Skip to content
2000
image of Design, Synthesis, Biological Evaluation and Docking Studies of 2-hydroxy-4-benzyloxy Chalcone Derivatives as Multifunctional Agents for the Treatment of Alzheimer's Disease

Abstract

Background

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, but no drugs can cure this disease. Chalcones possess good antioxidant activity, anti-neuroinflammatory activity, neuroprotective effects, inhibitory effects on A aggregation, and A disaggregation ability. Therefore, chalcones are ideal lead compounds, and the discovery of novel anti-AD agent-based chalcones is necessary.

Methods

Hydroxy groups and aryl benzyl ether groups were introduced into chalcone scaffolds to obtain a series of 2-hydroxyl-4-benzyloxy chalcone derivatives. These derivatives were further synthesized, biologically evaluated, and docked.

Results

Most target derivatives exhibited good anti-AD activities. In particular, compound had excellent inhibitory effects on self-induced A aggregation (90.8% inhibition rate at 25 μM) and Cu2+ induced A aggregation (93.4% inhibition rate at 25 μM). In addition, it also exhibited good A fibril disaggregation ability (64.7% at 25 μM), significant antioxidative activity (ORAC = 2.03 Trolox equivalent), moderate MAO-B inhibition (IC = 4.81 μM), selective metal chelation, appropriate BBB permeation, and dramatic anti-neuroinflammatory ability. In addition, compound relieved AD symptoms and protected hippocampal neurons .

Conclusion

Compound is a promising multifunctional anti-A agent.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673328877241113091539
2025-01-09
2025-09-07
Loading full text...

Full text loading...

References

  1. Depp C. Sun T. Sasmita A.O. Spieth L. Berghoff S.A. Nazarenko T. Overhoff K. Steixner-Kumar A.A. Subramanian S. Arinrad S. Ruhwedel T. Möbius W. Göbbels S. Saher G. Werner H.B. Damkou A. Zampar S. Wirths O. Thalmann M. Simons M. Saito T. Saido T. Krueger-Burg D. Kawaguchi R. Willem M. Haass C. Geschwind D. Ehrenreich H. Stassart R. Nave K.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature 2023 618 7964 349 357 10.1038/s41586‑023‑06120‑6 37258678
    [Google Scholar]
  2. Liang W. Li X. Wang H. Wang S. Meng Q. Feng R. Zhai J. Xue M. Zheng C. Exploration of the common gene and potential molecular mechanisms between Herpes simplex virus 1 infection and Alzheimer’s disease. Genes Dis. 2023 10 3 746 749 10.1016/j.gendis.2022.10.012 37396506
    [Google Scholar]
  3. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  4. Srivastava S. Ahmad R. Khare S.K. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem. 2021 216 113320 10.1016/j.ejmech.2021.113320 33652356
    [Google Scholar]
  5. Martens Y.A. Zhao N. Liu C.C. Kanekiyo T. Yang A.J. Goate A.M. Holtzman D.M. Bu G. Apo E. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 2022 110 8 1304 1317 10.1016/j.neuron.2022.03.004 35298921
    [Google Scholar]
  6. Jucker M. Walker L.C. Alzheimer’s disease: From immunotherapy to immunoprevention. Cell 2023 186 20 4260 4270 10.1016/j.cell.2023.08.021 37729908
    [Google Scholar]
  7. Zhang Y. Chen H. Li R. Sterling K. Song W. Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future. Signal Transduct. Target. Ther. 2023 8 1 248 10.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  8. Gremer L. Schölzel D. Schenk C. Reinartz E. Labahn J. Ravelli R.B.G. Tusche M. Lopez-Iglesias C. Hoyer W. Heise H. Willbold D. Schröder G.F. Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science 2017 358 6359 116 119 10.1126/science.aao2825 28882996
    [Google Scholar]
  9. Hardy J. Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002 297 5580 353 356 10.1126/science.1072994 12130773
    [Google Scholar]
  10. Hu J. Chen Q. Zhu H. Hou L. Liu W. Yang Q. Shen H. Chai G. Zhang B. Chen S. Cai Z. Wu C. Hong F. Li H. Chen S. Xiao N. Wang Z-x. Zhang X. Wang B. Zhang L. Mo W. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer's disease. Neuron 2023 111 1 15 29 10.1016/j.neuron.2022.10.021
    [Google Scholar]
  11. Sun N. Victor M.B. Park Y.P. Xiong X. Scannail A.N. Leary N. Prosper S. Viswanathan S. Luna X. Boix C.A. James B.T. Tanigawa Y. Galani K. Mathys H. Jiang X. Ng A.P. Bennett D.A. Tsai L.-H. Kellis M. Human microglial state dynamics in Alzheimer's disease progression. Cell 2023 186 20 4386 4403 10.1016/j.cell.2023.08.037
    [Google Scholar]
  12. Merlini M. Rafalski V.A. Rios Coronado P.E. Gill T.M. Ellisman M. Muthukumar G. Subramanian K.S. Ryu J.K. Syme C.A. Davalos D. Seeley W.W. Mucke L. Nelson R.B. Akassoglou K. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer's disease model. Neuron. 2019 101 6 1099 1108 10.1016/j.neuron.2019.01.014
    [Google Scholar]
  13. Leng F. Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 2021 17 3 157 172 10.1038/s41582‑020‑00435‑y 33318676
    [Google Scholar]
  14. Chen L.L. Fan Y.G. Zhao L.X. Zhang Q. Wang Z.Y. The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorg. Chem. 2023 131 106301 10.1016/j.bioorg.2022.106301 36455485
    [Google Scholar]
  15. Awad H.H. Desouky M.A. Zidan A. Bassem M. Qasem A. Farouk M. AlDeab H. Fouad M. Hany C. Basem N. Nader R. Alkalleny A. Reda V. George M.Y. Neuromodulatory effect of vardenafil on aluminium chloride/d-galactose induced Alzheimer’s disease in rats: emphasis on amyloid-beta, p-tau, PI3K/Akt/p53 pathway, endoplasmic reticulum stress, and cellular senescence. Inflammopharmacology 2023 31 5 2653 2673 10.1007/s10787‑023‑01287‑w 37460908
    [Google Scholar]
  16. Li X. Chen X. Gao X. Copper and cuproptosis: new therapeutic approaches for Alzheimer’s disease. Front. Aging Neurosci. 2023 15 1300405 10.3389/fnagi.2023.1300405 38178962
    [Google Scholar]
  17. Feng S. Tang D. Wang Y. Li X. Bao H. Tang C. Dong X. Li X. Yang Q. Yan Y. Yin Z. Shang T. Zheng K. Huang X. Wei Z. Wang K. Qi S. The mechanism of ferroptosis and its related diseases. Mol. Biomed. 2023 4 1 33 10.1186/s43556‑023‑00142‑2 37840106
    [Google Scholar]
  18. Alqahtani T. Deore S.L. Kide A.A. Shende B.A. Sharma R. Dadarao Chakole R. Nemade L.S. Kishor Kale N. Borah S. Shrikant Deokar S. Behera A. Dhawal Bhandari D. Gaikwad N. Kalam Azad A. Ghosh A. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion 2023 71 83 92 10.1016/j.mito.2023.05.007 37269968
    [Google Scholar]
  19. Zou D. Liu R. Lv Y. Guo J. Zhang C. Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2023 38 1 2270781 10.1080/14756366.2023.2270781 37955252
    [Google Scholar]
  20. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  21. Wojtunik-Kulesza K. Rudkowska M. Orzeł-Sajdłowska A. Aducanumab—hope or disappointment for Alzheimer’s disease. Int. J. Mol. Sci. 2023 24 5 4367 10.3390/ijms24054367 36901797
    [Google Scholar]
  22. Kumar N. Kumar V. Anand P. Kumar V. Ranjan Dwivedi A. Kumar V. Advancements in the development of multi-target directed ligands for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2022 61 116742 10.1016/j.bmc.2022.116742 35398739
    [Google Scholar]
  23. Birsa M.L. Sarbu L.G. Hydroxy chalcones and analogs with chemopreventive properties. Int. J. Mol. Sci. 2023 24 13 10667 10.3390/ijms241310667 37445844
    [Google Scholar]
  24. Zhang X. Rakesh K.P. Bukhari S.N.A. Balakrishna M. Manukumar H.M. Qin H.L. Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: Current view and upcoming advice. Bioorg. Chem. 2018 80 86 93 10.1016/j.bioorg.2018.06.009 29890362
    [Google Scholar]
  25. Thapa P. Upadhyay S.P. Suo W.Z. Singh V. Gurung P. Lee E.S. Sharma R. Sharma M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg. Chem. 2021 108 104681 10.1016/j.bioorg.2021.104681 33571811
    [Google Scholar]
  26. Chen R. Li X. Chen H. Wang K. Xue T. Mi J. Ban Y. Zhu G. Zhou Y. Dong W. Tang L. Sang Z. Development of the “hidden” multi-target-directed ligands by AChE/BuChE for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2023 251 115253 10.1016/j.ejmech.2023.115253 36921526
    [Google Scholar]
  27. Cao Z. Yang J. Xu R. Song Q. Zhang X. Liu H. Qiang X. Li Y. Tan Z. Deng Y. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment. Bioorg. Med. Chem. 2018 26 5 1102 1115 10.1016/j.bmc.2018.01.030 29409707
    [Google Scholar]
  28. Sudevan S.T. Rangarajan T.M. Al-Sehemi A.G. Nair A.S. Koyiparambath V.P. Mathew B. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors. Arch. Pharm. (Weinheim) 2022 355 8 2200084 10.1002/ardp.202200084 35567313
    [Google Scholar]
  29. Cao Z. Wang X. Zhang T. Fu X. Zhang F. Zhu J. Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson’s disease. J. Enzyme Inhib. Med. Chem. 2023 38 1 2159957 10.1080/14756366.2022.2159957 36728713
    [Google Scholar]
  30. Cao Z. Zhang T. Fu X. Wang X. Xia Q. Zhong L. Zhu J. 2-Hydroxy-4-benzyloxylimine resveratrol derivatives as potential multifunctional agents for the treatment of Parkinson’s disease. ChemMedChem 2023 18 6 e202200629 10.1002/cmdc.202200629 36622947
    [Google Scholar]
  31. Cao Z. Fu X. Wang X. Zhang T. Zhong L. Xia Q. Zhu J. Discovery of novel 2-hydroxyl-4-benzyloxybenzyl aniline derivatives as potential multifunctional agents for the treatment of Parkinson’s disease. Eur. J. Med. Chem. 2023 249 115142 10.1016/j.ejmech.2023.115142 36716641
    [Google Scholar]
  32. Binda C. Wang J. Pisani L. Caccia C. Carotti A. Salvati P. Edmondson D.E. Mattevi A. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J. Med. Chem. 2007 50 23 5848 5852 10.1021/jm070677y 17915852
    [Google Scholar]
  33. Wang Z.M. Li X.M. Xu W. Li F. Wang J. Kong L.Y. Wang X.B. Acetophenone derivatives: novel and potent small molecule inhibitors of monoamine oxidase B. MedChemComm 2015 6 12 2146 2157 10.1039/C5MD00357A
    [Google Scholar]
  34. Marquina S. Maldonado-Santiago M. Sánchez-Carranza J.N. Antúnez-Mojica M. González-Maya L. Razo-Hernández R.S. Alvarez L. Design, synthesis and QSAR study of 2′-hydroxy-4′-alkoxy chalcone derivatives that exert cytotoxic activity by the mitochondrial apoptotic pathway. Bioorg. Med. Chem. 2019 27 1 43 54 10.1016/j.bmc.2018.10.045 30482548
    [Google Scholar]
  35. Dong S. Xia J. Wang F. Yang L. Xing S. Du J. Zhang T. Li Z. Discovery of novel deoxyvasicinone derivatives with benzenesulfonamide substituents as multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem. 2024 264 116013 10.1016/j.ejmech.2023.116013 38052155
    [Google Scholar]
  36. Hindo S.S. Mancino A.M. Braymer J.J. Liu Y. Vivekanandan S. Ramamoorthy A. Lim M.H. Small molecule modulators of copper-induced Abeta aggregation. J. Am. Chem. Soc. 2009 131 46 16663 16665 10.1021/ja907045h 19877631
    [Google Scholar]
  37. Yu G. Shi Y. Cong S. Wu C. Liu J. Zhang Y. Liu H. Liu X. Deng H. Tan Z. Deng Y. Synthesis and evaluation of butylphthalide-scutellarein hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2024 265 116099 10.1016/j.ejmech.2023.116099 38160618
    [Google Scholar]
  38. Dekker S. Nardin T. Roman T. Tessadri M. Larcher R. Evidence of the relationship between the oxygen radical absorbance capacity (ORAC) and the potential exposure of white wines to atypical aging (ATA). J. Agric. Food Chem. 2024 72 16 acs.jafc.3c09120 10.1021/acs.jafc.3c09120 38605656
    [Google Scholar]
  39. Shaw M. Petzer J.P. Cloete T.T. Petzer A. Synthesis and evaluation of 2-methylbenzothiazole derivatives as monoamine oxidase inhibitors. Med. Chem. Res. 2024 33 10 1829 1837 10.1007/s00044‑024‑03283‑3
    [Google Scholar]
  40. Li W. Yang X. Song Q. Cao Z. Shi Y. Deng Y. Zhang L. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease. Bioorg. Chem. 2020 97 103707 10.1016/j.bioorg.2020.103707 32146176
    [Google Scholar]
  41. Waly O.M. Saad K.M. El-Subbagh H.I. Bayomi S.M. Ghaly M.A. Synthesis, biological evaluation, and molecular modeling simulations of new heterocyclic hybrids as multi-targeted anti-Alzheimer’s agents. Eur. J. Med. Chem. 2022 231 114152 10.1016/j.ejmech.2022.114152 35101650
    [Google Scholar]
  42. Xu Y. Wang H. Li X. Dong S. Liu W. Gong Q. Wang T. Tang Y. Zhu J. Li J. Zhang H. Mao F. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018 143 33 47 10.1016/j.ejmech.2017.08.025 29172081
    [Google Scholar]
  43. Zang Y. Ning J. Liu K. Shang M. Zang C. Li C. Ma J. Chen X. Ma J. Li G. Yang Y. Bao X. Zhang D. Zhang D. Design, synthesis and biological evaluation of pyranocarbazole derivatives against Alzheimer’s disease, with antioxidant, neuroprotective and cognition enhancing properties. Bioorg. Chem. 2022 129 106179 10.1016/j.bioorg.2022.106179 36244322
    [Google Scholar]
  44. Di L. Kerns E.H. Fan K. McConnell O.J. Carter G.T. High throughput artificial membrane permeability assay for blood–brain barrier. Eur. J. Med. Chem. 2003 38 3 223 232 10.1016/S0223‑5234(03)00012‑6 12667689
    [Google Scholar]
  45. Wen R. Lv J. Jia P. Yang W. Wang N. Wu X. Xue Z. Liu Y. The protective effects of natural product tunicatachalcone against neuroinflammation via targeting RIPK2 in microglia BV-2 cells stimulated by LPS. Bioorg. Med. Chem. 2022 69 116916 10.1016/j.bmc.2022.116916 35792403
    [Google Scholar]
  46. Guo T. Dang W. Zhou Y. Zhou D. Meng Q. Xu L. Chen G. Lin B. Qing D. Sun Y. Hou Y. Li N. Sesquiterpene coumarins isolated from Ferula bungeana and their anti-neuroinflammatory activities. Bioorg. Chem. 2022 128 106102 10.1016/j.bioorg.2022.106102 35998519
    [Google Scholar]
  47. Yang Q.B. He Y.L. Zhong X.W. Xie W.G. Zhou J.G. Resveratrol ameliorates gouty inflammation via upregulation of sirtuin 1 to promote autophagy in gout patients. Inflammopharmacology 2019 27 1 47 56 10.1007/s10787‑018‑00555‑4 30600470
    [Google Scholar]
  48. Lima V.B. Viana A.R. Santos D. Felipetto N. Mezzomo N.F. Zago A.M. Flores E.M.M. Machado A.K. Krause A. Peroza L.R. Schaffer L.F. Krause L.M.F. Ethyl acetate fraction of harpagophytum procumbens prevents oxidative stress in vitro and amphetamine-induced alterations in mice behavior. Neurochem. Res. 2023 48 6 1716 1727 10.1007/s11064‑022‑03846‑z 36648708
    [Google Scholar]
  49. Fang Y. Xia W. Cheng B. Hua P. Zhou H. Gu Q. Xu J. Design, synthesis, and biological evaluation of compounds with a new scaffold as anti-neuroinflammatory agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018 149 129 138 10.1016/j.ejmech.2018.02.063 29499485
    [Google Scholar]
  50. Fu X. Ke M. Yu W. Wang X. Xiao Q. Gu M. Lü Y. Periodic variation of AAK1 in an Aβ1–42-induced mouse model of Alzheimer’s disease. J. Mol. Neurosci. 2018 65 2 179 189 10.1007/s12031‑018‑1085‑3 29774516
    [Google Scholar]
  51. Li Q. Zhao Y. Guo H. Li Q. Yan C. Li Y. He S. Wang N. Wang Q. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment. Autophagy 2023 19 10 2639 2656 10.1080/15548627.2023.2213984 37204119
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673328877241113091539
Loading
/content/journals/cmc/10.2174/0109298673328877241113091539
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test