Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
151 - 200 of 207 results
-
-
lncRNAs and circRNAs: Emerging Players in Pediatric Medulloblastoma Pathology
Authors: Ozal Beylerli, Elmar Musaev, Tatiana Ilyasova and Albert SufianovAvailable online: 15 April 2025More LessMedulloblastomas (MBs) are the most common malignant brain tumors in children, marked by aggressive growth, molecular heterogeneity, and a high propensity for cerebrospinal dissemination. Despite advancements in conventional treatments - surgery, chemotherapy, and radiation therapy—substantial challenges persist, including debilitating long-term toxicities and emerging resistance to therapy. This review examines the multifaceted roles of non-coding RNAs (ncRNAs) - particularly long non- coding RNAs (lncRNAs) and circular RNAs (circRNAs) - in pediatric medulloblastoma pathogenesis, diagnosis, and therapeutic targeting. NcRNAs exert robust regulatory effects on gene expression by modulating signaling pathways, acting as miRNA sponges, and controlling the expression of oncogenic or tumor-suppressive genes. In this study, we focus on notable examples of lncRNAs (e.g., HOTAIR, TP73-AS1) and circRNAs (e.g., circ-SKA3, circ_63706) implicated in fundamental oncogenic processes, such as cell proliferation, apoptosis, metastasis, and stem cell maintenance. We also discuss their subgroup-specific roles, emphasizing high-risk groups, such as Sonic Hedgehog (SHH) and Group 3 medulloblastomas. In parallel, we explore the potential of ncRNAs to serve as diagnostic/prognostic biomarkers, given their tissue-specific expression, stability, and detectability in biological fluids like the Cerebrospinal Fluid (CSF). Finally, we review emerging therapeutic strategies, including antisense oligonucleotides, RNA sponges, and CRISPR-based editing, aimed at disrupting oncogenic ncRNA functions or reinforcing tumor-suppressive pathways. While these strategies hold promise, major hurdles include functional redundancy, optimizing in vivo delivery, and mitigating off-target effects. By detailing these challenges and outlining future research directions, this review underscores the revolutionary potential of ncRNA-focused diagnostics and therapies for managing pediatric medulloblastomas, offering new paths for improving survival outcomes and quality of life in affected children.
-
-
-
TGF-β: The Molecular Mechanisms of Atherosclerosis - insights into SMAD Pathways and Gene Therapy Prospects
Available online: 15 April 2025More LessAtherosclerosis, a leading cause of global morbidity and mortality, is characterized by plaque formation resulting from the accumulation of fibrous elements, lipids, and calcification in arteries, leading to complications such as ischemic stroke, coronary artery disease, and myocardial infarction. Traditional treatments primarily address symptoms but fail to target underlying causes, prompting exploration of novel approaches like gene therapy. The TGF-β family, encompassing TGF-β1, TGF-β2, and TGF-β3, plays a critical role in cellular processes including proliferation, apoptosis, and migration, with its dysregulation strongly linked to cardiovascular diseases. In atherosclerosis, TGF-β influences key factors, such as macrophage cholesterol regulation, plaque stability, and vascular smooth muscle cell function, while also contributing to endothelial dysfunction-an early stage in disease development. Personalized medicine has highlighted the importance of tailoring therapies to genetic profiles, particularly regarding TGF-β pathway variations such as SNPs in TGF-β1 and TGFBR2, which could inform more precise interventions. Emerging technologies like CRISPR-Cas9 and RNA-based therapies enable targeted modulation of these genetic factors, offering new avenues to mitigate disease progression. CRISPR-Cas9 allows direct editing of gene loci linked to atherosclerosis, potentially correcting mutations or modulating expression levels, while RNA-based therapies, including siRNAs and antisense oligonucleotides, provide additional precision tools for addressing dysregulated genes. This review focuses on identifying key genes and additional molecular players involved in or regulated by the TGF-β pathway that may serve as precise targets for gene therapy intervention in atherosclerosis and related cardiovascular diseases. By targeting genes involved in cholesterol metabolism, inflammation, and endothelial function, gene therapy offers a targeted strategy to ameliorate the genetic drivers of these conditions. In summary, modulation of TGF-β signaling by gene therapy has the potential to revolutionize the treatment of atherosclerosis and other cardiovascular diseases while shedding light on the underlying genetic mechanisms of these disorders.
-
-
-
COL4A1 Promotes Gastric Cancer Progression by Regulating Tumor Invasion, Tumor Microenvironment and Drug Sensitivity
Authors: Xiaojun Qian, Wei Jia, Yuntian Li, Jian Chen, Jinguo Zhang and Yubei SunAvailable online: 07 April 2025More LessBackgroundCollagen type IV alpha 1 chain (COL4A1), which has been proven to be a potential biomarker in Gastric Cancer (GC), but its role in tumors and the tumor microenvironment (TME) needs further explanation.
MethodsWe analysed the relationship between COL4A1 and clinical characteristics based on The Cancer Genome Atlas (TCGA) database and verified by tissue microarrays as well as GC cell lines using immunohistochemistry, Q-PCR, Western blot, cell proliferation assays, colony formation assays, cell invasion and migration assays. The immune infiltration and drug sensitivity information between high and low COL4A1 expression were analysed by R package and pRRophetic package. Finally, we established a nomogram based on COL4A1 expression using the bootstrap method.
ResultsCOL4A1 was overexpressed in gastric carcinoma compared with normal gastric tissue, indicating a poor prognosis of GC patients in the TCGA database which were also validated by GC tissue microarrays. GO, KEGG and hallmark enrichment analyses indicated that COL4A1 was mainly associated with the extracellular matrix than malignant proliferation. By siRNA transfection, we found that COL4A1 knockdown inhibited cell colony formation, invasion and migration but did not affect cell proliferation, similar to previous results. Immune infiltration and drug sensitivity analysis showed that COL4A1 was negatively correlated with antitumor immunity and positively correlated with multidrug resistance. By developing a nomogram model based on 8 risk factors, including COL4A1, patients with better clinical outcomes could be accurately distinguished.
ConclusionCOL4A1 is identified as a prognostic marker and potential therapeutic target in gastric cancer. Its overexpression correlates with poor prognosis, tumor invasion, and immunosuppression. A nomogram based on COL4A1 can predict patient outcomes. Future research should validate these findings and explore targeted therapies.
-
-
-
Development of Potential Pharmacological Targets to Normalize Gene Expression in Islets of Type 2 Diabetic Patients
Available online: 07 April 2025More LessBackgroundType 2 diabetes (T2D) is a disease of high prevalence that is expected to continue increasing despite the pharmacological treatments available; in most cases, it is difficult to control. Therefore, more research on experimental drugs is necessary to propose better treatments.
ObjectiveThis study aimed to identify the molecular alterations of pancreatic islets in type 2 diabetes through multi-omics data integration and possible pharmacological targets using bioinformatics methods.
MethodsIn this study, the OmicsNet tool was used to integrate the multi-omics data associated with T2D, and the protein-protein interaction was visualized. Then, gene ontology and KEGG pathways analyses were carried out. Using the DrugRep server, the hub genes obtained underwent a virtual screening with experimental drugs, and twelve experimental drugs were selected to execute the molecular docking by CB-Dock2. Finally, the interactions were displayed in BIOVIA software.
ResultsOur results showed that the main molecular alterations of pancreatic islets in T2D were enzyme binding, mitochondrial metabolism, transcription factors, etc. They were involved in glucose uptake, receptor insulin signaling, and secretion. The molecular docking showed that SRC, AKT1, CREBBP, and HSP90AA1 were therapeutic targets for DB02729, DB04877, DB07970, DB07789, and DB03373.
ConclusionWe identified some alterations in the pancreas of patients with T2D, ten hub genes, and five experimental drugs that could potentially correct gene expression abnormalities. However, further studies are required to validate these results.
-
-
-
Mapping the Multifaceted Roles of ZNF280A: Insights into Prognosis, Immunity, and Function Across Pan-Cancer
Authors: Xiong Qin, Boyuan Qiu, Kai Xiong, Chuangming Huang, Xi Xie, Dejie Lu and Bo ZhuAvailable online: 07 April 2025More LessIntroductionZNF280A, a pivotal member of the zinc finger protein family, is significantly involved in vital cellular functions including cell proliferation, programmed cell death, cellular invasion, metastasis, and resistance to therapeutic drugs across various malignancies. However, its comprehensive role in pan-cancer has not been thoroughly investigated.
MethodsThis research aims to elucidate the oncogenic and immunological functions of ZNF280A across different types of cancer. We conducted an extensive analysis of ZNF280A expression levels, prognostic significance, functional pathways, methylation status, and interactions with immune cells, while also examining immune infiltration patterns and responses to immunotherapy using diverse databases.
ResultsOur findings reveal that ZNF280A expression is significantly upregulated in numerous cancers, correlating with adverse patient prognosis. This association appears to be linked to its involvement in key cancer-related pathways, including the Ras signaling pathway, and its correlation with ZNF280A methylation levels, microsatellite instability (MSI), tumor mutational burden (TMB), and the dynamics of immune cells. Notably, ZNF280A seems to undermine anti-tumor immunity and the effectiveness of immunotherapeutic approaches by promoting the infiltration of immune cells and compromising the functionality of cytotoxic T lymphocytes.
ConclusionThese findings suggest that ZNF280A holds promise as a valuable indicator for forecasting patient outcomes and assessing the effectiveness of immunotherapy, thereby opening avenues for further exploration into targeted therapeutic approaches.
-
-
-
In Silico ADMET Studies, Molecular Docking and Molecular Dynamics Simulation of Thiadiazole Derivatives for the Identification of Putative HsaA Monooxygenase Inhibitors
Available online: 03 April 2025More LessIntroductionThe rise of drug-resistant strains of Mycobacterium tuberculosis (Mtb) represents a substantial public health challenge. Current TB treatments involve the combination of several antibiotics and other agents. However, the development of drug resistance, reduced bioavailability, and elevated toxicity have rendered most of the drugs less effective.
MethodsTo resolve this problem, the identification of novel anti-tuberculosis agents with novel mechanisms of action is the need of the hour. HsaA monooxygenase is an enzyme involved in cholesterol metabolism, particularly in certain strains of Mycobacterium bacteria. This research focuses on discovering new inhibitors for HsaA from a pool of 40 compounds using computational techniques like molecular docking and Molecular Dynamics (MD) simulations along with comparing it with GSK2556286.
ResultsDocking studies revealed that AK05 and AK13 showed good binding affinity as compared to GSK2556286. The docking scores of AK05, AK13, and GSK2556286 are -9.4, -9.0, and -8.9 kcal/mol, respectively. ADMET studies showed that these thiadiazole derivatives can be investigated as lead molecules for the development of novel antituberculosis drugs. MD simulation studies showed that both of the compounds AK05 and AK13 were stable at the binding site with RMSD below 0.25 nm.
ConclusionAll these findings demonstrated that AK05 and AK13 could be used as potent compounds for the development of HsaA monooxygenase inhibitors.
-
-
-
Immunogenic Cell Death-relevant Molecular Patterns, Prognostic Genes, and Implications for Immunotherapy in Ovarian Cancer
Authors: Pijun Gong, Jia Li, Yinbin Zhang and Shuqun ZhangAvailable online: 03 April 2025More LessBackgroundOvarian cancer (OV) is one of the deadliest gynecologic cancers, and approximately 75% of serous ovarian cancer (SOC) patients are diagnosed at advanced stages due to the lack of effective biomarkers.
ObjectiveImmunogenic cell death (ICD) has been investigated in many comprehensive studies, and the role of ICD in ovarian cancer and its impact on immunotherapy is not yet known.
MethodsThe NMF clustering analysis was employed to categorize OV samples into different subgroups. Survival, mutation, and CNV analyses were performed in these clusters. ESTIMATE, CIBERSORT, TIDE, and drug sensitivity analyses (based on GDSC) were also performed on the subtypes. Then, differentially expressed immunogenic cell death genes (DE-ICDGs) in OV were obtained by crossing the DEGs between cluster3 vs. cluster1, DEGs from the TCGA-GTEx dataset, and DEGs from the GSE40595 dataset. Functional enrichment analysis of DE-ICDGs was then performed. The signature genes related to the prognosis of OV in three OV datasets were excavated by drawing Kaplan-Meier curves. Finally, quantitative real-time PCR (qRT-PCR) was performed to verify the expression trends of the signature genes.
ResultsThe NMF clustering analysis categorized OV samples into three distinct groups according to the expression levels of ICDGs, with differential analysis indicating that Cluster3 represented the subgroup with high ICD expression. Mutation and CNV analysis did not differ significantly between clusters, but Amp and Del's numbers did. Immuno-infiltration analysis revealed that cluster3 showed significant differences from cluster1 and cluster2. Immunotherapy and drug sensitivity analysis showed differences in immunotherapy and chemotherapy sensitivity between the clusters. The DEGs in cluster3 vs. cluster1, TCGA-GTEx dataset and GSE40595 dataset were intersected to obtain a total of 71 DE-ICDGs, and functional enrichment result suggested that the DE-ICDGs were significantly correlated with inflammatory response, complement system and positive regulation of cytokine production. 2 DE-ICDGs (FN1 and LUM) were identified that were associated with OV prognosis and were validated significantly down-regulated in the SOC group with PCR.
ConclusionWe identified ICD-associated subtypes of OV and mined 2 OV prognostic genes (FN1 and LUM) associated with ICD, which may have important implications for OV prognosis and therapy.
-
-
-
Decoding Colorectal Cancer: Key Genes and Pathways in the Chinese Population Revealed
Authors: Dongbing Li and Guizhen LyuAvailable online: 03 April 2025More LessBackgroundAs the leading cause of cancer-related deaths globally, colorectal cancer (CRC) ranks third in prevalence. Gene Expression Omnibus (GEO) offers clinicians and bioinformaticians an accessible platform for genomic research across various cancer types, with a particular emphasis on CRC.
ObjectiveWe aim to uncover key genes and pathways in the Chinese CRC population.
MethodsWe identified differentially expressed genes (DEGs) in CRC utilizing four microarray datasets sourced from the GEO database, all specifically from the Chinese population. Functional enrichment analysis was conducted to uncover the molecular mechanisms at play in CRC. The PPI network and CytoHubba tools were employed to identify key genes linked to CRC, with further validation through databases such as Gene Expression Profiling Interactive Analysis (GEPIA), ONCOMINE, and the Human Protein Atlas (HPA).
ResultsOur analysis identified 188 DEGs with overlapping significance, comprising 97 up-regulated and 91 down-regulated genes. Gene Ontology (GO) analysis indicated that up-regulated DEGs were predominantly involved in the extracellular space. In contrast, the down-regulated ones were linked to bicarbonate transport and extracellular exosomes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis highlighted the involvement of up-regulated DEGs in cytokine-cytokine receptor interactions and the TNF signaling pathway. In contrast, the down-regulated genes were associated with nitrogen metabolism and bicarbonate reclamation in the proximal tubule. Notably, the transcriptional levels of CCL20, CDC20, CXCL1, CXCL2, CXCL5, NEK2, and PPBP were elevated in CRC tissues compared to normal tissues. In addition, CXCL12 showed a decreased expression. Additionally, the translational levels of CDC20 and PPBP were found to be higher in CRC tissues.
ConclusionEight genes (CCL20, CDC20, CXCL1, CXCL12, CXCL2, CXCL5, NEK2, and PPBP) were identified as potential diagnostic indicators for CRC. The identified pathways, such as cytokine-cytokine receptor interactions and TNF signaling, along with nitrogen metabolism and bicarbonate reclamation in the proximal tubule, are hypothesized to have a role in the genesis and progression of CRC. This study provides unique insights into the etiology and progression of CRC within the Chinese population.
-
-
-
Target Selectivity of Cysteine Protease Inhibitors: A Strategy to Address Neglected Tropical Diseases
Available online: 25 March 2025More LessNeglected tropical diseases (NTDs) are a group of infectious diseases that mainly affect the population living in poverty and without basic sanitation, causing severe damage to countries' economies. Among them, Leishmaniasis, Chagas disease, sleeping sickness, and related diseases such as Malaria stand out, which, despite being well known, have limited treatments based on old drugs and have high rates of parasite resistance. In addition, current drugs have an uncertain mechanism of action, and there is a need to identify new mechanisms to overcome problems related to side effects and resistance. In a sense, exploring cysteine proteases (CPs) may be a promising alternative that can lead to discovering innovative drugs that may be useful against these diseases. However, exploring CPs in drug discovery should be a cautious and rational process since parasitic CPs show a high degree of homology with human CPs, raising the need to identify increasingly specific patterns of target selectivity to identify safer drugs with fewer side effects. Finally, in this review, we present the main aspects related to the design of CP inhibitor drugs, highlighting structural features of ligands and targets that can be used in the design of new compounds against Leishmaniasis (LmCPB), Chagas disease (Cruzain), sleeping sickness (rhodesain) and malaria (falcipain). We hope our findings can guide researchers in searching for an innovative drug that can be used against these diseases that threaten the world population's health.
-
-
-
Identification of a Protein-truncating Variant in SCAPER Gene Causing Syndromic form of Intellectual Disability
Available online: 25 March 2025More LessBackgroundIntellectual disability (ID) is characterized by impairments in cognitive functioning and adaptive behavior. Globally, it affects 1-3% of the general population, with an increased prevalence in consanguineous families. It is a clinically heterogeneous disorder that can manifest as a variable phenotype. Intellectual developmental disorder and retinitis pigmentosa (IDDRP) is a rare syndrome in which patients present with both ID and retinitis pigmentosa.
Aims and ObjectivesThis study examined a consanguineous family to identify disease-associated pathogenic mutations and elucidate their potential functional impact in patients with IDDRP.
MethodologyClinical assessment of the patients revealed characteristics consistent with both intellectual disability (ID) and retinitis pigmentosa. Individuals affected by IDDRP were subjected to whole exome sequencing (WES), and the identified candidate pathogenic variants were validated by Sanger sequencing. Computational analyses were conducted to evaluate the impact of these mutations on the protein structure and function.
ResultsWES identified a protein-truncating variant, c.2605A>T (p.Lys869Ter), in the S-phase cyclin A-associated protein in the endoplasmic reticulum (SCAPER) gene. SCAPER has previously been reported to cause IDDRP. In silico analyses revealed structural and interactional alterations in the SCAPER protein. This variant is novel in the Pakistani population and has not been previously reported. This variant exhibits an autosomal recessive mode of inheritance and segregates among the investigated affected and unaffected family members.
ConclusionThe present study expands the spectrum of disease-causing variants in SCAPER and will contribute to a better understanding of the genetic etiology of IDDRP.
-
-
-
The Protective Effects of Ferula assa-foetida L. oleo-gum Resin on Diabetic Neuropathy in Animal Models
Available online: 18 March 2025More LessBackgroundFerula assa-foetida L. has traditionally been used to treat various diseases, including infections, asthma, stomach aches, and flatulence. Previous studies have highlighted its anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, and nerve-stimulating properties.
ObjectiveThis study aimed to evaluate the therapeutic effects and molecular mechanisms of action of the oleo-gum resin from Ferula assa-foetida L. in an animal model of diabetic neuropathy (DN).
MethodsThe essential oil of oleo-gum resin from Ferula assa-foetida L. was analyzed using Gas Chromatography-Mass Spectrometric Analysis. Forty-two male Wistar rats were included in the study, with diabetes induced via streptozotocin (STZ) injection. The rats were randomly assigned to seven groups (n=6 per group) and treated with different doses of Ferula assa-foetida L. extract (100, 200 mg/kg/day) or oil (10, 20 mg/kg/day), alongside appropriate control groups. After a five-week treatment period, samples of dorsal root ganglia (DRG), pancreatic tissue, and blood were collected. Key parameters assessed included blood glucose and insulin levels, motor function tests, oxidative stress protein generation, pro-inflammatory cytokine gene expression, and histopathological analyses.
ResultsTreatment with various doses of Ferula assa-foetida L. extract or oil, as well as gabapentin, led to significant improvements. These included reduced blood sugar levels, increased insulin levels, and improved glycemic control. Motor function was enhanced, while the expression of pro-inflammatory cytokines and oxidative stress markers was significantly reduced.
ConclusionThese findings indicate a promising therapeutic approach for managing DN. Further studies are warranted to elucidate the underlying mechanisms of Ferula assa-foetida L.'s beneficial effects in DN.
-
-
-
Prognostic Role of Global DNA Methylation in Renal Cancer Reveals Decitabine Treatment Benefit
Authors: Wei Wu, Bin Huang, Peng Xia, Quanzhong Liu, Jin Yi, Ruohan Zhang and Qianghu WangAvailable online: 12 March 2025More LessBackgroundRenal cancer presents a significant global health challenge due to its rising incidence and mortality rates. Often undetected in early stages, it complicates diagnosis and treatment. Current therapies face resistance and limited effectiveness, especially in advanced stages. The diverse subtypes of renal cancer highlight the need for new biomarkers and risk assessment tools for targeted treatments.
ObjectiveThis study aims to assess the prognostic significance of global DNA methylation (GM) levels in renal cancer, identify new biomarkers, and evaluate the therapeutic potential of the DNA methyltransferase inhibitor decitabine.
MethodsData on RNA sequencing, gene mutations, DNA methylation, and clinical outcomes were collected from TCGA and GEO databases. We calculated global DNA methylation scores (GMS) and categorized patients into high, intermediate, and low GMS groups. Survival analysis and genomic analyses were conducted to explore the relationships between GMS, clinical outcomes, and tumor characteristics.
ResultsHigher GMS was identified as an independent prognostic factor associated with worse outcomes in renal cancer. Patients with elevated GMS showed increased mutations, copy number variations, and a more aggressive tumor phenotype. Treatment with decitabine was observed to reduce tumor hypermethylation and downregulate cell cycle pathway activity, indicating potential therapeutic benefits.
ConclusionGlobal DNA methylation plays a significant role in renal cancer prognosis. GMS may serve as valuable biomarkers for prognosis and personalized treatment strategies. Decitabine shows potential efficacy for high GMS patients, particularly through its impact on cell cycle regulation, underscoring the importance of personalized approaches in cancer treatment.
-
-
-
Near-infrared (NIR) Fluorophores in Cancer Bioimaging and Therapy
Authors: Libo Yan, Weiming Zhang, Daogang Wang, Min Zhang, Ning Xu, Mengzhe Yang and Tao RenAvailable online: 12 March 2025More LessThe development of multiple fluorescent agents has contributed to cancer diagnosis and therapy. Near-infrared (NIR) dyes have already been well studied and displayed significant potential in cancer bioimaging and therapy due to their unique characteristics. In the present literature, we illustrated the updated NIR classification and characteristics as well as their applications in (pre-) clinical cancer imaging and treatment. The NIR-based photodynamic therapy (PDT) and photothermal therapy (PTT) were also discussed, including their present limitations. Taken together, the future development of NIR fluorophores would greatly improve cancer precision diagnosis and targeted therapy as one of the promising approaches in this field.
-
-
-
The Role of MicroRNAs in Mitochondrial Homeostasis and their Involvement in the Pathogenesis of Obesity and Metabolic Syndrome: A Focus on MicroRNAs
Available online: 07 March 2025More LessThe maintenance of the functional potential of mitochondria is directly related to epigenetic factors, microRNAs (miRs), and mitomicroRNAs (mitomiRs). An important role in the development of metabolic syndrome (MetS)/obesity is attributed to miRs, which have pro-inflammatory or anti-inflammatory potential and can penetrate the mitochondrial matrix. Deciphering the mechanisms responsible for the transport of miRs into the mitochondria would, we believe, allow us to use the knowledge obtained to build designs for the transport of drugs/mitomiRs into cells/mitochondria with low toxicity. A thorough understanding of the polyfunctionality/versatility of individual mitomiRs in specific cells (cell cultures, tissues: adipocytes, brain cells) will allow targeting cellular metabolism to comprehensively block the central link in disease pathogenesis with low potential side effects of this treatment. In this review, we have attempted to identify the key miRs/mitomiRs associated with MetS that affect mitochondrial function. In our opinion, further research should focus specifically on the miR/mitomiRs described here and further investigate their potential in the development of MetS and its components.
-
-
-
Development of an Inflammation-related Gene-based Diagnostic Risk Model and Immune Infiltration Analysis in Bipolar Disorder
Available online: 05 March 2025More LessObjectiveThis study aimed to construct a diagnostic risk model for Bipolar Disorder (BD) using inflammation-related genes (IRGs) and to explore the role of immune cell infiltration in BD pathogenesis.
MethodsBD datasets (GSE23848, GSE124326, GSE39653, and GSE46449) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the edgeR package. The intersection of DEGs and IRGs was defined as differentially expressed IRGs. A LASSO regression model was used to identify optimal biomarkers, which were then utilized to construct a diagnostic risk model. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic accuracy of the biomarkers. Internal validation was performed with GSE124326, while external validation utilized GSE23848, GSE39653, and GSE46449. The xCell module in the IOBR package was employed to assess immune cell infiltration proportions. The relationship between IRGs, the diagnostic risk model, and immune cell dynamics was further analyzed.
ResultsA total of 2345 DEGs were identified in GSE124326. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that inflammatory pathways are critically involved in BD pathogenesis. A total of 69 BD-related IRGs were identified. Six key IRGs (IL33, DNASE1L3, IL2RA, CD70, CLEC5A, and SLPI) were identified through LASSO regression analysis and used to develop a diagnostic risk model. Internal and external validations confirmed the robust diagnostic performance of the risk model. Immuno-infiltration analysis showed significant differences in immune cell infiltration between BD patients and healthy controls. The diagnostic risk model and four potential biomarkers (DNASE1L3, IL2RA, CD70, and SLPI) showed strong correlations with various immune cell types.
ConclusionA diagnostic risk model for BD was constructed based on IRGs, highlighting the critical role of immune cell infiltration in BD pathogenesis.
-
-
-
The Role of Lipid Rafts in the Mitogen-Activated Protein Kinase Signaling in Cancer
Available online: 03 March 2025More LessSpecific regions of plasma membrane enriched with cholesterol and sphingolipids, recognized as lipid rafts or membrane rafts, play an essential part in cell signal transduction. The ability to actively utilize or exempt signaling proteins for the reinforcement or inactivation of specific signaling pathways is the prominent characteristic of lipid rafts, enabling them to act as lipid-based units that can affect signal transduction and cell activity. A connection between lipid raft structure changes and enhancement of the mitogen-activated protein kinase (MAPK) pathway has been reported. Moreover, alteration in lipid raft construction in cancer has also been confirmed. Thus, this review aimed to study the relationship between lipid rafts and the MAPK signaling pathway in a variety of cancer types.
-
-
-
Molecular and Biochemical Evidence of Edaravone's Impact on Dasatinib-induced AGS Cell Senescence: A Promising Strategy for Gastric Cancer Therapy
Available online: 24 February 2025More LessIntroductionInternal or external stress can induce cellular senescence, which reduces cell division. These metabolically active cells contribute to medication resistance. We examined the potential for edaravone (Eda) to cause apoptosis in dasatinib (Das)-induced senescent gastric adenocarcinoma cells (AGS). Our goal was to develop a new stomach cancer treatment.
MethodsAll Eda doses evaluated were nontoxic to cells. Das decreased AGS cell survival in a dose-dependent manner. The study found that Das (5-10 μM) and Eda (100 μM) caused cell senescence in AGS cells. This was shown by increased β-galactosidase enzyme activity and reactive oxygen species levels and decreased telomerase enzyme activity. These are the biggest signs of aging.
ResultsThis combination therapy also upregulated the expression of cell-senescence genes p53, p16, p21, and p38. This resulted in increased expression of inflammation genes such as TNF-α, IL-1β, and IL-6.
ConclusionThe scratch assay showed that this combination medication down-regulated the cell migration-regulating matrix metalloproteinase-2 (MMP2) gene. Both Das and Eda decreased AGS cell proliferation, suggesting treatment with Eda may prevent metastasis.
-
-
-
Therapeutic Effect of Rosolic Acid against Endothelial Dysfunction in Diabetic Wistar Rats
Authors: Karan Naresh Amin and Kunka Mohanram RamkumarAvailable online: 24 February 2025More LessIntroductionEndothelial dysfunction (ED) results from impaired vascular endothelial cell function, disrupting key processes such as hemostasis, vascular tone regulation, vasculogenesis, angiogenesis, and inflammation. These processes are mediated by a complex signaling network involving hormones, cytokines, and chemokines. ED is recognized as a major contributor to the onset and progression of several micro- and macrovascular diseases, including diabetes. Our previous study demonstrated that the polyphenol Rosolic acid (RA) protects against endoplasmic reticulum (ER) stress-induced ED in vitro by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Additionally, RA enhanced the proliferation and survival of pancreatic β-cells in a co-culture model with endothelial cells under ER stress conditions.
MethodsIn this study, we investigated RA's protective effects against diabetes-induced ED using high-fat diet (HFD)-fed and streptozotocin-induced type-2 diabetic rat models. We evaluated RA’s impact on vascular function and metabolic parameters in these models.
ResultsRA significantly mitigated diabetes-induced ED in the aortic tissues of HFD-fed diabetic Wistar rats. RA treatment improved glucose tolerance and reduced hyperlipidemia, showing efficacy comparable to the anti-diabetic drug Gliclazide. Moreover, RA elevated Nrf2 levels and its downstream target genes in aortic tissues while reducing ED markers such as Intercellular Adhesion Molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), and endothelin-1.
ConclusionThese findings highlight RA as a promising therapeutic agent for diabetes and its associated vascular complications, with potential for broader clinical applications.
-
-
-
HER3-targeting Antibody-drug Conjugates Therapy for Solid Tumors: Recent Advances and Future Potentials
Authors: Xuerui Wang, Linlin Zhao, Fangfang Gao, Yuan Meng, Jie Yang, Meiying Zhu, Dongying Liao, Yingjie Jia and Fanming KongAvailable online: 24 February 2025More LessIn most advanced cancers, standard medical treatments are generally employed. With the emergence of Antibody-Drug Conjugates (ADCs), more optimal therapeutic methods have become available for treating tumors. ADC is composed of a monoclonal antibody that targets a specific antigen and a cytotoxic payload, which conjugates via the synthetic linkers. Therefore, ADC combines the accurate targeting of monoclonal antibodies with the potent efficacy of cytotoxic chemotherapy drugs while circumventing systemic toxicity. Besides, the epidermal growth factor receptor (EGFR) family, expressing differently between tumors and normal tissues, is one of the most frequently targeted antigens for ADC therapy, which mainly encompasses EGFR1/ERBB1, human epidermal growth factor receptor 2/ epidermal growth factor receptor 2 (HER2/ERBB2), HER3/ERBB3, and HER4/ERBB4. In contrast to other targets, HER3 stands out as a promising one, closely associated with the pathogenesis of treatment resistance in several cancers. Moreover, solid tumors, which are more prevalent than hematological malignancies, present a vast field of opportunities for the development of HER3-targeting ADCs. However, research on HER3-targeting ADCs treating solid tumors remains insufficient. Therefore, it is imperative for researchers to gather more clinical trial data and continue to elucidate the efficacy and safety of HER3-ADCs in solid tumors. This review summarizes recent advances and future potentials, aiming to provide insights into targeted therapy. We hope that this review will provide useful information to physicians in the field.
-
-
-
DDX59-AS1: A Novel Prognostic Biomarker and Immunotherapy Predictor in Lung Adenocarcinoma
Authors: Yanli Wang, Wei Li, Su Wei, Lixi Zhang, Dongbing Li and Xu QiAvailable online: 18 February 2025More LessBackgroundThe precise function of DDX59 Antisense RNA 1 (DDX59-AS1) in lung adenocarcinoma (LUAD) has yet to be fully elucidated.
ObjectiveThis study uses bioinformatics analysis and experimental validation to investigate the association between DDX59-AS1 and LUAD.
MethodsThis study uses statistical analysis and database interrogation to investigate the potential association between DDX59-AS1 expression and various clinical characteristics, prognostic factors, regulatory networks, and immune infiltration in LUAD. The quantification of DDX59-AS1 expression in LUAD cell lines is conducted through the use of quantitative real-time polymerase chain reaction (qRT-PCR).
ResultsDDX59-AS1 showed significantly elevated levels of expression in patients with LUAD. High levels of DDX59-AS1 expression were found to be significantly associated with poorer overall survival (OS) in patients with LUAD (p = 0.024). Furthermore, an independent correlation was observed between high DDX59-AS1 expression (p = 0.037) and OS in LUAD patients. DDX59-AS1 was found to be involved in various pathways, including glutathione metabolism, proteasome function, and the cytosolic DNA sensing pathway, among others. A significant correlation was observed between the expression levels of DDX59-AS1 and immune cell infiltration in the context of LUAD. Notably, elevated expression of DDX59-AS1 was observed in LUAD cell lines compared to the non-cancerous Beas-2B cell line.
ConclusionA significant correlation was observed between elevated DDX59-AS1 expression in patients with LUAD and adverse prognosis, alongside increased immune infiltration. These results indicate that DDX59-AS1 may function as a prognostic marker for LUAD and a potential predictor of immunotherapy response.
-
-
-
Bibliometric Analysis of Research on Traditional Chinese Medicine Treatment of Myocardial Infarction from 2007 to 2024 Based on the Web of Science Database
Authors: Qi Lan, Hao Wu, Ming-Tai Chen, Jin-Yi Xue, Maryam Mazhar, Zi-Wen Deng, Yuan Zou, Ping Liu, Gang Luo, Li Dong and Meng-Nan LiuAvailable online: 18 February 2025More LessBackgroundMyocardial infarction (MI) is a common critical syndrome in the late development of cardiovascular diseases (CVDs), and traditional Chinese Medicine (TCM) treatment has become an essential branch in this field.
ObjectiveThis study aimed to use bibliometric methods to examine the research trajectory of TCM treatment of MI from 2007 to 2024 from a multidimensional perspective and analyse its characteristics, hotspots, and frontiers.
MethodsThis study used the search formula TS OR TI OR AB OR A (“traditional Chinese medicine” or “Chinese medicine” or “TCM” or “traditional medicine, Chinese” or ” Chinese traditional medicine” or “Chinese medicine, traditional”) AND TS OR TI OR AB OR AK (“myocardial infarction” or “myocardial infarctions” or ” infarction, myocardial” or “infarctions, myocardial” or “myocardial infarct” or “MI”) to find the Web of Science Core Collection (WOSCC) of relevant studies from 01/01/2007 to 04/29/2024. Target literature records were analysed and graphed using CiteSpace, VOSviewer, and Scimago Graphica.
ResultsA total of 754 records were obtained and 399 records were finally retained after screening. Countries, institutions, authors, and journals were visually analyzed. The current research hotspots and frontiers included Salvia miltiorrhiza, ischemia-reperfusion injury, pathway, molecular docking, and network pharmacology.
ConclusionThis research study would enrich the researchers' understanding of the existing research methodology and future development trends and provide a more efficient research methodology for the research on the mechanism of action of TCM for the treatment of MI and its clinical trials.
-
-
-
Identification of Ferroptosis-Related Prognostic Models and FDFT1 as a Potential Ferroptosis Driver in Colorectal Cancer
Authors: Lili Duan, Lu Cao, Jinqiang Liu, Zixiang Wang, Jie Liang, Fan Feng, Jian Zhang, Liu Hong and Jianyong ZhengAvailable online: 13 February 2025More LessAimsWe aimed to develop Ferroptosis-Related Gene (FRG) signatures to predict overall survival (OS) along with disease-free survival (DFS) in individuals with colorectal cancer (CRC).
BackgroundPrediction of CRC prognosis is challenging. Ferroptosis constitutes a newly reported kind of cell death, and its association with CRC prognosis remains unexplored.
ObjectiveThis research endeavored to establish a prognostic risk signature for colorectal cancer by leveraging ferroptosis-related genes (FRGs), with the objective of refining prognostic precision in clinical settings.
MethodsThe clinical data and mRNA expression profiles were obtained from The Cancer Genome Atlas (TCGA) colorectal cancer cohorts. The Lasso algorithm was employed to develop the overall survival (OS) and disease-free survival (DFS) prediction models. These models were subsequently validated using independent data from GSE38832.
ResultsOur research unveiled a significant difference in the expression levels of 85% of ferroptosis-related genes (FRGs) between CRC tissues and paracancer tissues. Out of these, 11 prognostic genes were pinpointed through univariate Cox analysis. By employing two models, patients were stratified into low- and high-risk groups based on predicted risk scores, which were subsequently validated as independent prognostic factors via multivariate Cox analysis. The robustness of these models was further confirmed through Receiver Operating Characteristic (ROC) curve analysis. Functional enrichment analysis indicated a predominance of cancer-associated pathways in the high-risk group, including WNT signaling, along with variations in immune status between the two risk categories. Leveraging the Connectivity Map (CMap) database, a total of sixteen potential therapeutic drugs were identified. Additionally, in vitro experiments corroborated that Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1) was underexpressed in CRC and exhibited tumor suppressive properties. More specifically, FDFT1 may augment ferroptosis in CRC by modulating the expression of the Iron-Sulfur Cluster Assembly Enzyme (ISCU).
ConclusionOur study highlighted the significance of ferroptosis-related genes in the pathogenesis of CRC and underscored the potential of ferroptosis-related gene-based risk signatures as valuable tools for improving prognostic accuracy and tailoring therapeutic strategies. However, the validity of these predictive models required further validation through real-world studies to ensure their reliability and applicability.
-
-
-
The Pathophysiological Role of Mitochondria-associated Membranes in Coronary Artery Disease and Atherosclerosis
Authors: Junyan Zhang, Zhongxiu Chen, Li Rao and Yong HeAvailable online: 12 February 2025More LessMitochondria-associated membranes (MAMs) are pivotal in cellular homeostasis, mediating communication between the endoplasmic reticulum and mitochondria. They are increasingly recognized for their role in atherosclerosis and coronary artery disease (CAD). This review delves into the cellular perspective of MAMs' impact on atherosclerosis and CAD, highlighting their influence on disease progression and the potential for therapeutic intervention. MAMs are implicated in key pathophysiological processes such as the generation of reactive oxygen species, calcium homeostasis, myocardial ischemia-reperfusion injury, autophagy, lipid synthesis and transport, and energy metabolism—fundamental to the development and progression of atherosclerosis and CAD. The complex interplay of MAMs with these pathological processes underscores their potential as therapeutic targets. This review synthesizes current understanding and emphasizes the need for further research to elucidate the multifaceted roles of MAMs in atherosclerosis and CAD, offering avenues for developing novel strategies aimed at improving mitochondrial health and mitigating the impact of these conditions.
-
-
-
New Advancements in Prognostic Biomarkers for Upper Tract Urothelial Carcinoma
Authors: Xiaotong Shi and Guodong ZhuAvailable online: 07 February 2025More LessAs research on upper tract urothelial carcinoma (UTUC) has deepened, the value of biomarkers in the prognostic evaluation of UTUC has been gradually highlighted. As a high-grade epithelial tumor derived from the renal pelvis or ureter, UTUC has a significant prognostic challenge to patients, given its high invasiveness and recurrence rate for the formation of post-operative bladder cancer. To better predict the recurrence and metastasis risk of UTUC, this article provides a comprehensive review of hematologic, urologic, genetic, and histologic biomarker studies on the prognostic assessment of UTUC. This study covers a broad range of different kinds of biomarkers, as shown in the graphical abstract. By systematically analyzing these biomarkers, we will have a better understanding of the biological features of UTUC, and it will provide more comprehensive and accurate information for its prognostic assessment. This will not only help clinicians develop more precise treatment strategies, but also provide patients with more personalized rehabilitation recommendations.
-
-
-
The Role and Molecular Mechanism of Icaritin in the Treatment of Alzheimer's Disease
Authors: Chong-Bo Zheng, Li-Zhen Wu, Wan-Ying Song, Liang Luo, Jia-Ting Cai, Zhi-Hua Huang and Ke-Qiang TianAvailable online: 07 February 2025More LessAlzheimer's disease (AD), a degenerative disease of the central nervous system, affects approximately 70 million individuals worldwide. As the number of elderly in the population increases, the prevalence and incidence of AD are increasing annually. Although the drugs are currently used to alleviate certain cognitive symptoms, their overall therapeutic efficacy remains unclear. Consequently, there is significant societal demand for safe and effective therapeutic options. Icaritin (ICT), a bioactive compound derived from Epimedium brevicornu Maxim, has anti-apoptotic, antioxidant, anti-neuroinflammatory, anti-aging, and neuroprotective properties. In recent years, it has garnered significant interest because of its potential preventative and therapeutic effects in the context of AD. In this review, we analyze the therapeutic effects of ICT on AD, namely the inhibition of neuroinflammation, effects against oxidative stress and apoptosis, and promotion of cellular autophagy. The aim of this review was to provide a general reference for the research and development of new drugs, in particular ICT, for the prevention and treatment of AD.
-
-
-
Higher Selective Targeting of Telomeric Multimeric G-quadruplex by Natural Product Berberine
Authors: Jixin Chen, Yi He, Yang Xu, Muhammad Umer, Naureen Anwar, Shiya Wei, Wenbin Liu, Zhangqian Wang and Chao GaoAvailable online: 06 February 2025More LessIntroductionG-quadruplexes (G4s) are non-classical high-level structures that are formed by DNA/RNA sequences and have been a promising target for developing antitumor drugs. However, it is still a challenge to find a ligand that binds to a particular G4 with selectivity. Telomeric multimeric G4s are more accessible for screening for specific ligands due to their higher-order structure compared with telomeric monomeric G4s.
MethodsIn this study, the natural product berberine was found to exhibit a higher selectivity for telomeric multimeric G4 in comparison with other G4s. The mechanism of interaction between telomeric G4s and berberine was further investigated by fluorescence spectra measurements, job plot analysis, and UV titrations. We found that there are three binding sites for berberine on telomeric dimeric G-quadruplex Tel45, which are located at the 5' and 3' terminal G-quartet surfaces and the pocket between the two quadruplex units of Tel45. It was worth noting that the berberine preferred to interact within the interfacial cavity between two G4 units.
ResultsMoreover, via dynamic light scattering (DLS) and native polyacrylamide gel electrophoresis (Native-PAGE) assays, it was found that the particle size of the telomeric multimeric G4s conformation was significantly increased by the addition of berberine. In contrast, the particle sizes of Tel21 did not change significantly after the addition of berberine. An immunofluorescence assay indicated that berberine induced the formation of endogenous telomeric G4 structures along with the related telomeric DNA damage response.
ConclusionThis study provides a hypothetical basis for the development of natural products targeting telomeric G4 as antitumor drugs.
-
-
-
Construction of a Subcutaneous Fat Transplantation Model Infected with Mycobacterium
Available online: 04 February 2025More LessIntroductionFat grafting procedures for body contouring and cosmetic reconstruction have received widespread attention.
MethodsIn recent years, there has been an increase in post-fat grafting infections caused by Mycobacterium abscessus (MA), and there is a lack of representative and standardized murine models of infection; therefore, there has been limited research on the treatment of post-fat grafting MA infections. To overcome this challenge, we constructed an MA infection model after fat grafting.
ResultsBy evaluating skin charge, dermatopathology, and inflammatory markers, we found that the fat graft + 1 × 109 CFU/mL bacterial suspension infection group had significant inflammatory symptoms and elevated inflammatory factors on postoperative day 10.
ConclusionThe model construction process was simple and reproducible, which paves the way for further studies on the impact of MA pathogenesis and the efficacy of new treatments.
-
-
-
Inhibition of Shiga Toxin 2 for E. coli O157 Control: An In-Silico Study on Natural and Synthetic Compounds
Authors: Ashiq Ali, Isra Noor, Maleeha Shaukat, Warda Waheed, Kaynaat Akbar, Ziyi Ji and Zhongjing SuAvailable online: 04 February 2025More LessIntroduction/ObjectivesEscherichia coli strains are known to cause various gastrointestinal disorders, with Shiga toxin 2, a potent cytotoxin, being a key virulence factor contributing to disease severity. Targeting Shiga toxin 2 presents a promising approach for therapeutic intervention in controlling E. coli O157 infections. This study aims to explore natural and synthetic inhibitors as potential therapeutic agents against Shiga toxin 2 through in-silico molecular docking and drug-likeness predictions.
MethodsAn in-silico molecular docking study was conducted using AutoDock Vina and Chimera to assess the binding affinity of various natural and synthetic inhibitors against Shiga toxin 2. The selected inhibitors were evaluated for their drug-likeness based on adsorption, distribution, metabolism, and excretion (ADME) properties, applying Lipinski's rule of five and the Boiled-Egg technique to predict their suitability as potential drugs in biological systems.
ResultsDuring the screening process, luteolin, a natural flavonoid, exhibited the highest binding affinity to Shiga toxin 2, with a notable negative binding energy of -8.7 kcal/mol, indicating strong interaction potential.
ConclusionThe findings suggest that luteolin holds promise as a lead molecule for further development as a therapeutic agent against E. coli infections, warranting additional studies to validate its efficacy and safety.
-
-
-
Achievements and Approaches in the Search for Small-Molecule Dengue NS2B/NS3 Inhibitors
Available online: 27 January 2025More LessWith the escalation of viral infections in recent decades, including the COVID-19 pandemic, viral infectious diseases have increasingly become a global concern, attracting significant attention. Among many viral epidemics, the dengue virus, an RNA virus from the Flaviviridae family, has been reported by the WHO as one of the most prevalent mosquito-borne diseases, infecting roughly 400 million people yearly and spreading across all continents worldwide. In the last two decades, researchers from academia and industry have diligently studied many aspects of the virus, including its structure, life cycle, potential therapeutic agents, and vaccines. Dengvaxia® and Qdenga®, approved vaccines for DENV-4, have been a milestone in dengue prevention and treatment. However, these vaccines have some noticeable drawbacks, including Dengvaxia® being a monovalent vaccine against DENV-4 with a risk of severe dengue infection following the first use, Qdenga® being mainly effective for all 4 serotypes only in the cases of previously infected patients while being effective against only DENV-1 and DENV-2 in dengue-naïve patients. Additionally, no drug against dengue has been approved. Thus, numerous screening campaigns have been conducted on both natural and synthesized substances to search for anti-dengue agents, especially those affing the virus's key protease (NS2B/NS3), to mitigate the dengue fever epidemic. As hit screening is only the first step in the drug discovery and development cycle, subsequent in-depth analyses (using a wide range of approaches from computational simulations to protein-ligand co-crystallization) have been conducted to provide more insights into the characteristics of optimal DENV NS2B/NS3 protease inhibitors. This review discusses recent discoveries in the search for novel inhibitors and highlights the importance of understanding the structural relationship between hits and the NS2B/NS3 protease for effective lead optimization.
-
-
-
Advanced Pain Management in Patients with Terminal Cancer
Authors: Kamilla Khojayeva, Mina Aubakirova and Dmitriy VidermanAvailable online: 24 January 2025More LessUnderstanding and managing pain in patients with terminal cancer is a vital aspect of palliative care, aimed at relieving suffering and improving quality of life in the final stages of illness. Studies indicate that approximately 50% of patients with stage 4 cancer report moderate to severe pain, with a quarter experiencing severe cancer-related pain. Despite opioid prescriptions in 97% of cases, a significant portion of patients continues to suffer unresolved pain during the last week of life. Cancer-related pain is multifaceted, often involving nociceptive, neuropathic, and mixed elements, necessitating a thorough, multidimensional approach to both assessment and treatment. The challenge of opioid tolerance and the potential for addiction demands careful monitoring. Interventional therapies, including nerve blocks and spinal cord stimulation, are gaining attention as valuable complements or alternatives to opioid use. Additionally, alternative methods like yoga, special diets, and food supplements provide diverse options for managing pain. Psychological therapies, including cognitive-behavioral techniques and mindfulness, address the mental and emotional dimensions of pain. Emerging technologies, including artificial intelligence, hold promise for optimizing pain management in terminal cancer care. This review explores advanced pain management strategies, focusing on traditional opioid therapies, modern pharmaceutical innovations, and non-pharmacological approaches such as alternative medicine, massage, dietary interventions, and psychological therapy.
-
-
-
Research Progress of Microneedles in Vaccine Delivery
Authors: Xinyu Qiao, Derun Liu, Wentao Pan, Meilin He and Fanda MengAvailable online: 24 January 2025More LessLarge-scale infectious diseases have become a significant threat to human health and safety. The successful invention of vaccines is the most powerful means for preventing infectious diseases and has greatly improved global human health. Even during the pandemic of COVID-19, which has affected the world, vaccines have played an irreplaceable role. Microneedles (MNs) punctured the stratum corneum and formed microchannels in the skin allowing the vaccine to be efficiently recognized by the abundant antigen-presenting cells (APCs) in the skin to form specific immunity. Compared with traditional vaccination methods, MN transdermal immunization has the advantages of painlessness, easy storage, and efficient immune response. In this review, we summarize the types of vaccines, types of MNs, research progress and clinical research status of MN-based vaccines. We also cover various technologies for vaccine encapsulation, stable delivery of MN vaccines, and a wide range of potential clinical applications. We also outline the future development prospects of the MN system onboard to achieve better clinical benefits.
-
-
-
Role of Glycolysis and Nitric Oxide Pathway Crosstalk in Macrophages in Atherosclerosis
Available online: 24 January 2025More LessAtherosclerosis is a complex multifactorial process that occurs in the vascular wall over many years and is responsible for a number of major diseases that affect quality of life and prognosis. A growing body of evidence supports the notion that immune mechanisms underlie atherogenesis. Macrophages are considered one of the key participants in atherogenesis, but their role in this process is multifaceted, which is largely due to the peculiarities of their cellular metabolism. Glycolysis is not only an important metabolic pathway in macrophages, but is also associated with their immune functions. Glycolysis in macrophages has complex regulatory pathways and is cross-linked with nitric oxide, which together determine the immune function of these cells. Thus, the immune and metabolic links underlying atherogenesis are of research and clinical interest in terms of their potential therapeutic opportunities.
-
-
-
Recent Progress in Curcumin: Extraction, Purification, and Bioactivity
Authors: Hong-Mei Cao, Pei-Hong Zhao, Yi-Tao Zhao, Jiao-Jiao Fang, Ya-Nan Wang and Xin ChenAvailable online: 24 January 2025More LessCurcumin is a natural plant pigment that has been widely used in food production, drug development, and textile engineering. Gaining a deep understanding of the biological activities of curcumin and obtaining high-purity curcumin are of vital importance for basic research and applications of curcumin. In this review, we summarize recent advances in curcumin, mainly focusing on the methods of extracting and purifying curcumin from turmeric as well as applications based on biological activity. We systematically describe the advantages and disadvantages of traditional and modern extraction technologies. The usual purification methods include conventional methods (such as macroporous resin column chromatography and silica gel column chromatography, etc.) and auxiliary modern technologies (such as high-speed countercurrent chromatography and supercritical fluid chromatography). In terms of biological activity, the phenolic hydroxy group and methoxy group of curcumin are closely related to its antioxidant activity, endowing it with strong antibacterial, anti-inflammatory, and antitumor properties. Moreover, the development direction based on its multiple biological activities is also discussed.
-
-
-
Exploring the Therapeutic Potential of Plumbagin: Its Current Applications in Cancer and Neuropsychiatric Disorders
Authors: Tingting Jiang, Dongsheng Zhou, Jiahui Wang, Haitao Huang, Chong Zhang, Jianguo Yan and Yali ZhouAvailable online: 23 January 2025More LessPlumbagin (PL) is an important natural active ingredient in traditional Chinese medicine derived from the Plumbago zeylanica L. It possesses a variety of biological activities, such as anti-inflammatory, anticancer, antioxidant, antimicrobial, and neuroprotective properties, and has great potential for utilization in disease treatment and prevention. Cancer and neurological and psychiatric diseases are two major categories of diseases that currently threaten the physical and mental health of human beings, and their increasing incidence is causing a serious economic burden to all humanity. Based on the physical and chemical properties and pharmacokinetics of plumbagin, this study will focus on summarizing the application research status of plumbagin in cancer, neurological, and psychiatric diseases and analyze the molecular targets and action pathways of its therapeutic efficacy. This study will also briefly summarize the application of plumbagin in other diseases, as well as the existing problems and future development direction of plumbagin in clinical application, aiming to provide new perspectives and strategies for the development of new drugs and the treatment of existing diseases.
-
-
-
Oridonin Suppresses the Malignant Progression of Lung Cancer by Targeting S100A11
Authors: Yulin Luo, Jingjing Li, Yao Chen, Yan Huang, Qi Luo, Qiang Luo, Qingqing Huang, Gang Huang and Mingming JinAvailable online: 23 January 2025More LessBackgroundLung cancer (LC) is the second most lethal cancer and efficient treatments are missing. Our understanding of the underlying pathogenic mechanisms remains limited. Oridonin is a compound extracted from the Chinese herb Rabdosia rubescens with anticancer properties. Nevertheless, its effects on LC and the underlying mechanisms remain unknown.
MethodsIn the current research, A549 and Hcc1833 cells were treated with different doses of oridonin, and cell proliferation and migration were detected using CCK8, EdU, Transwell, and wound healing assays. A subcutaneous tumor and caudal vein metastasis model was generated to verify the inhibitory effects of oridonin on Hcc1833 tumor growth and metastasis in vivo. Proteomics analyses then were performed to examine the regulatory mechanism. LiP-SMap combined with microscale thermophoresis and molecular docking analyses were used to validate the relationship between oridonin and S100A11.
ResultData showed that oridonin suppressed cell proliferation and migration depending on dose and suppressed tumor growth and invasion. LiP-SMap and molecular docking analyses confirmed that oridonin interacted with the Asn-53 residue of S100A11, which inhibited the activation of oridonin. S100A11 overexpression reversed the inhibitory effects of oridonin on cell proliferation and migration.
ConclusionIn conclusion, the data indicate that oridonin suppresses LC malignant progression by targeting S100A11.
-
-
-
Experimental Research Progress of mPGES-1 Inhibitor 2,5-dimethylcelecoxib in Various Diseases
Authors: Zhanfei Chen, Rong Chen, Laiping Wang, Zihao Yu, Weitong Chen, Hua Lin, Liumin Yu, Jinqiu Li, Zhonghui Chen, Jianlin Shen and Nanhong TangAvailable online: 14 January 2025More LessProstaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases. Hence, it is imperative to discover safer and more efficient targets for reducing inflammation. Research has demonstrated that mPGES-1 serves as the final enzyme that controls the rate of prostaglandin E2 synthesis. Moreover, it is only triggered by inflammation and could serve as a possible treatment target instead of COX in cases of inflammation. 2,5-dimethylcelecoxib (DMC) can effectively inhibit mPGES-1 expression, maintain the overall balance of prostaglandins, reduce the secretion of PGE2, and, most importantly, avoid the side effects of COX inhibitors. DMC has the ability to address illnesses through the stimulation of autophagy and apoptosis, as well as the regulation of the immune microenvironment and intestinal flora. This study provides a comprehensive overview of the advancements in DMC within experimental research and offers suggestions for potential avenues of future investigation.
-
-
-
Design, Synthesis, Biological Evaluation and Docking Studies of 2-hydroxy-4-benzyloxy Chalcone Derivatives as Multifunctional Agents for the Treatment of Alzheimer's Disease
Authors: Wei Li, Jing Huang, Zhixin Chen, Dan Zhang, Lin He, Yan Guo, Lei Zhong, Chenwu Yang, Chunyan Yang, Mei Zeng, Jiang Zhu and Zhongcheng CaoAvailable online: 09 January 2025More LessBackgroundAlzheimer's disease (AD) is the most prevalent neurodegenerative disorder, but no drugs can cure this disease. Chalcones possess good antioxidant activity, anti-neuroinflammatory activity, neuroprotective effects, inhibitory effects on Aβ aggregation, and Aβ disaggregation ability. Therefore, chalcones are ideal lead compounds, and the discovery of novel anti-AD agent-based chalcones is necessary.
MethodsHydroxy groups and aryl benzyl ether groups were introduced into chalcone scaffolds to obtain a series of 2-hydroxyl-4-benzyloxy chalcone derivatives. These derivatives were further synthesized, biologically evaluated, and docked.
ResultsMost target derivatives exhibited good anti-AD activities. In particular, compound 11d had excellent inhibitory effects on self-induced Aβ1-42 aggregation (90.8% inhibition rate at 25 μM) and Cu2+ induced Aβ1-42 aggregation (93.4% inhibition rate at 25 μM). In addition, it also exhibited good Aβ1-42 fibril disaggregation ability (64.7% at 25 μM), significant antioxidative activity (ORAC = 2.03 Trolox equivalent), moderate MAO-B inhibition (IC50 = 4.81 μM), selective metal chelation, appropriate BBB permeation, and dramatic anti-neuroinflammatory ability. In addition, compound 11d relieved AD symptoms and protected hippocampal neurons in vivo.
ConclusionCompound 11d is a promising multifunctional anti-Aβ agent.
-
-
-
Therapeutic Effects of Tea Polyphenols on Renal Damage Induced by High Uric Acid
Authors: Lingjuan Liu, Lanjun Shuai, Siyi He, Wei Xiang and Xiaojie HeAvailable online: 07 January 2025More LessBackgroundHyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.
ObjectiveThis study aimed to investigate the renal protective effects of an optimized tea polyphenol formula and allopurinol in a rat model of hyperuricemia following renal resection. The goal was to explore the mechanisms underlying these effects.
MethodsInitially, a blend was formulated based on the distinctive functions of catechins, thearubigins, tea polysaccharides, and theanine. Orthogonal experiments were then employed to select a rational combination. A 5/6 renal resection rat model was successfully established, and the animals were fed a 2% oxonic acid diet to induce hyperuricemia. Urinary protein content was measured using the biuret method, and serum levels of uric acid, creatinine, and urea nitrogen were determined biochemically. Kidney pathology was examined through HE staining and renal tubulointerstitial pathological scoring. The expression of α-SMA, CD34, PCNA, and TGF-β in renal tissue was detected using immunohistochemistry. Apoptosis of renal tubular epithelial cells was assessed using the TUNEL method.
ResultsHyperuricemia markedly worsens renal damage in rats following nephrectomy, while tea polyphenols demonstrate the ability to reduce levels of blood uric acid, urea nitrogen, creatinine, and urinary protein. Additionally, tea polyphenols enhance smooth muscle proliferation in renal glomerular arterioles, prevent the loss of interstitial capillaries, alleviate apoptosis of renal tubular epithelial cells, promote their proliferation, and reduce interstitial fibrosis. A significant improvement in the severity of renal damage is observed in rats subjected to nephrectomy combined with hyperuricemia, and this effect surpasses that of allopurinol.
ConclusionTea polyphenols could effectively alleviate renal damage in rats with nephrectomy combined with hyperuricemia. They demonstrate high cost-effectiveness and minimal side effects, positioning them as a promising new therapeutic option for hyperuricemia-induced renal damage.
-
-
-
Gold Nanoparticles and Chitosan as Innovative Compounds in Medicine and Cosmetology: A Review of Current Applications
Available online: 06 January 2025More LessThe medical and cosmetic industries have developed in recent years, and there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications. Au NPs may have potential toxicity depending on their size, shape, charge, surface coatings, and tendency to agglomerate into larger clusters. On the other hand, the CS production process requires strict control due to the possibility of uncontrolled hydrolysis or chemical modifications during polymer isolation. The combination of Au NPs and CS that differ in chemical and phase in one composite (Au NPs/CS) allows for acquiring of new material with many advantages. The obtained composite has good mechanical properties and is biocompatible due to the presence of CS and the antibacterial properties of Au NPs. Therefore, it can be successfully used in many branches of medicine, including gene delivery, cell encapsulation, wound healing process, or as a preservative ingredient of cosmetics. Moreover, Au/CS nanocomposites are used in the food industry and environmental protection. This review highlights the preparation routes, properties, and applications of Au NPs and CS as separate materials. Moreover, the last part presents the advantages of combining these two materials into one nanocomposite. Specifically, we described the role of CS in the synthesis of Au NPs and possible subsequent applications of such nanomaterials as an element of biosensors, scaffolds, and an intelligent drug release system or tissue engineering.
-
-
-
Advancements in Structural Basis of Covalent Inhibitors Targeting SARS-CoV-2 Essential Proteins
Available online: 03 January 2025More LessCovalent inhibitors play a pivotal role in the development of pharmaceutical therapies, as they form stable, irreversible bonds with target biomolecules, leading to prolonged therapeutic effects and enhanced efficacy. Since covalent inhibitors first appeared in the late 1800s, the field has become innovative rapidly, and covalent inhibitors now account for around 30% of all marketed therapeutics. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the pandemic of Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 needs to be cured with a medicine that is beneficial and with the least side effects. It is necessary to formulate drug candidates to treat this pathogen. The predominance of covalent medications will be briefly discussed in this review, followed by an introduction to their methods of action, as well as more thorough discussions of the safe and effective covalent enzyme inhibitors against SARS-CoV-2. Our main concern is to study covalent inhibitors which are mainly involved in blocking the viral entry of the virus SARS-CoV-2 into the host cell along with its replication and translation process. In the development of anti-SARS-CoV-2 medicines researchers can use those reported drugs as prospective candidates.
-
-
-
Enhance Anti-obesity Effect of Natural Compounds through Carrier Mediation
Authors: Mingyue Peng, Hao Wang, Zhenjing Liu, Shaoqian Wang, Haoqiang Qin, Ziyang Wang, Mingxiao Cui, Kehai Liu and Pingping LiuAvailable online: 03 January 2025More LessObesity is a global public health problem that can lead to many health complications or comorbidities. Medication alone or in combination with lifestyle changes or surgery is the main way to combat obesity and its complications. Most anti-obesity drugs are limited by their bioavailability, target-specific, and potentially toxic effects, so there is an urgent need for alternative treatments. Based on the new revelation of the pathogenesis of obesity, as well as the efforts of multidisciplinary integration of materials, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. By analyzing the current status and challenges of natural compounds in obesity treatment, this review systematically summarizes the advanced functions and prospects of carrier delivery of natural ingredients in targeted delivery of obesity, as well as their application in obesity treatment. Finally, on the basis of systematic analysis of anti-obesity, the future prospects and challenges in this field are put forward.
-
-
-
Interaction between microRNA and KRAS in Glioblastoma
Available online: 03 January 2025More LessGlioblastoma (GBM) characterized byits rapid progression and challenging prognosis, often featuring mutations in the Kirsten rat sarcoma virus (KRAS) gene, which is crucial for numerous cellular signaling mechanisms. Emerging research underscores a significant interaction between KRAS and microRNAs (miRNAs) in these cancers, with miRNAs playing key roles as both regulators and mediators within the KRAS signaling framework. The concept of oncogene-induced senescence (OIS) is explored as a protective mechanism against tumor development, examining how K-RAS signaling is meticulously adjusted to bypass senescence, thereby enhancing cell growth and survival. In this study, we identify certain miRNAs that directly impact KRAS through mRNA targeting or by influencing its downstream signaling cascades. In turn, pathways activated by KRAS can modify the levels of specific miRNAs, establishing a feedback loop that balances cell regulation and tumor progression. We propose a theoretical framework where these interactions are crucial for deciphering the molecular underpinnings of GBM, potentially paving the way for innovative treatment approaches that focus on the miRNA-KRAS connection.
-
-
-
Anticancer and Cyclooxygenase Inhibitory Activity of Benzylidene Derivatives of Fenobam and its Thio Analogues
Available online: 16 December 2024More LessIntroductionA series of benzylidene derivatives of fenobam and its thio analogues (1-22) have been evaluated for their cytotoxicity against breast cancer (MCF-7, MDA-MB-231), ovarian cancer (A2780, SKOV-3) and cervical cancer (HELA) cell lines.
MethodThese compounds (1-22) exhibited 72-83% inhibition of Erk activity against the ovarian cancer cell line (A2780). Compounds 3 and 20 showed the highest DNA damage effect in Comet Assay against the A2780 cancer cell line as compared to the other tested analogues (4, 8, 11, 12, and 13) by using % Tail DNA and OTM. Compounds 3, 4, and 11 showed significant activities and selectivity towards COX-2 with 78%, 97%, and 89% inhibition, as compared to 17%, 57%, and 26% inhibition against COX-1 isoenzyme, respectively.
ResultsInterestingly, molecular docking scores were also in very good agreement with the experimental results regarding discriminating the selectivity index of the tested compounds against COX-1 & COX-2 enzymes. Further molecular dynamics (MD) simulation study revealed that the most selective compound, 13, binds with the COX-2 enzyme in a similar fashion to that of Rofecoxib, which was further supported by their MD-based free binding energies (MM-GBSA) of -49.76 ± 4.27 kcal/mol, and -44.84 ±3.78 kcal/mol, respectively.
ConclusionMoreover, in silico ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.
-
-
-
Advances in Discovery and Design of Anti-influenza Virus Peptides
Authors: Shixin Li, Xi Xie, Shaofen Zhou and Jian HeAvailable online: 07 November 2024More LessThe influenza virus, a well-known pathogen that causes respiratory illness, remains an important global health threat because of the significant morbidity and mortality rates of people infected with the virus annually. The influenza virus undergoes frequent antigenic variation, and with the increasing frequency of resistant influenza strains against existing antiviral drugs, there is an urgent need for the development of new anti-influenza treatment strategies. Peptides have the potential to offer high potency, selectivity, and relatively low drug resistance. As such, the design and screening of novel anti-influenza virus peptides with high potency have become increasingly important in an effort to fight global influenza epidemics. Herein, we introduce three approaches to developing anti-influenza virus peptides: discovery from natural products, library construction for antiviral peptide screening, and rational design based on functional regions of influenza viral proteins. This review summarizes recent progress in the discovery and design of anti-influenza virus peptides over the past 20 years.
-
-
-
The Risk Genes SIRP5, CMC1, and ASAH1 as Potential Targets for the Diagnosis, Immunotherapy, and Treatment of Colon Adenocarcinoma by Single-Cell and Bulk RNA Sequencing Analysis
Authors: Zipeng Xu, Jiantao Gong, Weidong Hu, Chen Ge, Genxi Tong, Fengjun Cai, Zhenghai Zhu, Yihang Yuan and Chaobo ChenAvailable online: 07 November 2024More LessObjectiveGlobally, one of the main causes of cancer-related mortality is Colon Adenocarcinoma (COAD). In this study, a new special Immune Cell Functions (ICF) risk model was constructed using single-cell and bulk RNA sequencing data to develop a new understanding and clinical applications for COAD.
MethodsThe immune function gene sets were downloaded from a literature reference, and the COAD single-cell dataset GSE146771 was downloaded from the Tumour Immune Single Cell Hub database. Using Lasso analysis, a multiple gene signature was made from the enrichment scores of immune function gene sets that were enriched in different ways. Robust validation of the signature was then performed in multiple independent cohorts. After that, we built the model using a 10-fold cross-test and evaluated its independence for clinical usage using a nomogram. We also investigated the connection between signature and immune function, genetic variation, immunotherapy, and the cancer immunological microenvironment. Lastly, we used qPCR and immunohistochemistry to examine the expression of the unreported model genes. To find the regulatory functions of unreported model genes, an EdU assay was employed.
ResultsFirst, 20 differentially enriched immune function gene sets were identified. Ten genes can be used as a risk profile to assess the prognosis of colon cancer, according to Lasso regression analysis. Signature performance was stable in both the training cohort and two independent GEO external cohorts, and risk scores were confirmed as independent prognostic factors. At the same time, our risk model continued to be highly predictive across various clinical clusters and clinical characteristics, such as immune checkpoints, tumour genome mutations, and chemotherapeutic drug resistance. Patients in the low-risk group have exhibited a higher chance of benefiting from immunotherapy, according to immunotherapy response research. qPCR and immunohistochemistry analysis have revealed SIRP5 expression as high in COAD tissues, while CMC1 and ASAH1 expression has been found to be low. According to the findings of the functional experiment, SIRP5, CMC1, and ASAH1 may control the ability of CRC cells to proliferate.
ConclusionIn this study, using scRNA-seq and bulk RNA-seq data, we created a risk model to predict the prognosis and effectiveness of immunotherapy in patients with COAD. In addition, we have discovered three model genes (SIRP5, CMC1, and ASAH1) that have not been reported before. These genes have the potential to be novel therapeutic targets in Colorectal Cancer (CRC). These findings suggest that this model could be used to evaluate the prognostic risk and identify potential targets for COAD patient treatment.
-
-
-
An Innovative Telomere-associated Prognosis Model in AML: Predicting Immune Infiltration and Treatment Responsiveness
Authors: Binyang Song, Jinzhan Lou, Lijun Mu, Xiao Lu, Jian Sun and Bo TangAvailable online: 05 November 2024More LessAimsTo build an innovative telomere-associated scoring model to predict prognosis and treatment responsiveness in acute myeloid leukemia (AML).
BackgroundAML is a highly heterogeneous malignant hematologic disorder with a poor prognosis. While telomere maintenance is frequently observed in tumors, investigations into telomere-related genes (TRGs) in AML remain limited.
ObjectivesThis study aimed to identify prognostic TRGs using the least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression, evaluate their predictive value, explore the association between TRG scores and immune cell infiltration, and assess the sensitivity of high-scoring AML patients to chemotherapeutic agents.
MethodUnivariate Cox regression analysis was conducted on the TCGA cohort to identify prognostic TRGs and to develop the TRG scoring model using LASSO-Cox and multivariate Cox regression. Validation was performed on the GSE37642 cohort. Immune cell infiltration patterns were assessed through computational analysis, and the sensitivity to chemotherapeutic agents was evaluated.
ResultsThirteen prognostic TRGs were identified, and a seven-TRG scoring model (including NOP10, OBFC1, PINX1, RPA2, SMG5, MAPKAPK5, and SMN1) was developed. Higher TRG scores were associated with a poorer prognosis, as confirmed in the GSE37642 cohort, and remained an independent prognostic factor even after adjusting for other clinical characteristics. The high-score group was characterized by elevated infiltration of B cells, T helper cells, natural killer cells, tumor-infiltrating lymphocytes, regulatory T (Treg) cells, M2 macrophages, neutrophils, and monocytes, along with reduced infiltration of gamma delta T cells, CD4- T cells, and resting mast cells. Moreover, high infiltration of M2 macrophages and Tregs was associated with poor overall survival compared to low infiltration. Notably, high-risk AML patients were resistant to Erlotinib, Parthenolide, and Nutlin-3a, but sensitive to AC220, Midostaurin, and Tipifarnib. Additionally, using RT-qPCR, we observed significantly higher expression of two model genes, OBFC1 and SMN1, in AML tissues compared to control tissues.
ConclusionThis innovative TRG scoring model demonstrates considerable predictive value for AML patient prognosis, offering valuable insights for optimizing treatment strategies and personalized medicine approaches. The identified TRGs and associated scoring models could aid in risk stratification and guide tailored therapeutic interventions in AML patients.
-
-
-
Genome-wide Association Studies of Diabetic Kidney Disease in East Asians With Type 2 Diabetes: Achievements and Future Perspectives
Available online: 31 October 2024More LessDiabetic kidney disease is a devastating diabetic complication, affecting up to half of people suffering from diabetes. The global burden of diabetic kidney disease is steadily increasing worldwide along with the growing prevalence of type 2 diabetes. The epidemic rise of type 2 diabetes is primarily observed in Asia, including the East Asian regions. It is generally accepted that heredity is one of the main determinants in the pathogenesis of diabetic kidney disease. Since the advent of genome-wide association studies, numerous studies have been published to identify the genetic loci susceptible to diabetic kidney disease among diverse populations. Although genome-wide association studies exploring diabetic kidney disease susceptibility loci have focused primarily on populations of European descent, a number of novel genetic variants associated with diabetic kidney disease have also been successfully revealed among East Asians. A comprehensive analysis of the genetic architecture and pathophysiological pathways of diabetic kidney disease may allow the identification of new potential therapeutic targets. This review aimed to summarize genome-wide association studies examining genetic variants associated with diabetic kidney disease in the populations of East Asian ancestry with type 2 diabetes and presented our perspective on the future of this field.
-
-
-
Mechanism Exploration of Astaxanthin in the Treatment of Adriamycin-induced Cardiotoxicity Based on Network Pharmacology and Experimental Validation
Authors: Yu Zhu, Mengyao Chen, Lin Xie, Yijun Pan, Yuntian Yang and Guoxing WanAvailable online: 28 October 2024More LessIntroductionAstaxanthin (AXT), a natural antioxidant recognized for its therapeutic potential in cancer and cardiovascular diseases, holds promise in mitigating adriamycin-induced cardiotoxicity (AIC). Nevertheless, the underlying mechanisms of AXT in AIC mitigation remain to be elucidated. Consequently, this study endeavors to elucidate the mechanism of AXT against AIC, employing an integrated approach.
MethodsNetwork pharmacology, molecular docking, and molecular dynamics simulations were harnessed to explore the molecular mechanism underlying AXT's action against AIC. Furthermore, the in-vitro AIC model was established with the H9c2 cell to generate transcriptome data for validation.
ResultsA total of 533 putative AXT targets and 1478 AIC-related genes were initially screened by database retrieval and bioinformatics analysis. A total of 248 potential targets of AXT against AIC and several signaling pathways were identified by network pharmacology and enrichment analysis. Two core genes (CCL2 and NOS3) and the AGE-RAGE signaling pathway in diabetic complications were further highlighted by transcriptome validation based on the AIC in-vitro model. Additionally, molecular docking and dynamics analyses supported the robust binding affinity of AXT with the core targets.
ConclusionThe study suggested that AXT might ameliorate AIC through the inhibition of CCL2 and NOS3 as well as AGE-RAGE signaling, which provide a theoretical basis for the development of a strategy against AIC.
-
-
-
Design, Synthesis, Molecular Docking, Pharmacokinetic Properties, and Molecular Dynamics Simulation of Sulfonyl Derivatives of Benzimidazole against Parkinson’s Disease
Available online: 24 October 2024More LessIntroductionThe disability and mortality related to Parkinson's disease (PD), a neurodegenerative disease, are increasing globally at a faster rate than other neurological disorders. With no permanent cure for PD, there is an urgent need to develop novel and effective anti-PD drugs.
MethodTargeting monoamine oxidases (MAO), which catalyze the breakdown of neurotransmitters, is one way to treat neurodegenerative diseases. In this context, an initial molecular docking of twenty designed sulfonyl derivatives of benzimidazole against monoamine oxidase B (MAO-B) associated with PD was conducted using AutoDock Vina.
ResultThe results were compared with those of the conventional inhibitors, selegiline and rasagiline. Based on the docking score, the in-silico pharmacokinetic properties (ADME), drug-likeness, and toxicity profiles of the newly synthesized molecules were examined using SwissADME, PreADMET, ProTox-3.0, vNN, and ADMETlab web tools. Then, twelve potential derivatives were synthesized and characterized by IR, 1H-NMR, 13C-NMR, 19F-NMR (for some compounds), and mass spectrometry. Derivatives 2cj and 1bj were the two molecules having the best binding affinity of -11.9 and -11.8 kcal/mol, respectively, against MAO-B, exhibiting a higher binding affinity compared to that of some commercially available drugs. A 50 ns MD simulation run was performed to observe the stability of the top two docked complexes, MAO-B-2cj and MAO-B-1bj, in order to further validate the efficacy of those two substances. Moreover, the MM-PBSA method was used to calculate the final, binding free energy of the simulated (MAO-B-2cj) complex.
ConclusionThis study indicates that the binding affinity of most of the hits was superior to that of known MAO inhibitors; therefore, these newly synthesized benzimidazole derivatives may be developed into essential drug candidates for the treatment of PD.
-
-
-
Unraveling the Ferroptosis-inducing Potential of Methanol Leaves Extract of Prosopis Juliflora Via Downregulation of SLC7A11 and GPX4 mRNA Expression in A549 Lung Cancer Cells
Available online: 24 October 2024More LessIntroductionProsopis juliflora has been employed in many traditional treatments. As evidenced by our earlier research, Prosopis juliflora leaf methanol extract (PJME) has a promising future in the fight against lung cancer. It may also be used in conjunction with other treatments to effectively manage lung cancer. Aims and objective: The main objective of this study was to explore the potential of PJME to inhibit lung cancer in A549 cells, along with its underlying mechanisms of action.
MethodThe antiproliferative effects were determined using MTT and LDH tests. Apoptosis-inducing capacity was evaluated using the DAPI staining, caspase-3 test, cytochrome C assay, PARP cleavage, and qRT-PCR. To investigate the mechanism of action of PJME in lung cancer, the levels of ROS, MMP, GSH, MDA, and specific ferroptosis indicators were measured.
ResultsThe experimental data of the current study indicated that exposure of A549 cells to PJME reduced cell viability and increased cellular cytotoxicity. The apoptosis-inducing ability of PJME in A549 cells was validated by enhanced nuclear condensation, level of the caspase-3, cytochrome C, and PARP release. In addition, qRT-PCR investigations verified that the administration of PJME led to a decrease in the expression of anti-apoptotic gene Bcl2 while enhancing the mRNA level of pro-apoptotic genes, such as Bax and caspase-3, in A549 cells.
ConclusionThe study also found that PJME has the ability to activate ferroptosis pathways, as evidenced by elevated reactive oxygen species (ROS) generation, changes in the levels of antioxidant markers (MDA and GSH), and decreased expression of SLC7A11 and GPX4. The results of the present study clearly showed that PJME inhibited the proliferation of A549 cells and induced ferroptosis by reducing the expression of the important targets SLC7A11 and GPX4. Further research is necessary to fully understand the clinical efficacy of PJME before it can be investigated as supplemental or adjuvant therapy for lung cancer.
-