependent cytotoxicity of artemisinin–transferrin conjugates on prostate cancer cells and induction of apoptosis.Cancer Lett.2009274229029810.1016/j.canlet.2008.09.023 19006645
    [Google Scholar]
  95. LuY. LowP.S. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects.J. Control. Release2003911-2172910.1016/S0168‑3659(03)00215‑3 12932634
    [Google Scholar]
  96. SongB. WuS. LiW. ChenD. HuH. Folate modified long circulating nano-emulsion as a promising approach for improving the efficiency of chemotherapy drugs in cancer treatment.Pharm. Res.2020371224210.1007/s11095‑020‑02811‑1
    [Google Scholar]
  97. PatelN.R. PiroyanA. GantaS. MorseA.B. CandiloroK.M. SolonA.L. NackA.H. GalatiC.A. BoraC. MaglatyM.A. O’BrienS.W. LitwinS. DavisB. ConnollyD.C. ColemanT.P. In vitro and in vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers.Cancer Biol. Ther.201819755456410.1080/15384047.2017.1395118 29737910
    [Google Scholar]
  98. GantaS. SinghA. RawalY. CacaccioJ. PatelN.R. KulkarniP. FerrisC.F. AmijiM.M. ColemanT.P. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer.Drug Deliv.201623395897010.3109/10717544.2014.923068 24901206
    [Google Scholar]
  99. MattheolabakisG. MilaneL. SinghA. AmijiM.M. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine.J. Drug Target.2015237-860561810.3109/1061186X.2015.1052072 26453158
    [Google Scholar]
  100. LapčíkL. LapčíkL. De SmedtS. DemeesterJ. ChabrečekP. Hyaluronan: Preparation, structure, properties, and applications.Chem. Rev.19989882663268410.1021/cr941199z 11848975
    [Google Scholar]
  101. CaiZ. ZhangH. WeiY. CongF. Hyaluronan-inorganic nanohybrid materials for biomedical applications.Biomacromolecules20171861677169610.1021/acs.biomac.7b00424 28485601
    [Google Scholar]
  102. ZhangM. XuC. WenL. HanM.K. XiaoB. ZhouJ. ZhangY. ZhangZ. ViennoisE. MerlinD. A hyaluronidase-responsive nanoparticle-based drug delivery system for targeting colon cancer cells.Cancer Res.201676247208721810.1158/0008‑5472.CAN‑16‑1681 27742685
    [Google Scholar]
  103. DosioF. ArpiccoS. StellaB. FattalE. Hyaluronic acid for anticancer drug and nucleic acid delivery.Adv. Drug Deliv. Rev.20169720423610.1016/j.addr.2015.11.011 26592477
    [Google Scholar]
  104. HodoshimaN. UdagawaC. AndoT. FukuyasuH. WatanabeH. NakabayashiS. Lipid nanoparticles for delivering antitumor drugs.Int. J. Pharm.19971461819210.1016/S0378‑5173(96)04779‑5
    [Google Scholar]
  105. KuriharaA. ShibayamaY. MizotaA. YasunoA. IkedaM. SasagawaK. KobayashiT. HisaokaM. Enhanced tumor delivery and antitumor activity of palmitoyl rhizoxin using stable lipid emulsions in mice.Pharm. Res.199613230531010.1023/A:1016063719541 8932454
    [Google Scholar]
  106. DavisS.S. WashingtonC. WestP. IllumL. LiversidgeG. SternsonL. KirshR. Lipid emulsions as drug delivery systems.Ann. N. Y. Acad. Sci.19875071758810.1111/j.1749‑6632.1987.tb45793.x 3327420
    [Google Scholar]
  107. YangS.C. BenitaS. Enhanced absorption and drug targeting by positively charged submicron emulsions.Drug Dev. Res.2000503-447648610.1002/1098‑2299(200007/08)50:3/4<476::AID‑DDR31>3.0.CO;2‑6
    [Google Scholar]
  108. KlangS. BenitaS. Design and evaluation of submicron emulsions as colloidal drug carriers for intravenous administration.In: Submicron Emulsions in Drug Targeting and Delivery. BenitaS. Academic Publishers, Harwood1998119152
    [Google Scholar]
  109. LundbergB. Preparation of drug-carrier emulsions stabilized with phosphatidylcholine-surfactant mixtures.J. Pharm. Sci.1994831727510.1002/jps.2600830117 8138914
    [Google Scholar]
  110. LiuF. LiuD. Long-circulating emulsions (oil-in-water) as carriers for lipophilic drugs.Pharm. Res.19951271060106410.1023/A:1016274801930 7494803
    [Google Scholar]
  111. KuriharaA. ShibayamaY. MizotaA. YasunoA. IkedaM. HisaokaM. Pharmacokinetics of highly lipophilic antitumor agent palmitoyl rhizoxin incorporated in lipid emulsions in rats.Biol. Pharm. Bull.199619225225810.1248/bpb.19.252 8850317
    [Google Scholar]
  112. ArimotoI. MatsumotoC. TanakaM. OkuhiraK. SaitoH. HandaT. Surface composition regulates clearance from plasma and triolein lipolysis of lipid emulsions.Lipids199833877377910.1007/s11745‑998‑0269‑8 9727607
    [Google Scholar]
  113. ChauhanV.P. JainR.K. Strategies for advancing cancer nanomedicine.Nat. Mater.2013121195896210.1038/nmat3792 24150413
    [Google Scholar]
  114. WilhelmS. TavaresA.J. DaiQ. OhtaS. AudetJ. DvorakH.F. ChanW.C.W. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  115. SadauskasE. WallinH. StoltenbergM. VogelU. DoeringP. LarsenA. DanscherG. Kupffer cells are central in the removal of nanoparticles from the organism.Part. Fibre Toxicol.2007411010.1186/1743‑8977‑4‑10 17949501
    [Google Scholar]
  116. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.3330 26348965
    [Google Scholar]
  117. LiuR. WolinskyJ.B. WalpoleJ. SouthardE. ChirieacL.R. GrinstaffM.W. ColsonY.L. Prevention of local tumor recurrence following surgery using low-dose chemotherapeutic polymer films.Ann. Surg. Oncol.20101741203121310.1245/s10434‑009‑0856‑z 19957041
    [Google Scholar]
  118. AlexisF. PridgenE. MolnarL.K. FarokhzadO.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles.Mol. Pharm.20085450551510.1021/mp800051m 18672949
    [Google Scholar]
  119. ByrneJ.D. BetancourtT. Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  120. BogartL.K. PourroyG. MurphyC.J. PuntesV. PellegrinoT. RosenblumD. PeerD. LévyR. Nanoparticles for imaging, sensing, and therapeutic intervention.ACS Nano2014843107312210.1021/nn500962q 24641589
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010290622240322080633
Loading
/content/journals/cpb/10.2174/0113892010290622240322080633
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; clinical analysis; drug delivery; Nanoemulsions; nanotechnology; tumor targeting
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test