Skip to content
2000
image of Achievements and Approaches in the Search for Small-Molecule Dengue NS2B/NS3 Inhibitors

Abstract

With the escalation of viral infections in recent decades, including the COVID-19 pandemic, viral infectious diseases have increasingly become a global concern, attracting significant attention. Among many viral epidemics, the dengue virus, an RNA virus from the family, has been reported by the WHO as one of the most prevalent mosquito-borne diseases, infecting roughly 400 million people yearly and spreading across all continents worldwide. In the last two decades, researchers from academia and industry have diligently studied many aspects of the virus, including its structure, life cycle, potential therapeutic agents, and vaccines. Dengvaxia® and Qdenga®, approved vaccines for DENV-4, have been a milestone in dengue prevention and treatment. However, these vaccines have some noticeable drawbacks, including Dengvaxia® being a monovalent vaccine against DENV-4 with a risk of severe dengue infection following the first use, Qdenga® being mainly effective for all 4 serotypes only in the cases of previously infected patients while being effective against only DENV-1 and DENV-2 in dengue-naïve patients. Additionally, no drug against dengue has been approved. Thus, numerous screening campaigns have been conducted on both natural and synthesized substances to search for anti-dengue agents, especially those affing the virus's key protease (NS2B/NS3), to mitigate the dengue fever epidemic. As hit screening is only the first step in the drug discovery and development cycle, subsequent in-depth analyses (using a wide range of approaches from computational simulations to protein-ligand co-crystallization) have been conducted to provide more insights into the characteristics of optimal DENV NS2B/NS3 protease inhibitors. This review discusses recent discoveries in the search for novel inhibitors and highlights the importance of understanding the structural relationship between hits and the NS2B/NS3 protease for effective lead optimization.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673343582241229131338
2025-01-27
2025-09-11
Loading full text...

Full text loading...

References

  1. Lim S.P. Dengue drug discovery: Progress, challenges and outlook. Antiviral Res. 2019 163 156 178 10.1016/j.antiviral.2018.12.016 30597183
    [Google Scholar]
  2. WHO Dengue and severe dengue. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed 13/12/2023).
  3. Messina J.P. Brady O.J. Scott T.W. Zou C. Pigott D.M. Duda K.A. Bhatt S. Katzelnick L. Howes R.E. Battle K.E. Simmons C.P. Hay S.I. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol. 2014 22 3 138 146 10.1016/j.tim.2013.12.011 24468533
    [Google Scholar]
  4. Sukhralia S. Verma M. Gopirajan S. Dhanaraj P.S. Lal R. Mehla N. Kant C.R. From dengue to Zika: The wide spread of mosquito-borne arboviruses. Eur. J. Clin. Microbiol. Infect. Dis. 2019 38 1 3 14 10.1007/s10096‑018‑3375‑7 30267170
    [Google Scholar]
  5. Control E.C.D.P.a. Dengue worldwide overview. 2023 Available from: https://www.ecdc.europa.eu/en/dengue-monthly (accessed 13/12/2023).
  6. FDA DENGVAXIA 2024 Available from: https://www.fda.gov/vaccines-blood-biologics/dengvaxia (accessed 12/10/2024).
  7. Pintado Silva J. Fernandez-Sesma A. Challenges on the development of a dengue vaccine: A comprehensive review of the state of the art. J. Gen. Virol. 2023 104 3 001831 10.1099/jgv.0.001831 36857199
    [Google Scholar]
  8. Paz-Bailey G. Adams L. Wong J.M. Poehling K.A. Chen W.H. McNally V. Atmar R.L. Waterman S.H. Dengue Vaccine: Recommendations of the advisory committee on immunization practices, United States, 2021. MMWR Recomm. Rep. 2021 70 6 1 16 10.15585/mmwr.rr7006a1 34978547
    [Google Scholar]
  9. WHO WHO prequalifies new dengue vaccine. Available from: https://www.who.int/news/item/15-05-2024-who-prequalifies-new-dengue-vaccine (accessed 12/10/2024).
  10. Takeda Takeda Announces Voluntary Withdrawal of U.S. Biologics License Application (BLA) for Dengue Vaccine Candidate TAK-003. 2023 Available from: https://www.takeda.com/newsroom/statements/2023/takeda-announces-voluntary-withdrawal-of-us-biologics-license-application-for-dengue-vaccine-candidate-tak-003/ (accessed 12/10/2024).
  11. Tricou V. Yu D. Reynales H. Biswal S. Saez-Llorens X. Sirivichayakul C. Lopez P. Borja-Tabora C. Bravo L. Kosalaraksa P. Vargas L.M. Alera M.T. Rivera L. Watanaveeradej V. Dietze R. Fernando L. Wickramasinghe V.P. Moreira E.D. Jr Fernando A.D. Gunasekera D. Luz K. Oliveira A.L. Tuboi S. Escudero I. Hutagalung Y. Lloyd E. Rauscher M. Zent O. Folschweiller N. LeFevre I. Espinoza F. Wallace D. Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003): 4·5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 2024 12 2 e257 e270 10.1016/S2214‑109X(23)00522‑3 38245116
    [Google Scholar]
  12. Dighe S.N. Ekwudu O. Dua K. Chellappan D.K. Katavic P.L. Collet T.A. Recent update on anti-dengue drug discovery. Eur. J. Med. Chem. 2019 176 431 455 10.1016/j.ejmech.2019.05.010 31128447
    [Google Scholar]
  13. Saqallah F.G. Abbas M.A. Wahab H.A. Recent advances in natural products as potential inhibitors of dengue virus with a special emphasis on NS2b/NS3 protease. Phytochemistry 2022 202 113362 10.1016/j.phytochem.2022.113362 35948138
    [Google Scholar]
  14. Luo D. Vasudevan S.G. Lescar J. The flavivirus NS2B–NS3 protease–helicase as a aff for antiviral drug development. Antiviral Res. 2015 118 148 158 10.1016/j.antiviral.2015.03.014 25842996
    [Google Scholar]
  15. Knyazhanskaya E. Morais M.C. Choi K.H. Flavivirus enzymes and their inhibitors. Enzymes 2021 49 265 303 10.1016/bs.enz.2021.07.006 34696835
    [Google Scholar]
  16. Teixeira R. Pereira W. Oliveira A. Da Silva A. De Oliveira A. Da Silva M. Da Silva C. De Paula S. Natural products as source of potential dengue antivirals. Molecules 2014 19 6 8151 8176 10.3390/molecules19068151 24941340
    [Google Scholar]
  17. Lim S.Y.M. Chieng J.Y. Pan Y. Recent insights on anti-dengue virus (DENV) medicinal plants: Review on in vitro, in vivo and in silico discoveries. All Life 2021 14 1 1 33 10.1080/26895293.2020.1856192
    [Google Scholar]
  18. Norshidah H. Leow C.H. Ezleen K.E. Wahab H.A. Vignesh R. Rasul A. Lai N.S. Assessing the potential of NS2B/NS3 protease inhibitors biomarker in curbing dengue virus infections: In silico vs. In vitro approach. Front. Cell. Infect. Microbiol. 2023 13 1061937 10.3389/fcimb.2023.1061937 36864886
    [Google Scholar]
  19. Simmonds P. Becher P. Bukh J. Gould E.A. Meyers G. Monath T. Muerhoff S. Pletnev A. Rico-Hesse R. Smith D.B. Stapleton J.T. Consortium I.R. Ictv report consortium ICTV virus taxonomy profile: Flaviviridae. J. Gen. Virol. 2017 98 1 2 3 10.1099/jgv.0.000672 28218572
    [Google Scholar]
  20. Malavige G.N. Fernando S. Fernando D.J. Seneviratne S.L. Dengue viral infections. Postgrad. Med. J. 2004 80 948 588 601 10.1136/pgmj.2004.019638 15466994
    [Google Scholar]
  21. Kim Y.G. Thai K.M. Song J. Kim K.K. Park H.J. Identification of novel ligands for the Z-DNA binding protein by structure-based virtual screening. Chem. Pharm. Bull. 2007 55 2 340 342 10.1248/cpb.55.340 17268113
    [Google Scholar]
  22. Lam T.P. Nguyen D.N. Mai T.T. Tran T.D. Le M.T. Huynh P.N.H. Nguyen D.T. Tran V.H. Trinh D.T.T. Truong P. Vo C.V.T. Thai K.M. Exploration of chalcones as 3-chymotrypsin-like protease (3CLpro) inhibitors of SARS-CoV-2 using computational approaches. Struct. Chem. 2022 33 5 1707 1725 10.1007/s11224‑022‑02000‑3 35811783
    [Google Scholar]
  23. Lam T.P. Tran V.H. Mai T.T. Lai N.V.T. Dang B.T.N. Le M.T. Tran T.D. Trinh D.T.T. Thai K.M. Identification of diosmin and flavin adenine dinucleotide as repurposing treatments for monkeypox virus: A computational study. Int. J. Mol. Sci. 2022 23 19 11570 10.3390/ijms231911570 36232872
    [Google Scholar]
  24. Le M.T. Mai T.T. Huynh P.N.H. Tran T.D. Thai K.M. Nguyen Q.T. Structure-based discovery of interleukin-33 inhibitors: A pharmacophore modelling, molecular docking, and molecular dynamics simulation approach. SAR QSAR Environ. Res. 2020 31 12 883 904 10.1080/1062936X.2020.1837239 33191795
    [Google Scholar]
  25. Thai K.M. Le D.P. Tran N.V.K. Nguyen T.T.H. Tran T.D. Le M.T. Computational assay of Zanamivir binding affinity with original and mutant influenza neuraminidase 9 using molecular docking. J. Theor. Biol. 2015 385 31 39 10.1016/j.jtbi.2015.08.019 26341387
    [Google Scholar]
  26. Tran Q.H. Cao H.N. Nguyen D.N. Tran T.T.N. Le M.T. Nguyen Q.T. Tran V.T. Tran V.H. Thai K.M. affing Olokizumab-Interleukin 6 interaction interface to discover novel IL-6 inhibitors. J. Biomol. Struct. Dyn. 2023 41 23 14003 14015 10.1080/07391102.2023.2193990 36995131
    [Google Scholar]
  27. Tran T.T.N. Tran Q.H. Nguyen Q.T. Le M.T. Trinh D.T.T. Tran V.H. Thai K.M. LY3041658/ interleukin-8 complex structure as affs for IL-8 small molecule inhibitors discovery using a combination of in silico methods. SAR QSAR Environ. Res. 2022 33 10 753 778 10.1080/1062936X.2022.2132536 36318662
    [Google Scholar]
  28. Mustafa M.S. Rasotgi V. Jain S. Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India 2015 71 1 67 70 10.1016/j.mjafi.2014.09.011 25609867
    [Google Scholar]
  29. Nanaware N. Banerjee A. Mullick Bagchi S. Bagchi P. Mukherjee A. Dengue virus infection: A tale of viral exploitations and host responses. Viruses 2021 13 10 1967 10.3390/v13101967 34696397
    [Google Scholar]
  30. Diamond M.S. Pierson T.C. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell 2015 162 3 488 492 10.1016/j.cell.2015.07.005 26232221
    [Google Scholar]
  31. Cheng C.C. Sofiyatun E. Chen W.J. Wang L.C. Life as a vector of dengue virus: the antioxidant strategy of mosquito cells to survive viral infection. Antioxidants 2021 10 3 395 10.3390/antiox10030395 33807863
    [Google Scholar]
  32. Bollati M. Alvarez K. Assenberg R. Baronti C. Canard B. Cook S. Coutard B. Decroly E. de Lamballerie X. Gould E.A. Grard G. Grimes J.M. Hilgenfeld R. Jansson A.M. Malet H. Mancini E.J. Mastrangelo E. Mattevi A. Milani M. Moureau G. Neyts J. Owens R.J. Ren J. Selisko B. Speroni S. Steuber H. Stuart D.I. Unge T. Bolognesi M. Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Res. 2010 87 2 125 148 10.1016/j.antiviral.2009.11.009 19945487
    [Google Scholar]
  33. Li Q. Kang C. Dengue virus NS4B protein as a aff for developing antivirals. Front. Cell. Infect. Microbiol. 2022 12 959727 10.3389/fcimb.2022.959727 36017362
    [Google Scholar]
  34. Phoo W.W. El Sahili A. Zhang Z. Chen M.W. Liew C.W. Lescar J. Vasudevan S.G. Luo D. Crystal structures of full length DENV4 NS2B-NS3 reveal the dynamic interaction between NS2B and NS3. Antiviral Res. 2020 182 104900 10.1016/j.antiviral.2020.104900 32763315
    [Google Scholar]
  35. Luo D. Xu T. Hunke C. Grüber G. Vasudevan S.G. Lescar J. Crystal structure of the NS3 protease-helicase from dengue virus. J. Virol. 2008 82 1 173 183 10.1128/JVI.01788‑07 17942558
    [Google Scholar]
  36. Bazan J.F. Fletterick R.J. Detection of a trypsin-like serine protease domain in flaviviruses and pestviruses. Virology 1989 171 2 637 639 10.1016/0042‑6822(89)90639‑9 2548336
    [Google Scholar]
  37. Tomar S. Mudgal R. Fatma B. Chapter 6 - Flavivirus protease: An antiviral aff. Viral Proteases and Their Inhibitors. Gupta S.P. Academic Press 2017 137 161 10.1016/B978‑0‑12‑809712‑0.00006‑X
    [Google Scholar]
  38. Quek J.-P. Ser Z. Chew B. L. A. Li X. Wang L. Sobota R. M. Luo D. Phoo W. W. Dynamic interactions of post cleaved NS2B cofactor and NS3 protease identified by integrative structural approaches. Viruses. 2022 4 7 1440 10.3390/v14071440 35891424
    [Google Scholar]
  39. Li Q. Kang C. Insights into structures and dynamics of flavivirus proteases from NMR studies. 2020 21 7 2527
    [Google Scholar]
  40. Agback T. Lesovoy D. Han X. Lomzov A. Sun R. Sandalova T. Orekhov V.Y. Achour A. Agback P. Combined NMR and molecular dynamics conformational filter identifies unambiguously dynamic ensembles of Dengue protease NS2B/NS3pro. Commun. Biol. 2023 6 1 1193 10.1038/s42003‑023‑05584‑6 38001280
    [Google Scholar]
  41. Gupta G. Lim L. Song J. NMR and MD studies reveal that the isolated dengue ns3 protease is an intrinsically disordered chymotrypsin fold which absolutely requests NS2B for correct folding and functional dynamics. PLoS One 2015 10 8 e0134823 10.1371/journal.pone.0134823 26258523
    [Google Scholar]
  42. Noble C.G. Seh C.C. Chao A.T. Shi P.Y. Ligand-bound structures of the dengue virus protease reveal the active conformation. J. Virol. 2012 86 1 438 446 10.1128/JVI.06225‑11 22031935
    [Google Scholar]
  43. Niyomrattanakit P. Winoyanuwattikun P. Chanprapaph S. Angsuthanasombat C. Panyim S. Katzenmeier G. Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J. Virol. 2004 78 24 13708 13716 10.1128/JVI.78.24.13708‑13716.2004 15564480
    [Google Scholar]
  44. Behnam M.A.M. Graf D. Bartenschlager R. Zlotos D.P. Klein C.D. Discovery of nanomolar dengue and west nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J. Med. Chem. 2015 58 23 9354 9370 10.1021/acs.jmedchem.5b01441 26562070
    [Google Scholar]
  45. Yildiz M. Ghosh S. Bell J.A. Sherman W. Hardy J.A. Allosteric inhibition of the NS2B-NS3 protease from dengue virus. ACS Chem. Biol. 2013 8 12 2744 2752 10.1021/cb400612h 24164286
    [Google Scholar]
  46. Yao Y. Huo T. Lin Y.L. Nie S. Wu F. Hua Y. Wu J. Kneubehl A.R. Vogt M.B. Rico-Hesse R. Song Y. Discovery, X-ray crystallography and antiviral activity of allosteric inhibitors of flavivirus NS2B-NS3 protease. J. Am. Chem. Soc. 2019 141 17 6832 6836 10.1021/jacs.9b02505 31017399
    [Google Scholar]
  47. Brecher M. Li Z. Liu B. Zhang J. Koetzner C.A. Alifarag A. Jones S.A. Lin Q. Kramer L.D. Li H. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog. 2017 13 5 e1006411 10.1371/journal.ppat.1006411 28542603
    [Google Scholar]
  48. Nitsche C. Strategies towards protease inhibitors for emerging flaviviruses. Adv. Exp. Med. Biol. 2018 1062 175 186 10.1007/978‑981‑10‑8727‑1_13 29845533
    [Google Scholar]
  49. Lim L. Dang M. Roy A. Kang J. Song J. Curcumin allosterically inhibits the dengue NS2B-NS3 protease by disrupting its active conformation. ACS Omega 2020 5 40 25677 25686 10.1021/acsomega.0c00039 33073093
    [Google Scholar]
  50. Millies B. von Hammerstein F. Gellert A. Hammerschmidt S. Barthels F. Göppel U. Immerheiser M. Elgner F. Jung N. Basic M. Kersten C. Kiefer W. Bodem J. Hildt E. Windbergs M. Hellmich U.A. Schirmeister T. Proline-based allosteric inhibitors of zika and dengue virus NS2B/NS3 proteases. J. Med. Chem. 2019 62 24 11359 11382 10.1021/acs.jmedchem.9b01697 31769670
    [Google Scholar]
  51. Dang M. Lim L. Roy A. Song J. Myricetin allosterically inhibits the dengue NS2B-NS3 protease by disrupting the active and locking the inactive conformations. ACS Omega 2022 7 3 2798 2808 10.1021/acsomega.1c05569 35097276
    [Google Scholar]
  52. Wu H. Bock S. Snitko M. Berger T. Weidner T. Holloway S. Kanitz M. Diederich W.E. Steuber H. Walter C. Hofmann D. Weißbrich B. Spannaus R. Acosta E.G. Bartenschlager R. Engels B. Schirmeister T. Bodem J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob. Agents Chemother. 2015 59 2 1100 1109 10.1128/AAC.03543‑14 25487800
    [Google Scholar]
  53. de Sousa L.R.F. Wu H. Nebo L. Fernandes J.B. da Silva M.F.G.F. Kiefer W. Kanitz M. Bodem J. Diederich W.E. Schirmeister T. Vieira P.C. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorg. Med. Chem. 2015 23 3 466 470 10.1016/j.bmc.2014.12.015 25564380
    [Google Scholar]
  54. Nie S. Zhao J. Wu X. Yao Y. Wu F. Lin Y.L. Li X. Kneubehl A.R. Vogt M.B. Rico-Hesse R. Song Y. Synthesis, structure-activity relationship and antiviral activity of indole-containing inhibitors of Flavivirus NS2B-NS3 protease. Eur. J. Med. Chem. 2021 225 113767 10.1016/j.ejmech.2021.113767 34450494
    [Google Scholar]
  55. Nie S. Yao Y. Wu F. Wu X. Zhao J. Hua Y. Wu J. Huo T. Lin Y.L. Kneubehl A.R. Vogt M.B. Ferreon J. Rico-Hesse R. Song Y. Synthesis, structure–activity relationships, and antiviral activity of allosteric inhibitors of flavivirus NS2B–NS3 protease. J. Med. Chem. 2021 64 5 2777 2800 10.1021/acs.jmedchem.0c02070 33596380
    [Google Scholar]
  56. Li Z. Brecher M. Deng Y.Q. Zhang J. Sakamuru S. Liu B. Huang R. Koetzner C.A. Allen C.A. Jones S.A. Chen H. Zhang N.N. Tian M. Gao F. Lin Q. Banavali N. Zhou J. Boles N. Xia M. Kramer L.D. Qin C.F. Li H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by affing NS2B-NS3 interaction. Cell Res. 2017 27 8 1046 1064 10.1038/cr.2017.88 28685770
    [Google Scholar]
  57. Eberle R.J. Olivier D.S. Amaral M.S. Willbold D. Arni R.K. Coronado M.A. Promising natural compounds against flavivirus proteases: citrus flavonoids hesperetin and hesperidin. Plants 2021 10 10 2183 10.3390/plants10102183 34685992
    [Google Scholar]
  58. Maus H. Barthels F. Hammerschmidt S.J. Kopp K. Millies B. Gellert A. Ruggieri A. Schirmeister T. SAR of novel benzothiazoles affing an allosteric pocket of DENV and ZIKV NS2B/NS3 proteases. Bioorg. Med. Chem. 2021 47 116392 10.1016/j.bmc.2021.116392 34509861
    [Google Scholar]
  59. Koh-Stenta X. Joy J. Wang S.F. Kwek P. Wee J. Wan K.F. Gayen S. Chen A. Kang C. Lee M.A. Poulsen A. Vasudevan S. Hill J. Nacro K. Identification of covalent active site inhibitors of dengue virus protease. Drug Des. Devel. Ther. 2015 9 6389 6399 10.2147/DDDT.S94207 26677315
    [Google Scholar]
  60. Li Z. Sakamuru S. Huang R. Brecher M. Koetzner C.A. Zhang J. Chen H. Qin C. Zhang Q.Y. Zhou J. Kramer L.D. Xia M. Li H. Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Res. 2018 150 217 225 10.1016/j.antiviral.2017.12.018 29288700
    [Google Scholar]
  61. Kiat T.S. Pippen R. Yusof R. Ibrahim H. Khalid N. Rahman N.A. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg. Med. Chem. Lett. 2006 16 12 3337 3340 10.1016/j.bmcl.2005.12.075 16621533
    [Google Scholar]
  62. Coronado M.A. Gering I. Sevenich M. Olivier D.S. Mastalipour M. Amaral M.S. Willbold D. Eberle R.J. The importance of epigallocatechin as a scaffold for drug development against flaviviruses. Pharmaceutics 2023 15 3 803 10.3390/pharmaceutics15030803 36986663
    [Google Scholar]
  63. Wu D. Mao F. Ye Y. Li J. Xu C. Luo X. Chen J. Shen X. Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells. Acta Pharmacol. Sin. 2015 36 9 1126 1136 10.1038/aps.2015.56 26279156
    [Google Scholar]
  64. de la Cruz L. Nguyen T.H.D. Ozawa K. Shin J. Graham B. Huber T. Otting G. Binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B-NS3 protease: Fold analysis by pseudocontact shifts. J. Am. Chem. Soc. 2011 133 47 19205 19215 10.1021/ja208435s 22007671
    [Google Scholar]
  65. Ekonomiuk D. Su X.C. Ozawa K. Bodenreider C. Lim S.P. Otting G. Huang D. Caflisch A. Flaviviral protease inhibitors identified by fragment-based library docking into a structure generated by molecular dynamics. J. Med. Chem. 2009 52 15 4860 4868 10.1021/jm900448m 19572550
    [Google Scholar]
  66. Kühl N. Leuthold M.M. Behnam M.A.M. Klein C.D. Beyond basicity: discovery of nonbasic denv-2 protease inhibitors with potent activity in cell culture. J. Med. Chem. 2021 64 8 4567 4587 10.1021/acs.jmedchem.0c02042 33851839
    [Google Scholar]
  67. Lin X. Cheng J. Wu Y. Zhang Y. Jiang H. Wang J. Wang X. Cheng M. Identification and in silico binding study of a highly potent denv NS2B-NS3 covalent inhibitor. ACS Med. Chem. Lett. 2022 13 4 599 607 10.1021/acsmedchemlett.1c00653 35450371
    [Google Scholar]
  68. Lai H. Dou D. Aravapalli S. Teramoto T. Lushington G.H. Mwania T.M. Alliston K.R. Eichhorn D.M. Padmanabhan R. Groutas W.C. Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: Potent inhibitors of Dengue and West Nile virus NS2B/NS3 proteases. Bioorg. Med. Chem. 2013 21 1 102 113 10.1016/j.bmc.2012.10.058 23211969
    [Google Scholar]
  69. Saleem H.N. Batool F. Mansoor H.J. Shahzad-ul-Hussan S. Saeed M. Inhibition of dengue virus protease by eugeniin, isobiflorin, and biflorin isolated from the flower buds of syzygium aromaticum (cloves). ACS Omega 2019 4 1 1525 1533 10.1021/acsomega.8b02861
    [Google Scholar]
  70. Lai H. Sridhar Prasad G. Padmanabhan R. Characterization of 8-hydroxyquinoline derivatives containing aminobenzothiazole as inhibitors of dengue virus type 2 protease in vitro. Antiviral Res. 2013 97 1 74 80 10.1016/j.antiviral.2012.10.009 23127365
    [Google Scholar]
  71. Nitsche C. Steuer C. Klein C.D. Arylcyanoacrylamides as inhibitors of the dengue and west nile virus proteases. Bioorg. Med. Chem. 2011 19 24 7318 7337 10.1016/j.bmc.2011.10.061 22094280
    [Google Scholar]
  72. Tomlinson S.M. Watowich S.J. Anthracene-based inhibitors of dengue virus NS2B–NS3 protease. Antiviral Res. 2011 89 2 127 135 10.1016/j.antiviral.2010.12.006 21185332
    [Google Scholar]
  73. Knehans T. Schüller A. Doan D.N. Nacro K. Hill J. Güntert P. Madhusudhan M.S. Weil T. Vasudevan S.G. Structure-guided fragment-based in silico drug design of dengue protease inhibitors. J. Comput. Aided Mol. Des. 2011 25 3 263 274 10.1007/s10822‑011‑9418‑0 21344277
    [Google Scholar]
  74. Mueller N.H. Pattabiraman N. Ansarah-Sobrinho C. Viswanathan P. Pierson T.C. Padmanabhan R. Identification and biochemical characterization of small-molecule inhibitors of west nile virus serine protease by a high-throughput screen. Antimicrob. Agents Chemother. 2008 52 9 3385 3393 10.1128/AAC.01508‑07 18606844
    [Google Scholar]
  75. Bodenreider C. Beer D. Keller T.H. Sonntag S. Wen D. Yap L. Yau Y.H. Shochat S.G. Huang D. Zhou T. Caflisch A. Su X.C. Ozawa K. Otting G. Vasudevan S.G. Lescar J. Lim S.P. A fluorescence quenching assay to discriminate between specific and nonspecific inhibitors of dengue virus protease. Anal. Biochem. 2009 395 2 195 204 10.1016/j.ab.2009.08.013 19682971
    [Google Scholar]
  76. Cheng J. Feng S. Zhang Y. Ding T. Jiang H. Zhang Z. Wang J. Wang X. Cheng M. Discovery of highly potent DENV NS2B-NS3 covalent inhibitors containing a phenoxymethylphenyl residue. Biochem. Biophys. Res. Commun. 2022 627 214 219 10.1016/j.bbrc.2022.08.060 36058105
    [Google Scholar]
  77. Raut R. Beesetti H. Tyagi P. Khanna I. Jain S.K. Jeankumar V.U. Yogeeswari P. Sriram D. Swaminathan S. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virol. J. 2015 12 1 16 10.1186/s12985‑015‑0248‑x 25886260
    [Google Scholar]
  78. Olaru A. Bala C. Jaffrezic-Renault N. Aboul-Enein H.Y. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem. 2015 45 2 97 105 10.1080/10408347.2014.881250 25558771
    [Google Scholar]
  79. Kronenberger T. Sá Magalhães Serafim M. Kumar Tonduru A. Gonçalves Maltarollo V. Poso A. Ligand accessibility insights to the dengue virus NS3-NS2B protease assessed by long-timescale molecular dynamics simulations. Chem. Med. Chem. 2021 16 16 2524 2534 10.1002/cmdc.202100246 33899341
    [Google Scholar]
  80. Dill K.A. Bromberg S. Yue K. Chan H.S. Ftebig K.M. Yee D.P. Thomas P.D. Principles of protein folding — A perspective from simple exact models. Protein Sci. 1995 4 4 561 602 10.1002/pro.5560040401 7613459
    [Google Scholar]
  81. Najmi A. Javed S.A. Al Bratty M. Alhazmi H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Nat. Prod. 2022 27 2 349
    [Google Scholar]
  82. Wright G. D. Unlocking the potential of natural products in drug discovery. Microb Biotechnol. 2019 12 1 55 57 10.1111/1751‑7915.13351 30565871
    [Google Scholar]
  83. Li F. Wang Y. Li D. Chen Y. Dou Q.P. Are we seeing a resurgence in the use of natural products for new drug discovery? Expert Opin. Drug Discov. 2019 14 5 417 420 10.1080/17460441.2019.1582639 30810395
    [Google Scholar]
  84. Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Comprehensive Pharmacology. Kenakin T. Oxford Elsevier 2022 408 422 10.1016/B978‑0‑12‑820472‑6.00041‑4
    [Google Scholar]
  85. Loeanurit N. Tuong T.L. Nguyen V.K. Vibulakhaophan V. Hengphasatporn K. Shigeta Y. Ho S.X. Chu J.J.H. Rungrotmongkol T. Chavasiri W. Boonyasuppayakorn S. Lichen-derived diffractaic acid inhibited dengue virus replication in a cell-based system. Molecules 2023 28 3 974 10.3390/molecules28030974 36770642
    [Google Scholar]
  86. Zandi K. Teoh B.T. Sam S.S. Wong P.F. Mustafa M.R. AbuBakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J. 2011 8 1 560 10.1186/1743‑422X‑8‑560 22201648
    [Google Scholar]
  87. Dwivedi V.D. Bharadwaj S. Afroz S. Khan N. Ansari M.A. Yadava U. Tripathi R.C. Tripathi I.P. Mishra S.K. Kang S.G. Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. J. Biomol. Struct. Dyn. 2021 39 4 1417 1430 10.1080/07391102.2020.1734485 32107969
    [Google Scholar]
  88. Jayadevappa M. K. Karkera P. R. Siddappa R. Y. Telkar S. Karunakara P. Investigation of plant flavonoids as potential dengue protease inhibitors. Molecules. 2020 9 4 366 373 10.34172/jhp.2020.46
    [Google Scholar]
  89. Ganji L.R. Gandhi L. Musturi V. Kanyalkar M.A. Design, synthesis, and evaluation of different scaffold derivatives against NS2B-NS3 protease of dengue virus. Med. Chem. Res. 2021 30 1 285 301 10.1007/s00044‑020‑02660‑y
    [Google Scholar]
  90. y S. Liew S.Y. Othman M.A. Abdul Wahab S.M. Hariono M. Mohd Nawi M.S. Abdul Wahab H. Awang K. Natural DENV-2 NS2B/NS3 protease inhibitors from Myristica cinnamomea King. Trop. Biomed. 2021 38 2 79 84 10.47665/tb.38.2.044 33973577
    [Google Scholar]
  91. Balasubramanian A. Pilankatta R. Teramoto T. Sajith A.M. Nwulia E. Kulkarni A. Padmanabhan R. Inhibition of dengue virus by curcuminoids. Antiviral Res. 2019 162 71 78 10.1016/j.antiviral.2018.12.002 30529358
    [Google Scholar]
  92. Muhamad M. Kee L.Y. Rahman N.A. Yusof R. Antiviral actions of flavanoid-derived compounds on dengue virus type-2. Int. J. Biol. Sci. 2010 6 3 294 302 10.7150/ijbs.6.294 20567498
    [Google Scholar]
  93. Bharadwaj S. Lee K.E. Dwivedi V.D. Yadava U. Panwar A. Lucas S.J. Pandey A. Kang S.G. Discovery of ganoderma lucidum triterpenoids as potential inhibitors against dengue virus NS2B-NS3 protease. Sci. Rep. 2019 9 1 19059 10.1038/s41598‑019‑55723‑5 31836806
    [Google Scholar]
  94. Flores-Ocelotl M.R. Rosas-Murrieta N.H. Moreno D.A. Vallejo-Ruiz V. Reyes-Leyva J. Domínguez F. Santos-López G. Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC Complement. Altern. Med. 2018 18 1 95 10.1186/s12906‑018‑2163‑3 29548293
    [Google Scholar]
  95. Rothan H.A. Zulqarnain M. Ammar Y.A. Tan E.C. Rahman N.A. Yusof R. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay. Trop. Biomed. 2014 31 2 286 296 25134897
    [Google Scholar]
  96. Quintana V.M. Piccini L.E. Panozzo Zénere J.D. Damonte E.B. Ponce M.A. Castilla V. Antiviral activity of natural and synthetic β-carbolines against dengue virus. Antiviral Res. 2016 134 26 33 10.1016/j.antiviral.2016.08.018 27568370
    [Google Scholar]
  97. Lee J.C. Chang F.R. Chen S.R. Wu Y.H. Hu H.C. Wu Y.C. Backlund A. Cheng Y.B. Anti-dengue virus constituents from formosan zoanthid palythoa mutuki. Mar. Drugs 2016 14 8 151 10.3390/md14080151 27517937
    [Google Scholar]
  98. Yi B. Chew B.X.Z. Chen H. Lee R.C.H. Fong Y.D. Chin W.X. Mok C.K. Chu J.J.H. Antiviral activity of catechin against dengue virus infection. Viruses 2023 15 6 1377 10.3390/v15061377 37376676
    [Google Scholar]
  99. Panda K. Alagarasu K. Patil P. Agrawal M. More A. Kumar N. V. Mainkar P. S. Parashar D. Cherian S. In vitro antiviral activity of α-mangostin against dengue virus serotype-2 (DENV-2) Molecules. 2021 6 10 3016 10.3390/molecules26103016 34069351
    [Google Scholar]
  100. Balasubramanian A. Manzano M. Teramoto T. Pilankatta R. Padmanabhan R. High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease. Antiviral Res. 2016 134 6 16 10.1016/j.antiviral.2016.08.014 27539384
    [Google Scholar]
  101. Sánchez I. Gómez-Garibay F. Taboada J. Ruiz B.H. Antiviral effect of flavonoids on the dengue virus. Phytother. Res. 2000 14 2 89 92 10.1002/(SICI)1099‑1573(200003)14:2<89::AID‑PTR569>3.0.CO;2‑C 10685103
    [Google Scholar]
  102. Zandi K. Teoh B.T. Sam S.S. Wong P.F. Mustafa M.R. AbuBakar S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med. 2012 12 1 214 10.1186/1472‑6882‑12‑214 23140177
    [Google Scholar]
  103. Figueiredo G.G. Coronel O.A. Trabuco A.C. Bazán D.E. Russo R.R. Alvarenga N.L. Aquino V.H. Steroidal saponins from the roots of Solanum sisymbriifolium Lam. (Solanaceae) have inhibitory activity against dengue virus and yellow fever virus. Braz. J. Med. Biol. Res. 2021 54 7 e10240 10.1590/1414‑431x2020e10240 34008751
    [Google Scholar]
  104. Panraksa P. Ramphan S. Khongwichit S. Smith D.R. Activity of andrographolide against dengue virus. Antiviral Res. 2017 139 69 78 10.1016/j.antiviral.2016.12.014 28034742
    [Google Scholar]
  105. Brandão G. Kroon E. Souza D. Filho J. Oliveira A. Chemistry and antiviral activity of Arrabidaea pulchra (Bignoniaceae). Molecules 2013 18 8 9919 9932 10.3390/molecules18089919 23959197
    [Google Scholar]
  106. de Castro Barbosa E. Alves T.M.A. Kohlhoff M. Jangola S.T.G. Pires D.E.V. Figueiredo A.C.C. Alves É.A.R. Calzavara-Silva C.E. Sobral M. Kroon E.G. Rosa L.H. Zani C.L. de Oliveira J.G. Searching for plant-derived antivirals against dengue virus and Zika virus. Virol. J. 2022 19 1 31 10.1186/s12985‑022‑01751‑z 35193667
    [Google Scholar]
  107. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  108. Jennings M.R. Parks R.J. Curcumin as an antiviral agent. Viruses 2020 12 11 1242 10.3390/v12111242 33142686
    [Google Scholar]
  109. Macip G. Garcia-Segura P. Mestres-Truyol J. Saldivar-Espinoza B. Pujadas G. Garcia-Vallvé S. A review of the current landscape of SARS-CoV-2 main protease inhibitors: Have we hit the bullseye yet? Int. J. Mol. Sci. 2021 23 1 259 10.3390/ijms23010259 35008685
    [Google Scholar]
  110. Linn A. K. Manopwisedjaroen S. Kanjanasirirat P. Borwornpinyo S. Hongeng S. Phanthong P. Thitithanyanont A. Unveiling the antiviral properties of panduratin a through SARS-CoV-2 infection modeling in cardiomyocytes. Int. J. Mol. Sci. 2024 25 3 1427 10.3390/ijms25031427 38338708
    [Google Scholar]
  111. Yamashita A. Sakamoto T. Sekizuka T. Kato K. Takasaki T. Kuroda M. DGV: Dengue genographic viewer. Front. Microbiol. 2016 7 875 10.3389/fmicb.2016.00875 27375595
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673343582241229131338
Loading
/content/journals/cmc/10.2174/0109298673343582241229131338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test