Skip to content
2000
Volume 26, Issue 7
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Treatment of hepatic diseases presents a significant challenge due to their diverse nature. Ginsenosides, bioactive compounds derived from the root of Panax ginseng and widely used in traditional Chinese medicine, offer multifaceted protection to various organs in the body. Their versatile effects, including antioxidant, anti-inflammatory, anti-apoptotic and more, make them a promising approach for addressing hepatic disorders. This review explores the intricate molecular mechanisms and properties of ginsenosides in the prevention and treatment of liver ailments, from mild conditions to severe damage and liver fibrosis. Given the increasing prevalence of hepatic disorders, this article sheds light on the significant pharmaceutical potential of ginsenosides in the realm of hepatic disease management.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010291326240214095327
2024-02-28
2025-09-29
Loading full text...

Full text loading...

References

  1. ReinkeH. AsherG. Crosstalk between metabolism and circadian clocks.Nat. Rev. Mol. Cell Biol.201920422724110.1038/s41580‑018‑0096‑9 30635659
    [Google Scholar]
  2. AsraniS.K. DevarbhaviH. EatonJ. KamathP.S. Burden of liver diseases in the world.J. Hepatol.201970115117110.1016/j.jhep.2018.09.014 30266282
    [Google Scholar]
  3. IbrahimI.M. AlthagafyH.S. Abd-alhameedE.K. Al-ThubianiW.S. HassaneinE.H.M. Promising hepatoprotective effects of lycopene in different liver diseases.Life Sci.202231012113110.1016/j.lfs.2022.121131 36306869
    [Google Scholar]
  4. LiS. TanH.Y. WangN. ZhangZ.J. LaoL. WongC.W. FengY. The role of oxidative stress and antioxidants in liver diseases.Int. J. Mol. Sci.20151611260872612410.3390/ijms161125942 26540040
    [Google Scholar]
  5. FriedmanS.L. Liver fibrosis – from bench to bedside.J. Hepatol.200338Suppl. 1385310.1016/S0168‑8278(02)00429‑4 12591185
    [Google Scholar]
  6. FeldJ.J. LiangJ.T. Hepatitis C - identifying patients with progressive liver injury.Hepatology2006432Suppl. 1S194S20610.1002/hep.21065 16447261
    [Google Scholar]
  7. StickelF. DatzC. HampeJ. BatallerR. Pathophysiology and management of alcoholic liver disease: Update 2016.Gut Liver201711217318810.5009/gnl16477 28274107
    [Google Scholar]
  8. CaiZ. LeeF.S.C. WangX.R. YuW.J. A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs.J. Mass Spectrom.200237101013102410.1002/jms.370 12375275
    [Google Scholar]
  9. AtteleA.S. WuJ.A. YuanC.S. Ginseng pharmacology.Biochem. Pharmacol.199958111685169310.1016/S0006‑2952(99)00212‑9 10571242
    [Google Scholar]
  10. ChristensenL.P. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects.Adv. Food Nutr. Res.200955199 18772102
    [Google Scholar]
  11. YiY.S. Potential benefits of ginseng against COVID-19 by targeting inflammasomes.J. Ginseng Res.202246672273010.1016/j.jgr.2022.03.008 35399195
    [Google Scholar]
  12. ZarneshanS.N. FakhriS. KhanH. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach.Pharmacol. Res.202217710609910.1016/j.phrs.2022.106099 35092819
    [Google Scholar]
  13. RatanZ.A. HaidereM.F. HongY.H. ParkS.H. LeeJ.O. LeeJ. ChoJ.Y. Pharmacological potential of ginseng and its major component ginsenosides.J. Ginseng Res.202145219921010.1016/j.jgr.2020.02.004 33841000
    [Google Scholar]
  14. QiL.W. WangC.Z. YuanC.S. Isolation and analysis of ginseng: Advances and challenges.Nat. Prod. Rep.201128346749510.1039/c0np00057d 21258738
    [Google Scholar]
  15. KimJ.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases.J. Ginseng Res.201842326426910.1016/j.jgr.2017.10.004 29983607
    [Google Scholar]
  16. KangZ. ZhongaY. WuT. HuangJ. ZhaoH. LiuD. Ginsenoside from ginseng: A promising treatment for inflammatory bowel disease.Pharmacol. Rep.202173370071110.1007/s43440‑020‑00213‑z 33462754
    [Google Scholar]
  17. MohananP. YangT.J. SongY.H. Genes and regulatory mechanisms for ginsenoside biosynthesis.J. Plant Biol.2023661879710.1007/s12374‑023‑09384‑7 36714200
    [Google Scholar]
  18. KimY.J. ZhangD. YangD.C. Biosynthesis and biotechnological production of ginsenosides.Biotechnol. Adv.201533671773510.1016/j.biotechadv.2015.03.001 25747290
    [Google Scholar]
  19. JungJ. LeeN.K. PaikH.D. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products.Food Sci. Biotechnol.20172651155116810.1007/s10068‑017‑0159‑2 30263648
    [Google Scholar]
  20. LeT.H.V. LeeS.Y. KimT.R. KimJ.Y. KwonS.W. NguyenN.K. ParkJ.H. NguyenM.D. Processed Vietnamese ginseng: Preliminary results in chemistry and biological activity.J. Ginseng Res.201438215415910.1016/j.jgr.2013.11.015 24748840
    [Google Scholar]
  21. YangW. ShiX. YaoC. HuangY. HouJ. HanS. FengZ. WeiW. WuW. GuoD. A novel neutral loss/product ion scan-incorporated integral approach for the untargeted characterization and comparison of the carboxyl-free ginsenosides from Panax ginseng, Panax quinquefolius, and Panax notoginseng.J. Pharm. Biomed. Anal.202017711281310.1016/j.jpba.2019.112813 31472326
    [Google Scholar]
  22. PiaoX.M. HuoY. KangJ.P. MathiyalaganR. ZhangH. YangD.U. KimM. YangD.C. KangS.C. WangY.P. Diversity of ginsenoside profiles produced by various processing technologies.Molecules20202519439010.3390/molecules25194390 32987784
    [Google Scholar]
  23. YounossiZ.M. StepanovaM. YounossiY. GolabiP. MishraA. RafiqN. HenryL. Epidemiology of chronic liver diseases in the USA in the past three decades.Gut202069356456810.1136/gutjnl‑2019‑318813 31366455
    [Google Scholar]
  24. LeM.H. YeoY.H. LiX. LiJ. ZouB. WuY. Global NAFLD prevalence: A systematic review and meta-analysis. Clinical gastroenterology and hepatology.AGA2022201228092817
    [Google Scholar]
  25. MachadoM.V. DiehlA.M. Pathogenesis of nonalcoholic steatohepatitis.Gastroenterology201615081769177710.1053/j.gastro.2016.02.066 26928243
    [Google Scholar]
  26. ChalasaniN. YounossiZ. LavineJ.E. CharltonM. CusiK. RinellaM. HarrisonS.A. BruntE.M. SanyalA.J. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the american association for the study of liver diseases.Hepatology201867132835710.1002/hep.29367 28714183
    [Google Scholar]
  27. Aguilera-MéndezA. [Nonalcoholic hepatic steatosis: A silent disease]Rev. Med. Inst. Mex. Seguro Soc.2019566544549 30889343
    [Google Scholar]
  28. PanY.W. TsaiM.C. YangY.J. ChenM.Y. ChenS.Y. ChouY.Y. The relationship between nonalcoholic fatty liver disease and pediatric congenital hypothyroidism patients.Kaohsiung J. Med. Sci.2019351277878610.1002/kjm2.12118 31400075
    [Google Scholar]
  29. RambaudJ. LidourenF. SageM. KohlhauerM. NadeauM. Fortin-PellerinÉ. MicheauP. ZilbersteinL. MongardonN. RicardJ.D. TeradaM. BrunevalP. BerdeauxA. GhalehB. WaltiH. TissierR. Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome.Ann. Intensive Care2018815710.1186/s13613‑018‑0404‑8 29721820
    [Google Scholar]
  30. LinC.H. KohliR. Emerging new diagnostic modalities and therapies of nonalcoholic fatty liver disease.Curr. Gastroenterol. Rep.202022105210.1007/s11894‑020‑00786‑y 32814993
    [Google Scholar]
  31. ZhangS. ZhengL. DongD. XuL. YinL. QiY. HanX. LinY. LiuK. PengJ. Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats.Food Chem.201314132108211610.1016/j.foodchem.2013.05.019 23870935
    [Google Scholar]
  32. ChenX. XueW. ZhangJ. PengJ. HuangW. Ginsenoside Rg1 attenuates the NASH phenotype by regulating the miR-375-3p/ATG2B/PTEN-AKT axis to mediate autophagy and pyroptosis.Lipids Health Dis.20232212210.1186/s12944‑023‑01787‑2 36759837
    [Google Scholar]
  33. XiaoQ. ZhangS. YangC. DuR. ZhaoJ. LiJ. XuY. QinY. GaoY. HuangW. Ginsenoside Rg1 ameliorates palmitic acid-induced hepatic steatosis and inflammation in hepG2 cells via the AMPK/NF- κ B Pathway.Int. J. Endocrinol.2019201911110.1155/2019/7514802 31467529
    [Google Scholar]
  34. ChenX.J. LiuW.J. WenM.L. LiangH. WuS.M. ZhuY.Z. ZhaoJ.Y. DongX.Q. LiM.G. BianL. ZouC.G. MaL.Q. Ameliorative effects of compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats.Sci. Rep.2017714114410.1038/srep41144 28106137
    [Google Scholar]
  35. DayE.A. FordR.J. SteinbergG.R. AMPK as a therapeutic target for treating metabolic diseases.Trends Endocrinol. Metab.201728854556010.1016/j.tem.2017.05.004 28647324
    [Google Scholar]
  36. ZhangJ. MaX. FanD. Ginsenoside CK ameliorates hepatic lipid accumulation via activating the LKB1/AMPK pathway in vitro and in vivo.Food Funct.20221331153116710.1039/D1FO03026D 35018944
    [Google Scholar]
  37. HwangY.C. OhD.H. ChoiM.C. LeeS.Y. AhnK.J. ChungH.Y. LimS.J. ChungS.H. JeongI.K. Compound K attenuates glucose intolerance and hepatic steatosis through AMPK-dependent pathways in type 2 diabetic OLETF rats.Korean J. Intern. Med. 201833234735510.3904/kjim.2015.208 28142230
    [Google Scholar]
  38. LeeJ.B. YoonS.J. LeeS.H. LeeM.S. JungH. KimT.D. YoonS.R. ChoiI. KimI.S. ChungS.W. LeeH.G. MinJ.K. ParkY.J. Ginsenoside Rg3 ameliorated HFD-induced hepatic steatosis through downregulation of STAT5-PPARγ.J. Endocrinol.2017235322323510.1530/JOE‑17‑0233 29042402
    [Google Scholar]
  39. YangS. DuanZ. ZhangS. FanC. ZhuC. FuR. MaX. FanD. Ginsenoside Rh4 improves hepatic lipid metabolism and inflammation in a model of nafld by targeting the gut liver axis and modulating the fxr signaling pathway.Foods20231213249210.3390/foods12132492 37444230
    [Google Scholar]
  40. KimJ.C. JeonJ.Y. YangW. KimC.H. EomD.W. Combined amelioration of ginsenoside (Rg1, Rb1, and Rg3)-enriched korean red ginseng and probiotic lactobacillus on non-alcoholic fatty liver disease.Curr. Pharm. Biotechnol.201920322223110.2174/1389201020666190311143554 30854954
    [Google Scholar]
  41. MetwalyA.M. LianlianZ. LuqiH. DeqiangD. Black ginseng and its saponins: Preparation, phytochemistry and pharmacological effects.Molecules20192410185610.3390/molecules24101856 31091790
    [Google Scholar]
  42. AnM.Y. LeeS.R. HwangH.J. YoonJ.G. LeeH.J. ChoJ.A. Antioxidant and anti-inflammatory effects of korean black ginseng extract through ER stress pathway.Antioxidants20211016210.3390/antiox10010062 33419084
    [Google Scholar]
  43. WeiW. LiuL. LiuX. TaoY. ZhaoX. GongJ. WangY. LiuS. Exploring the therapeutic effects of black ginseng on non‐alcoholic fatty liver disease by using network pharmacology and molecular docking.Chem. Biodivers.20221910e20220071910.1002/cbdv.202200719 36040357
    [Google Scholar]
  44. LuoD. YangL. PangH. ZhaoY. LiK. RongX. GuoJ. Tianhuang formula reduces the oxidative stress response of NAFLD by regulating the gut microbiome in mice.Front. Microbiol.20221398401910.3389/fmicb.2022.984019 36212891
    [Google Scholar]
  45. KimM.S. LeeK.T. IseliT.J. HoyA.J. GeorgeJ. GrewalT. RoufogalisB.D. Compound K modulates fatty acid‐induced lipid droplet formation and expression of proteins involved in lipid metabolism in hepatocytes.Liver Int.201333101583159310.1111/liv.12287 23998390
    [Google Scholar]
  46. KimD.Y. YuanH.D. ChungI.K. ChungS.H. Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells.J. Agric. Food Chem.20095741532153710.1021/jf802867b 19182950
    [Google Scholar]
  47. XuY. YangC. ZhangS. LiJ. XiaoQ. HuangW. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation.Biol. Pharm. Bull.201841111638164410.1248/bpb.b18‑00132 30135326
    [Google Scholar]
  48. GaoY. ZhangS. LiJ. ZhaoJ. XiaoQ. ZhuY. ZhangJ. HuangW. Effect and mechanism of ginsenoside Rg1-regulating hepatic steatosis in HepG2 cells induced by free fatty acid.Biosci. Biotechnol. Biochem.202084112228224010.1080/09168451.2020.1793293 32654591
    [Google Scholar]
  49. GuD. YiH. JiangK. FakharS.H. ShiJ. HeY. LiuB. GuoY. FanX. LiS. Transcriptome analysis reveals the efficacy of ginsenoside-Rg1 in the treatment of nonalcoholic fatty liver disease.Life Sci.202126711898610.1016/j.lfs.2020.118986 33385408
    [Google Scholar]
  50. ChenZ. LiC. YangC. ZhaoR. MaoX. YuJ. Lipid regulation effects of raw and processed notoginseng radix et rhizome on steatotic hepatocyte l02 cell.BioMed Res. Int.201620161910.1155/2016/2919034 27642594
    [Google Scholar]
  51. LiG. XieH. CaoX. MaC. LiY. ChenL. Ginsenoside Rg1 exerts anti apoptotic effects on non alcoholic fatty liver cells by downregulating the expression of SGPL1.Mol. Med. Rep.202225517810.3892/mmr.2022.12694 35322862
    [Google Scholar]
  52. QiR. JiangR. XiaoH. WangZ. HeS. WangL. WangY. Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor.Life Sci.202025411777610.1016/j.lfs.2020.117776 32437790
    [Google Scholar]
  53. HouY. GuD. PengJ. JiangK. LiZ. ShiJ. YangS. LiS. FanX. Ginsenoside Rg1 regulates liver lipid factor metabolism in NAFLD model rats.ACS Omega2020519108781089010.1021/acsomega.0c00529 32455208
    [Google Scholar]
  54. SongB. SunY. ChuY. WangJ. ZhengH. LiuL. CaiW. ZhangH. Ginsenoside Rb1 alleviated high-fat-diet-induced hepatocytic apoptosis via peroxisome proliferator-activated receptor γ.BioMed Res. Int.202020201910.1155/2020/2315230 32733933
    [Google Scholar]
  55. ChengB. GaoW. WuX. ZhengM. YuY. SongC. MiaoW. YangZ. HeY. LiuC. YangW. YangX. LiY. ZhangF. GaoY. Ginsenoside Rg2 ameliorates high-fat diet-induced metabolic disease through SIRT1.J. Agric. Food Chem.202068144215422610.1021/acs.jafc.0c00833 32181656
    [Google Scholar]
  56. ChoiS.Y. ParkJ.S. ShonC.H. LeeC.Y. RyuJ.M. SonD.J. HwangB.Y. YooH.S. ChoY.C. LeeJ. KimJ.W. RohY.S. Fermented korean red ginseng extract enriched in Rd and Rg3 protects against non-alcoholic fatty liver disease through regulation of mTORC1.Nutrients20191112296310.3390/nu11122963 31817227
    [Google Scholar]
  57. HuangQ. WangT. YangL. WangH.Y. Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of sirt1 and activation of AMPK.Int. J. Mol. Sci.2017185106310.3390/ijms18051063 28534819
    [Google Scholar]
  58. JiangL. LiW. ZhuangT. YuJ. SunS. JuZ. WangZ. DingL. YangL. Ginsenoside Ro ameliorates high-fat diet–induced obesity and insulin resistance in mice via activation of the G Protein–Coupled Bile Acid Receptor 5 Pathway.J. Pharmacol. Exp. Ther.2021377344145110.1124/jpet.120.000435 33820830
    [Google Scholar]
  59. WangF. ParkJ.S. MaY. MaH. LeeY.J. LeeG.R. YooH.S. HongJ.T. RohY.S. Ginseng saponin enriched in Rh1 and Rg2 ameliorates nonalcoholic fatty liver disease by inhibiting inflammasome activation.Nutrients202113385610.3390/nu13030856 33807927
    [Google Scholar]
  60. KimD.E. ChangB.Y. JeonB.M. BaekJ.I. KimS.C. KimS.Y. SGL 121 attenuates nonalcoholic fatty liver disease through adjusting lipid metabolism through AMPK signaling pathway.Int. J. Mol. Sci.20202112453410.3390/ijms21124534 32630596
    [Google Scholar]
  61. RohE. HwangH.J. KimJ.W. HongS. KimJ.A. LeeY.B. ChoiK.M. BaikS.H. YooH.J. Ginsenoside Mc1 improves liver steatosis and insulin resistance by attenuating ER stress.J. Ethnopharmacol.202025911292710.1016/j.jep.2020.112927 32387461
    [Google Scholar]
  62. LuH. YuanX. ZhangY. HanM. LiuS. HanK. LiangP. ChengJ. HCBP6 deficiency exacerbates glucose and lipid metabolism disorders in non-alcoholic fatty liver mice.Biomed. Pharmacother.202012911034710.1016/j.biopha.2020.110347 32535386
    [Google Scholar]
  63. LiangW. ZhouK. JianP. ChangZ. ZhangQ. LiuY. XiaoS. ZhangL. Ginsenosides improve nonalcoholic fatty liver disease via integrated regulation of gut microbiota, inflammation and energy homeostasis.Front. Pharmacol.20211262284110.3389/fphar.2021.622841 33679403
    [Google Scholar]
  64. HongJ.T. LeeM.J. YoonS.J. ShinS.P. BangC.S. BaikG.H. KimD.J. YounG.S. ShinM.J. HamY.L. SukK.T. KimB.S. Effect of Korea red ginseng on nonalcoholic fatty liver disease: An association of gut microbiota with liver function.J. Ginseng Res.202145231632410.1016/j.jgr.2020.07.004 33841012
    [Google Scholar]
  65. ChenL. WangL. AoW. ChenY. LiS. HuangZ. YuD. DongY. GuJ. ZengH. Bioinformatics study of the potential therapeutic effects of ginsenoside Rf in reversing nonalcoholic fatty liver disease.Biomed. Pharmacother.202214911287910.1016/j.biopha.2022.112879 35358801
    [Google Scholar]
  66. KunaL. BozicI. KizivatT. BojanicK. MrsoM. KraljE. SmolicR. WuG.Y. SmolicM. Models of drug induced liver injury (dili) – current issues and future perspectives.Curr. Drug Metab.2018191083083810.2174/1389200219666180523095355 29788883
    [Google Scholar]
  67. SukK.T. KimD.J. Drug-induced liver injury: present and future.Clin. Mol. Hepatol.201218324925710.3350/cmh.2012.18.3.249 23091804
    [Google Scholar]
  68. LiX. TangJ. MaoY. Incidence and risk factors of drug‐induced liver injury.Liver Int.20224291999201410.1111/liv.15262 35353431
    [Google Scholar]
  69. SunY. ZhangY. XieL. RongF. ZhuX. XieJ. ZhouH. XuT. Progress in the treatment of drug-induced liver injury with natural products.Pharmacol. Res.202218310636110.1016/j.phrs.2022.106361 35882295
    [Google Scholar]
  70. YanM. HuoY. YinS. HuH. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions.Redox Biol.20181727428310.1016/j.redox.2018.04.019 29753208
    [Google Scholar]
  71. YoonE. BabarA. ChoudharyM. KutnerM. PyrsopoulosN. Acetaminophen-Induced Hepatotoxicity: A Comprehensive Update.J. Clin. Transl. Hepatol.201642131142 27350943
    [Google Scholar]
  72. MazaleuskayaL.L. SangkuhlK. ThornC.F. FitzGeraldG.A. AltmanR.B. KleinT.E. PharmGKB summary.Pharmacogenet. Genomics201525841642610.1097/FPC.0000000000000150 26049587
    [Google Scholar]
  73. HodgmanM.J. GarrardA.R. A review of acetaminophen poisoning.Crit. Care Clin.201228449951610.1016/j.ccc.2012.07.006 22998987
    [Google Scholar]
  74. HinsonJ.A. ReidA.B. McCulloughS.S. JamesL.P. Acetaminophen-induced hepatotoxicity: Role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition.Drug Metab. Rev.2004363-480582210.1081/DMR‑200033494 15554248
    [Google Scholar]
  75. DragomirA.C. SunR. MishinV. HallL.B. LaskinJ.D. LaskinD.L. Role of galectin-3 in acetaminophen-induced hepatotoxicity and inflammatory mediator production.Toxicol. Sci.2012127260961910.1093/toxsci/kfs117 22461450
    [Google Scholar]
  76. LicataA. MinissaleM.G. StankevičiūtėS. Sanabria-CabreraJ. LucenaM.I. AndradeR.J. AlmasioP.L. N-Acetylcysteine for preventing acetaminophen-induced liver injury: A comprehensive review.Front. Pharmacol.20221382856510.3389/fphar.2022.828565 36034775
    [Google Scholar]
  77. SandilandsE.A. BatemanD.N. Adverse reactions associated with acetylcysteine.Clin. Toxicol. 2009472818810.1080/15563650802665587 19280424
    [Google Scholar]
  78. ZhongY. ChenY. PanZ. TangK. ZhongG. GuoJ. CuiT. LiT. DuanS. YangX. GaoY. WangQ. ZhangD. Ginsenoside Rc, as an FXR activator, alleviates acetaminophen-induced hepatotoxicity via relieving inflammation and oxidative stress.Front. Pharmacol.202213102773110.3389/fphar.2022.1027731 36278209
    [Google Scholar]
  79. QuL. FuR. MaX. FanD. Hepatoprotective effects of ginsenoside Rk3 in acetaminophen-induced liver injury in mice by activation of autophagy.Food Funct.202112199128914010.1039/D1FO02081A 34397062
    [Google Scholar]
  80. NingC. GaoX. WangC. KongY. LiuZ. SunH. SunP. HuoX. MaX. MengQ. LiuK. Ginsenoside Rg1 protects against acetaminophen-induced liver injury via activating Nrf2 signaling pathway in vivo and in vitro.Regul. Toxicol. Pharmacol.201898586810.1016/j.yrtph.2018.07.012 30030101
    [Google Scholar]
  81. WangZ. HuJ. YanM. XingJ. LiuW. LiW. Caspase-mediated anti-apoptotic effect of ginsenoside rg5, a main rare ginsenoside, on acetaminophen-induced hepatotoxicity in mice.J. Agric. Food Chem.201765429226923610.1021/acs.jafc.7b03361 28965396
    [Google Scholar]
  82. HuJ.N. XuX.Y. LiW. WangY.M. LiuY. WangZ. WangY.P. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis.J. Ginseng Res.2019431101910.1016/j.jgr.2017.07.003 30662289
    [Google Scholar]
  83. GaoY. YanJ. LiJ. LiX. YangS. ChenN. LiL. ZhangL. Ginsenoside Rg3 ameliorates acetaminophen-induced hepatotoxicity by suppressing inflammation and oxidative stress.J. Pharm. Pharmacol.202173332233110.1093/jpp/rgaa069 33793882
    [Google Scholar]
  84. GumS.I. ChoM.K. Korean red ginseng extract prevents APAP ‐induced hepatotoxicity through metabolic enzyme regulation: The role of ginsenoside Rg3, a protopanaxadiol.Liver Int.20133371071108410.1111/liv.12046 23750847
    [Google Scholar]
  85. IgamiK. ShimojoY. ItoH. MiyazakiT. KashiwadaY. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury.J. Pharm. Pharmacol.201567456557210.1111/jphp.12342 25495794
    [Google Scholar]
  86. XuX.Y. HuJ.N. LiuZ. ZhangR. HeY.F. HouW. WangZ.Q. YangG. LiW. Saponins (Ginsenosides) from the Leaves of Panax quinquefolius ameliorated acetaminophen-induced hepatotoxicity in mice.J. Agric. Food Chem.201765183684369210.1021/acs.jafc.7b00610 28429935
    [Google Scholar]
  87. HuJ.N. LiuZ. WangZ. LiX.D. ZhangL.X. LiW. WangY.P. Ameliorative effects and possible molecular mechanism of action of black ginseng (panax ginseng) on acetaminophen-mediated liver injury.Molecules201722466410.3390/molecules22040664 28430162
    [Google Scholar]
  88. XuX.Y. WangZ. RenS. LengJ. HuJ. LiuZ. ChenC. LiW. Improved protective effects of American ginseng berry against acetaminophen-induced liver toxicity through TNF-α-mediated caspase-3/-8/-9 signaling pathways.Phytomedicine20185112813810.1016/j.phymed.2018.09.234 30466610
    [Google Scholar]
  89. YaoF. WangX. CaoX. ZhangK. SunJ. LiY. SuiJ. LiuY. Integration of transcriptomics and metabolomics confirmed hepatoprotective effects of steamed shoot extracts of ginseng (Panax ginseng C.A. Meyer) on toxicity caused by overdosed acetaminophen.Biomed. Pharmacother.202114311217710.1016/j.biopha.2021.112177 34555627
    [Google Scholar]
  90. BiY. LiQ. TaoW. TangJ. YouG. YuL. Ginsenoside Rg1 and ginsenoside Rh1 prevent liver injury induced by acetaminophen in mice.J. Food Biochem.2021458e1381610.1111/jfbc.13816 34155666
    [Google Scholar]
  91. RenS. LengJ. XuX.Y. JiangS. WangY.P. YanX.T. LiuZ. ChenC. WangZ. LiW. Ginsenoside Rb1, A major saponin from panax ginseng, exerts protective effects against acetaminophen-induced hepatotoxicity in mice.Am. J. Chin. Med.20194781815183110.1142/S0192415X19500927 31786947
    [Google Scholar]
  92. GaoY. ChuS.F. ZhangZ. AiQ.D. XiaC.Y. HuangH.Y. ChenN.H. Ginsenoside Rg1 prevents acetaminophen-induced oxidative stress and apoptosis via Nrf2/ARE signaling pathway.J. Asian Nat. Prod. Res.201921878279710.1080/10286020.2018.1504024 30608002
    [Google Scholar]
  93. ZhouY. HouJ. LiuW. RenS. WangY. ZhangR. ChenC. WangZ. LiW. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.Int. Immunopharmacol.201859213010.1016/j.intimp.2018.03.030 29621733
    [Google Scholar]
  94. DarwishM.A. Abo-YoussefA.M. KhalafM.M. Abo-SaifA.A. SalehI.G. AbdelghanyT.M. Resveratrol influences platinum pharmacokinetics: A novel mechanism in protection against cisplatin-induced nephrotoxicity.Toxicol. Lett.2018290738210.1016/j.toxlet.2018.03.023 29574132
    [Google Scholar]
  95. NeamatallahT. El-ShitanyN.A. AbbasA.T. AliS.S. EidB.G. Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway.Food Funct.2018973743375410.1039/C8FO00653A 29897076
    [Google Scholar]
  96. OmarH.A. MohamedW.R. ArabH.H. ArafaE.S.A. Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: Targeting MAPKs and apoptosis.PLoS One2016113e015164910.1371/journal.pone.0151649 27031695
    [Google Scholar]
  97. BrozovicA. Ambriović-RistovA. OsmakM. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin.Crit. Rev. Toxicol.201040434735910.3109/10408441003601836 20163198
    [Google Scholar]
  98. Gulcinİ. Antioxidants and antioxidant methods: An updated overview.Arch. Toxicol.202094365171510.1007/s00204‑020‑02689‑3 32180036
    [Google Scholar]
  99. QiL. LuoQ. ZhangY. JiaF. ZhaoY. WangF. Advances in toxicological research of the anticancer drug cisplatin.Chem. Res. Toxicol.20193281469148610.1021/acs.chemrestox.9b00204 31353895
    [Google Scholar]
  100. GaoY. ChuS. ShaoQ. ZhangM. XiaC. WangY. LiY. LouY. HuangH. ChenN. Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice.Free Radic. Res.201751111310.1080/10715762.2016.1234710 27931128
    [Google Scholar]
  101. LeeC.K. ParkK.K. ChungA.S. ChungW.Y. Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species.Food Chem. Toxicol.20125072565257410.1016/j.fct.2012.01.005 22266358
    [Google Scholar]
  102. PeruccaE. Pharmacological and therapeutic properties of valproate: A summary after 35 years of clinical experience.CNS Drugs2002161069571410.2165/00023210‑200216100‑00004 12269862
    [Google Scholar]
  103. RosenbergG. The mechanisms of action of valproate in neuropsychiatric disorders: Can we see the forest for the trees?Cell. Mol. Life Sci.200764162090210310.1007/s00018‑007‑7079‑x 17514356
    [Google Scholar]
  104. EzhilarasanD. ManiU. Valproic acid induced liver injury: An insight into molecular toxicological mechanism.Environ. Toxicol. Pharmacol.20229510396710.1016/j.etap.2022.103967 36058508
    [Google Scholar]
  105. VidaurreJ. GedelaS. YaroszS. Antiepileptic drugs and liver disease.Pediatr. Neurol.201777233610.1016/j.pediatrneurol.2017.09.013 29097018
    [Google Scholar]
  106. TongV. TengX.W. ChangT.K.H. AbbottF.S. Valproic acid I: Time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats.Toxicol. Sci.200586242743510.1093/toxsci/kfi184 15858223
    [Google Scholar]
  107. JafarianI. EskandariM.R. MashayekhiV. AhadpourM. HosseiniM.J. Toxicity of valproic acid in isolated rat liver mitochondria.Toxicol. Mech. Methods201323861762310.3109/15376516.2013.821567 23819490
    [Google Scholar]
  108. ZhouL. ChenL. ZengX. LiaoJ. OuyangD. Ginsenoside compound K alleviates sodium valproate-induced hepatotoxicity in rats via antioxidant effect, regulation of peroxisome pathway and iron homeostasis.Toxicol. Appl. Pharmacol.202038611482910.1016/j.taap.2019.114829 31734319
    [Google Scholar]
  109. ZhouL. ZengX. RaoT. TanZ. ZhouG. OuyangD. ChenL. Evaluating the protective effects of individual or combined ginsenoside compound K and the downregulation of soluble epoxide hydrolase expression against sodium valproate-induced liver cell damage.Toxicol. Appl. Pharmacol.202142211555510.1016/j.taap.2021.115555 33915122
    [Google Scholar]
  110. CheungA. KwoP. Viral hepatitis other than A, B, and C.Clin. Liver Dis.202024340541910.1016/j.cld.2020.04.008 32620280
    [Google Scholar]
  111. WangX. RenJ. GaoQ. HuZ. SunY. LiX. RowlandsD.J. YinW. WangJ. StuartD.I. RaoZ. FryE.E. Hepatitis A virus and the origins of picornaviruses.Nature20155177532858810.1038/nature13806 25327248
    [Google Scholar]
  112. GholizadehO. AkbarzadehS. Ghazanfari HashemiM. GholamiM. AminiP. YekanipourZ. TabatabaieR. YasaminehS. HosseiniP. PoortahmasebiV. HepatitisA. Viral structure, classification, life cycle, clinical symptoms, diagnosis error, and vaccination.Can. J. Infect. Dis. Med. Microbiol.2023202311710.1155/2023/4263309 36644336
    [Google Scholar]
  113. LeeM.H. LeeB.H. LeeS. ChoiC. Reduction of hepatitis A virus on FRhK-4 cells treated with Korean red ginseng extract and ginsenosides.J. Food Sci.2013789M1412M141510.1111/1750‑3841.12205 23931146
    [Google Scholar]
  114. WrightT.L. Introduction to chronic hepatitis B infection.Am. J. Gastroenterol.2006101S1S6 16448446
    [Google Scholar]
  115. VittalA. GhanyM.G. WHO guidelines for prevention, care and treatment of individuals infected with HBV.Clin. Liver Dis.201923341743210.1016/j.cld.2019.04.008 31266617
    [Google Scholar]
  116. ViganòM. LoglioA. GrossiG. LamperticoP. Tenofovir alafenamide (TAF) treatment of HBV, what are the unanswered questions?Expert Rev. Anti Infect. Ther.201816215316110.1080/14787210.2018.1428561 29338458
    [Google Scholar]
  117. DuraisamyG.S. JoE. HuvarováI. ParkK.H.P. HegerZ. AdamV. RůžekD. WindischM.P. MillerA.D. Selected ginsenosides interfere efficiently with hepatitis B virus mRNA expression levels and suppress viral surface antigen secretion.Heliyon202289e1046510.1016/j.heliyon.2022.e10465 36110238
    [Google Scholar]
  118. KangL.J. ChoiY.J. LeeS.G. Stimulation of TRAF6/TAK1 degradation and inhibition of JNK/AP-1 signalling by ginsenoside Rg3 attenuates hepatitis B virus replication.Int. J. Biochem. Cell Biol.201345112612262110.1016/j.biocel.2013.08.016 24004833
    [Google Scholar]
  119. YuanD. YuanQ. CuiQ. LiuC. ZhouZ. ZhaoH. DunY. WangT. ZhangC. Vaccine adjuvant ginsenoside Rg1 enhances immune responses against hepatitis B surface antigen in mice.Can. J. Physiol. Pharmacol.201694667668110.1139/cjpp‑2015‑0528 27095502
    [Google Scholar]
  120. KanwalF. HoangT. KramerJ.R. AschS.M. GoetzM.B. ZeringueA. RichardsonP. El-SeragH.B. Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection.Gastroenterology2011140411821188.e110.1053/j.gastro.2010.12.032 21184757
    [Google Scholar]
  121. KalidindiY.3rd Association of direct-acting antiviral treatment with mortality among medicare beneficiaries with hepatitis C.JAMA Netw. Open202037e201105510.1001/jamanetworkopen.2020.11055 32692371
    [Google Scholar]
  122. KimS.J. JangJ.Y. KimE.J. ChoE.K. AhnD.G. KimC. ParkH.S. JeongS.W. LeeS.H. KimS.G. KimY.S. KimH.S. KimB.S. LeeJ. SiddiquiA. Ginsenoside Rg3 restores hepatitis C virus–induced aberrant mitochondrial dynamics and inhibits virus propagation.Hepatology201766375877110.1002/hep.29177 28329914
    [Google Scholar]
  123. Serracino-InglottF. HabibN.A. MathieR.T. Hepatic ischemia-reperfusion injury.Am. J. Surg.2001181216016610.1016/S0002‑9610(00)00573‑0 11425059
    [Google Scholar]
  124. ZhangK. LiJ. LiY. Ginsenoside Rg1 alleviates hepatic ischemia-reperfusion injury in mice via activating ERα-Regulating YAP Expression.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/6486109 34630612
    [Google Scholar]
  125. LinJ. HuangH. YangS. DuanJ. QuS. YuanB. ZengZ. The effect of Ginsenoside Rg1 in hepatic ischemia reperfusion (I/R) injury ameliorates ischemia-reperfusion-induced liver injury by inhibiting apoptosis.Biomed. Pharmacother.202012911039810.1016/j.biopha.2020.110398 32603889
    [Google Scholar]
  126. TaoT. ChenF. BoL. XieQ. YiW. ZouY. HuB. LiJ. DengX. Ginsenoside Rg1 protects mouse liver against ischemia–reperfusion injury through anti-inflammatory and anti-apoptosis properties.J. Surg. Res.2014191123123810.1016/j.jss.2014.03.067 24750984
    [Google Scholar]
  127. WangJ. QiaoL. LiY. YangG. Ginsenoside Rb1 attenuates intestinal ischemia-reperfusion-induced liver injury by inhibiting NF-κB activation.Exp. Mol. Med.200840668669810.3858/emm.2008.40.6.686 19116454
    [Google Scholar]
  128. W.H.O. Global status report on alcohol and health 2018; World Health Organization,2019
    [Google Scholar]
  129. SeitzH.K. BatallerR. Cortez-PintoH. GaoB. GualA. LacknerC. MathurinP. MuellerS. SzaboG. TsukamotoH. Alcoholic liver disease.Nat. Rev. Dis. Primers2018411610.1038/s41572‑018‑0014‑7 30115921
    [Google Scholar]
  130. SetshediM. WandsJ.R. de la MonteS.M. Acetaldehyde adducts in alcoholic liver disease.Oxid. Med. Cell. Longev.20103317818510.4161/oxim.3.3.12288 20716942
    [Google Scholar]
  131. DunnW. ShahV.H. Pathogenesis of alcoholic liver disease.Clin. Liver Dis.201620344545610.1016/j.cld.2016.02.004 27373608
    [Google Scholar]
  132. KongL.Z. ChandimaliN. HanY.H. LeeD.H. KimJ.S. KimS.U. KimT.D. JeongD.K. SunH.N. LeeD.S. KwonT. Pathogenesis, early diagnosis, and therapeutic management of alcoholic liver disease.Int. J. Mol. Sci.20192011271210.3390/ijms20112712 31159489
    [Google Scholar]
  133. LaiY. TanQ. XvS. HuangS. WangY. LiY. ZengT. MoC. ChenY. HuangS. ZhouC. GaoL. LvZ. Ginsenoside Rb1 alleviates alcohol-induced liver injury by inhibiting steatosis, oxidative stress, and inflammation.Front. Pharmacol.20211261640910.3389/fphar.2021.616409 33716743
    [Google Scholar]
  134. PanZ. GuoJ. TangK. ChenY. GongX. ChenY. ZhongY. XiaoX. DuanS. CuiT. WuX. ZhongY. YangX. ShenC. GaoY. Ginsenoside Rc modulates SIRT6-NRF2 interaction to alleviate alcoholic liver disease.J. Agric. Food Chem.20227044142201423410.1021/acs.jafc.2c06146 36300841
    [Google Scholar]
  135. YangC. HeX. ZhaoJ. HuangW. Hepatoprotection by Ginsenoside Rg1 in alcoholic liver disease.Int. Immunopharmacol.20219210732710.1016/j.intimp.2020.107327 33412392
    [Google Scholar]
  136. LiJ. YangC. ZhangS. LiuS. ZhaoL. LuoH. ChenY. HuangW. Ginsenoside Rg1 inhibits inflammatory responses via modulation of the nuclear factor κB pathway and inhibition of inflammasome activation in alcoholic hepatitis.Int. J. Mol. Med.2018412899907 29207044
    [Google Scholar]
  137. GaoY. ChuS. LiJ. LiJ. ZhangZ. XiaC. HengY. ZhangM. HuJ. WeiG. LiY. ChenN. Anti-inflammatory function of ginsenoside Rg1 on alcoholic hepatitis through glucocorticoid receptor related nuclear factor-kappa B pathway.J. Ethnopharmacol.201517323124010.1016/j.jep.2015.07.020 26196399
    [Google Scholar]
  138. QuL. ZhuY. LiuY. YangH. ZhuC. MaP. DengJ. FanD. Protective effects of ginsenoside Rk3 against chronic alcohol-induced liver injury in mice through inhibition of inflammation, oxidative stress, and apoptosis.Food Chem. Toxicol.201912627728410.1016/j.fct.2019.02.032 30826410
    [Google Scholar]
  139. KimM.H. KimH.H. JeongJ.M. ShimY.R. LeeJ.H. KimY.E. RyuT. YangK. KimK.R. JeonB.M. KimS.C. JungJ.K. ChoiJ.K. LeeY.S. ByunJ.S. JeongW.I. Ginsenoside F2 attenuates chronic-binge ethanol-induced liver injury by increasing regulatory T cells and decreasing Th17 cells.J. Ginseng Res.202044681582210.1016/j.jgr.2020.03.002 33192125
    [Google Scholar]
  140. ChenY. LinL. YangC. LiT. LiY. WangJ. WuY. ZhaoY. SuG. Ginsenoside AD-2 ameliorating lipopolysaccharide-induced activation in HSC-T6 Cells and carbon tetrachloride-induced hepatic fibrosis in mice via regulation of VD-VDR Axis.J. Agric. Food Chem.20237173459347110.1021/acs.jafc.2c06804 36644954
    [Google Scholar]
  141. BatallerR. BrennerD.A. Liver fibrosis.J. Clin. Invest.2005115220921810.1172/JCI24282 15690074
    [Google Scholar]
  142. KisselevaT. BrennerD. Molecular and cellular mechanisms of liver fibrosis and its regression.Nat. Rev. Gastroenterol. Hepatol.202118315116610.1038/s41575‑020‑00372‑7 33128017
    [Google Scholar]
  143. WeiX. ChenY. HuangW. Ginsenoside Rg1 ameliorates liver fibrosis via suppressing epithelial to mesenchymal transition and reactive oxygen species production in vitro and in vivo.Biofactors201844432733510.1002/biof.1432 29761840
    [Google Scholar]
  144. LemoinneS. CadoretA. El MourabitH. ThabutD. HoussetC. Origins and functions of liver myofibroblasts.Biochim. Biophys. Acta Mol. Basis Dis.20131832794895410.1016/j.bbadis.2013.02.019 23470555
    [Google Scholar]
  145. RoehlenN. CrouchetE. BaumertT.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives.Cells20209487510.3390/cells9040875 32260126
    [Google Scholar]
  146. MaX. JiangY. WenJ. ZhaoY. ZengJ. GuoY. A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds.Eur. J. Pharmacol.202088817357810.1016/j.ejphar.2020.173578 32976828
    [Google Scholar]
  147. HeZ. ChenS. PanT. LiA. WangK. LinZ. LiuW. WangY. WangY. Ginsenoside Rg2 Ameliorating CDAHFD-induced hepatic fibrosis by regulating akt/mtor-mediated autophagy.J. Agric. Food Chem.20227061911192210.1021/acs.jafc.1c07578 35104139
    [Google Scholar]
  148. ChenS. HeZ. XieW. ChenX. LinZ. MaJ. LiuZ. YangS. WangY. Ginsenoside Rh2 attenuates CDAHFD-induced liver fibrosis in mice by improving intestinal microbial composition and regulating LPS-mediated autophagy.Phytomedicine202210115412110.1016/j.phymed.2022.154121 35489327
    [Google Scholar]
  149. YuanS. DongM. ZhangH. JiangX. YanC. YeR. ZhouH. ChenL. LianH. JinW. Ginsenoside PPD inhibit the activation of HSCs by directly targeting TGFβR1.Int. J. Biol. Macromol.202219455656210.1016/j.ijbiomac.2021.11.098 34822828
    [Google Scholar]
  150. LiuX. MiX. WangZ. ZhangM. HouJ. JiangS. WangY. ChenC. LiW. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway.Cell Death Dis.202011645410.1038/s41419‑020‑2597‑7 32532964
    [Google Scholar]
  151. HouY.L. TsaiY.H. LinY.H. ChaoJ.C.J. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats.BMC Complement. Altern. Med.201414141510.1186/1472‑6882‑14‑415 25344394
    [Google Scholar]
  152. LangZ. YuS. HuY. TaoQ. ZhangJ. WangH. ZhengL. YuZ. ZhengJ. Ginsenoside Rh2 promotes hepatic stellate cell ferroptosis and inactivation via regulation of IRF1-inhibited SLC7A11.Phytomedicine202311815495010.1016/j.phymed.2023.154950 37441987
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010291326240214095327
Loading
/content/journals/cpb/10.2174/0113892010291326240214095327
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test