Skip to content
2000
image of Research Progress of Microneedles in Vaccine Delivery

Abstract

Large-scale infectious diseases have become a significant threat to human health and safety. The successful invention of vaccines is the most powerful means for preventing infectious diseases and has greatly improved global human health. Even during the pandemic of COVID-19, which has affected the world, vaccines have played an irreplaceable role. Microneedles (MNs) punctured the stratum corneum and formed microchannels in the skin allowing the vaccine to be efficiently recognized by the abundant antigen-presenting cells (APCs) in the skin to form specific immunity. Compared with traditional vaccination methods, MN transdermal immunization has the advantages of painlessness, easy storage, and efficient immune response. In this review, we summarize the types of vaccines, types of MNs, research progress and clinical research status of MN-based vaccines. We also cover various technologies for vaccine encapsulation, stable delivery of MN vaccines, and a wide range of potential clinical applications. We also outline the future development prospects of the MN system onboard to achieve better clinical benefits.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673336874241129081141
2025-01-24
2025-09-08
Loading full text...

Full text loading...

References

  1. Ma G. Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Control. Release 2017 251 11 23 10.1016/j.jconrel.2017.02.011 28215667
    [Google Scholar]
  2. Yu J. Wang J. Zhang Y. Chen G. Mao W. Ye Y. Kahkoska A.R. Buse J.B. Langer R. Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 2020 4 5 499 506 10.1038/s41551‑019‑0508‑y 32015407
    [Google Scholar]
  3. Balmert S.C. Carey C.D. Falo G.D. Sethi S.K. Erdos G. Korkmaz E. Falo L.D. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J. Control. Release 2020 317 336 346 10.1016/j.jconrel.2019.11.023 31756393
    [Google Scholar]
  4. Iapichino M. Maibach H. Stoeber B. Quantification methods comparing in vitro and in vivo percutaneous permeation by microneedles and passive diffusion. Int. J. Pharm. 2023 638 122885 10.1016/j.ijpharm.2023.122885 37015294
    [Google Scholar]
  5. Sullivan S.P. Koutsonanos D.G. del Pilar Martin M. Lee J.W. Zarnitsyn V. Choi S.O. Murthy N. Compans R.W. Skountzou I. Prausnitz M.R. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 2010 16 8 915 920 10.1038/nm.2182 20639891
    [Google Scholar]
  6. Hirobe S. Azukizawa H. Hanafusa T. Matsuo K. Quan Y.S. Kamiyama F. Katayama I. Okada N. Nakagawa S. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015 57 50 58 10.1016/j.biomaterials.2015.04.007 25913250
    [Google Scholar]
  7. Mercer A. Protection against severe infectious disease in the past. Pathog. Glob. Health 2021 115 3 151 167 10.1080/20477724.2021.1878443 33573529
    [Google Scholar]
  8. Donnelly R.F. Vaccine delivery systems. Hum. Vaccin. Immunother. 2017 13 1 17 18 10.1080/21645515.2016.1259043 28125375
    [Google Scholar]
  9. Hegde N.R. Kaveri S.V. Bayry J. Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discov. Today 2011 16 23-24 1061 1068 10.1016/j.drudis.2011.07.004 21782969
    [Google Scholar]
  10. Stoitzner P. Sparber F. Tripp C.H. Langerhans cells as targets for immunotherapy against skin cancer. Immunol. Cell Biol. 2010 88 4 431 437 10.1038/icb.2010.31 20351746
    [Google Scholar]
  11. Prausnitz M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 2004 56 5 581 587 10.1016/j.addr.2003.10.023 15019747
    [Google Scholar]
  12. Kenney R.T. Yu J. Guebre-Xabier M. Frech S.A. Lambert A. Heller B.A. Ellingsworth L.R. Eyles J.E. Williamson E.D. Glenn G.M. Induction of protective immunity against lethal anthrax challenge with a patch. J. Infect. Dis. 2004 190 4 774 782 10.1086/422694 15272406
    [Google Scholar]
  13. Minor P.D. Live attenuated vaccines: Historical successes and current challenges. Virology 2015 479-480 379 392 10.1016/j.virol.2015.03.032 25864107
    [Google Scholar]
  14. Lauring A.S. Jones J.O. Andino R. Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol. 2010 28 6 573 579 10.1038/nbt.1635 20531338
    [Google Scholar]
  15. Kew O.M. Sutter R.W. de Gourville E.M. Dowdle W.R. Pallansch M.A. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu. Rev. Microbiol. 2005 59 1 587 635 10.1146/annurev.micro.58.030603.123625 16153180
    [Google Scholar]
  16. Francis M.J. Recent advances in vaccine technologies. Vet. Clin. North Am. Small Anim. Pract. 2018 48 2 231 241 10.1016/j.cvsm.2017.10.002 29217317
    [Google Scholar]
  17. Kumru O.S. Joshi S.B. Smith D.E. Middaugh C.R. Prusik T. Volkin D.B. Vaccine instability in the cold chain: Mechanisms, analysis and formulation strategies. Biologicals 2014 42 5 237 259 10.1016/j.biologicals.2014.05.007 24996452
    [Google Scholar]
  18. D’Amico C. Fontana F. Cheng R. Santos H.A. Development of vaccine formulations: past, present, and future. Drug Deliv. Transl. Res. 2021 11 2 353 372 10.1007/s13346‑021‑00924‑7 33598818
    [Google Scholar]
  19. Vetter V. Denizer G. Friedland L.R. Krishnan J. Shapiro M. Understanding modern-day vaccines: what you need to know. Ann. Med. 2018 50 2 110 120 10.1080/07853890.2017.1407035 29172780
    [Google Scholar]
  20. Jegaskanda S. Co M.D.T. Cruz J. Subbarao K. Ennis F.A. Terajima M. Induction of H7N9-cross-reactive antibody-dependent cellular cytotoxicity antibodies by human seasonal influenza a viruses that are directed toward the nucleoprotein. J. Infect. Dis. 2017 215 5 818 823 28011910
    [Google Scholar]
  21. Jegaskanda S. Luke C. Hickman H.D. Sangster M.Y. Wieland-Alter W.F. McBride J.M. Yewdell J.W. Wright P.F. Treanor J. Rosenberger C.M. Subbarao K. Generation and protective ability of influenza virus–specific antibody-dependent cellular cytotoxicity in Humans elicited by vaccination, natural infection, and experimental challenge. J. Infect. Dis. 2016 214 6 945 952 10.1093/infdis/jiw262 27354365
    [Google Scholar]
  22. Schotsaert M. García-Sastre A. Inactivated influenza virus vaccines: the future of TIV and QIV. Curr. Opin. Virol. 2017 23 102 106 10.1016/j.coviro.2017.04.005 28505524
    [Google Scholar]
  23. Benjamanukul S. Traiyan S. Yorsaeng R. Vichaiwattana P. Sudhinaraset N. Wanlapakorn N. Poovorawan Y. Safety and immunogenicity of inactivated COVID-19 vaccine in health care workers. J. Med. Virol. 2022 94 4 1442 1449 10.1002/jmv.27458 34783049
    [Google Scholar]
  24. Hotez P.J. Bottazzi M.E. Whole inactivated virus and protein-based COVID-19 vaccines. Annu. Rev. Med. 2022 73 1 55 64 10.1146/annurev‑med‑042420‑113212 34637324
    [Google Scholar]
  25. Hesari T. Tahoori F. Nazari A. Salehi Najafabadi Z. Samianifard M. Faramarzi A. Soleimani M. Investigation of the effect of PEG detoxification on diphtheria vaccine. Arch. Razi Inst. 2022 77 2 739 745 36284980
    [Google Scholar]
  26. Tetanus vaccine. Wkly. Epidemiol. Rec. 2006 81 20 198 208 16710950
    [Google Scholar]
  27. Arora M. Lakshmi R. Vaccines - safety in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2021 76 23 40 10.1016/j.bpobgyn.2021.02.002 33773923
    [Google Scholar]
  28. Lago-Deibe F.I. Martín-Miguel M.V. Velicia-Peñas C. Gómez-Serranillos I.R. Fontanillo-Fontanillo M. The safety and efficacy of the tetanus vaccine intramuscularly versus subcutaneously in anticoagulated patients: a randomized clinical trial. BMC Fam. Pract. 2014 15 1 147 10.1186/1471‑2296‑15‑147 25168768
    [Google Scholar]
  29. Bull J.J. Nuismer S.L. Antia R. Recombinant vector vaccine evolution. PLOS Comput. Biol. 2019 15 7 e1006857 10.1371/journal.pcbi.1006857 31323032
    [Google Scholar]
  30. Barouch D.H. Picker L.J. Novel vaccine vectors for HIV-1. Nat. Rev. Microbiol. 2014 12 11 765 771 10.1038/nrmicro3360 25296195
    [Google Scholar]
  31. Conrad S.J. Liu J. Poxviruses as gene therapy vectors: Generating poxviral vectors expressing Therapeutic Transgenes. Methods Mol. Biol. 2019 1937 189 209 10.1007/978‑1‑4939‑9065‑8_11 30706397
    [Google Scholar]
  32. Apolonia L. The old and the new: Prospects for non-integrating lentiviral vector technology. Viruses 2020 12 10 1103 10.3390/v12101103 33003492
    [Google Scholar]
  33. Gebre M.S. Brito L.A. Tostanoski L.H. Edwards D.K. Carfi A. Barouch D.H. Novel approaches for vaccine development. Cell 2021 184 6 1589 1603 10.1016/j.cell.2021.02.030 33740454
    [Google Scholar]
  34. Basinski A.J. Varrelman T.J. Smithson M.W. May R.H. Remien C.H. Nuismer S.L. Evaluating the promise of recombinant transmissible vaccines. Vaccine 2018 36 5 675 682 10.1016/j.vaccine.2017.12.037 29279283
    [Google Scholar]
  35. McCann N. O’Connor D. Lambe T. Pollard A.J. Viral vector vaccines. Curr. Opin. Immunol. 2022 77 102210 10.1016/j.coi.2022.102210 35643023
    [Google Scholar]
  36. Hansson M. Nygren P.A˚. Sta˚hl S. Design and production of recombinant subunit vaccines. Biotechnol. Appl. Biochem. 2000 32 2 95 107 10.1042/BA20000034 11001870
    [Google Scholar]
  37. Lundstrom K. Self-amplifying RNA viruses as RNA vaccines. Int. J. Mol. Sci. 2020 21 14 5130 10.3390/ijms21145130 32698494
    [Google Scholar]
  38. Hebel C. Thomsen A.R. A survey of mechanisms underlying current and potential COVID-19 vaccines. Acta Pathol. Microbiol. Scand. Suppl. 2023 131 2 37 60 10.1111/apm.13284 36394112
    [Google Scholar]
  39. Giersing B. Shah N. Kristensen D. Amorij J.P. Kahn A.L. Gandrup-Marino K. Jarrahian C. Zehrung D. Menozzi-Arnaud M. Strategies for vaccine-product innovation: Creating an enabling environment for product development to uptake in low- and middle-income countries. Vaccine 2021 39 49 7208 7219 10.1016/j.vaccine.2021.07.091 34627624
    [Google Scholar]
  40. Ahmed Saeed AL-Japairai K. Mahmood S. Hamed Almurisi S. Reddy Venugopal J. Rebhi Hilles A. Azmana M. Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int. J. Pharm. 2020 587 119673 10.1016/j.ijpharm.2020.119673 32739388
    [Google Scholar]
  41. Yousef H. Alhajj M. Sharma S. Anatomy, skin (integument), epidermis StatPearls StatPearls: Treasure Island (FL) 2023
    [Google Scholar]
  42. Quílez C. de Aranda Izuzquiza G. García M. López V. Montero A. Valencia L. Velasco D. Bioprinting for skin. Methods Mol. Biol. 2020 2140 217 228 10.1007/978‑1‑0716‑0520‑2_14 32207115
    [Google Scholar]
  43. Sorg H. Tilkorn D.J. Hager S. Hauser J. Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res. 2017 58 1-2 81 94 10.1159/000454919 27974711
    [Google Scholar]
  44. Ueno H. Schmitt N. Palucka A.K. Banchereau J. Dendritic cells and humoral immunity in humans. Immunol. Cell Biol. 2010 88 4 376 380 10.1038/icb.2010.28 20309010
    [Google Scholar]
  45. Phatale V. Vaiphei K.K. Jha S. Patil D. Agrawal M. Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release 2022 351 361 380 10.1016/j.jconrel.2022.09.025 36169040
    [Google Scholar]
  46. Mishra D.K. Dhote V. Mishra P.K. Transdermal immunization: biological framework and translational perspectives. Expert Opin. Drug Deliv. 2013 10 2 183 200 10.1517/17425247.2013.746660 23256860
    [Google Scholar]
  47. Ellison T.J. Talbott G.C. Henderson D.R. VaxiPatch™, a novel vaccination system comprised of subunit antigens, adjuvants and microneedle skin delivery: An application to influenza B/Colorado/06/2017. Vaccine 2020 38 43 6839 6848 10.1016/j.vaccine.2020.07.040 32741668
    [Google Scholar]
  48. Moga K.A. Bickford L.R. Geil R.D. Dunn S.S. Pandya A.A. Wang Y. Fain J.H. Archuleta C.F. O’Neill A.T. DeSimone J.M. Rapidly-dissolvable microneedle patches via a highly scalable and reproducible soft lithography approach. Adv. Mater. 2013 25 36 5060 5066 10.1002/adma.201300526 23893866
    [Google Scholar]
  49. Rodgers A.M. McCrudden M.T.C. Vincente-Perez E.M. Dubois A.V. Ingram R.J. Larrañeta E. Kissenpfennig A. Donnelly R.F. Design and characterisation of a dissolving microneedle patch for intradermal vaccination with heat-inactivated bacteria: A proof of concept study. Int. J. Pharm. 2018 549 1-2 87 95 10.1016/j.ijpharm.2018.07.049 30048778
    [Google Scholar]
  50. Leone M. Priester M.I. Romeijn S. Nejadnik M.R. Mönkäre J. O’Mahony C. Jiskoot W. Kersten G. Bouwstra J.A. Hyaluronan-based dissolving microneedles with high antigen content for intradermal vaccination: Formulation, physicochemical characterization and immunogenicity assessment. Eur. J. Pharm. Biopharm. 2019 134 49 59 10.1016/j.ejpb.2018.11.013 30453025
    [Google Scholar]
  51. Caudill C. Perry J.L. Iliadis K. Tessema A.T. Lee B.J. Mecham B.S. Tian S. DeSimone J.M. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. Proc. Natl. Acad. Sci. USA 2021 118 39 e2102595118 10.1073/pnas.2102595118 34551974
    [Google Scholar]
  52. Waghule T. Singhvi G. Dubey S.K. Pandey M.M. Gupta G. Singh M. Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019 109 1249 1258 10.1016/j.biopha.2018.10.078 30551375
    [Google Scholar]
  53. Vučen S.R. Vuleta G. Crean A.M. Moore A.C. Ignjatović N. Uskoković D. Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. J. Pharm. Pharmacol. 2013 65 10 1451 1462 10.1111/jphp.12118 24028612
    [Google Scholar]
  54. S B v J C. Mannayee G. Structural analysis and simulation of solid microneedle array for vaccine delivery applications. Mater. Today Proc. 2022 65 3774 3779 10.1016/j.matpr.2022.06.483 35855948
    [Google Scholar]
  55. Al-Kasasbeh R. Brady A.J. Courtenay A.J. Larrañeta E. McCrudden M.T.C. O’Kane D. Liggett S. Donnelly R.F. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv. Transl. Res. 2020 10 3 690 705 10.1007/s13346‑020‑00727‑2 32103450
    [Google Scholar]
  56. Rzhevskiy A.S. Singh T.R.R. Donnelly R.F. Anissimov Y.G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J. Control. Release 2018 270 184 202 10.1016/j.jconrel.2017.11.048 29203415
    [Google Scholar]
  57. Jung J.H. Jin S.G. Microneedle for transdermal drug delivery: current trends and fabrication. J. Pharm. Investig. 2021 51 5 503 517 10.1007/s40005‑021‑00512‑4 33686358
    [Google Scholar]
  58. DeMuth P.C. Min Y. Huang B. Kramer J.A. Miller A.D. Barouch D.H. Hammond P.T. Irvine D.J. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 2013 12 4 367 376 10.1038/nmat3550 23353628
    [Google Scholar]
  59. Hao Y. Li W. Zhou X. Yang F. Qian Z. Microneedles-Based Transdermal Drug Delivery Systems: A Review. J. Biomed. Nanotechnol. 2017 13 12 1581 1597 10.1166/jbn.2017.2474 29490749
    [Google Scholar]
  60. Choi I.J. Cha H.R. Hwang S.J. Baek S.K. Lee J.M. Choi S.O. Live vaccinia virus-coated microneedle array patches for smallpox vaccination and stockpiling. Pharmaceutics 2021 13 2 209 10.3390/pharmaceutics13020209 33546332
    [Google Scholar]
  61. Kim Y.C. Quan F.S. Compans R.W. Kang S.M. Prausnitz M.R. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J. Control. Release 2010 142 2 187 195 10.1016/j.jconrel.2009.10.013 19840825
    [Google Scholar]
  62. Mansoor I. Eassa H.A. Mohammed K.H.A. Abd El-Fattah M.A. Abdo M.H. Rashad E. Eassa H.A. Saleh A. Amin O.M. Nounou M.I. Ghoneim O. Microneedle-based vaccine delivery: review of an emerging technology. AAPS PharmSciTech 2022 23 4 103 10.1208/s12249‑022‑02250‑8 35381906
    [Google Scholar]
  63. Guillot A.J. Cordeiro A.S. Donnelly R.F. Montesinos M.C. Garrigues T.M. Melero A. Microneedle-based delivery: an overview of current applications and trends. Pharmaceutics 2020 12 6 569 10.3390/pharmaceutics12060569 32575392
    [Google Scholar]
  64. Kwon K.M. Lim S.M. Choi S. Kim D.H. Jin H.E. Jee G. Hong K.J. Kim J.Y. Microneedles: quick and easy delivery methods of vaccines. Clin. Exp. Vaccine Res. 2017 6 2 156 159 10.7774/cevr.2017.6.2.156 28775980
    [Google Scholar]
  65. Cárcamo-Martínez Á. Mallon B. Domínguez-Robles J. Vora L.K. Anjani Q.K. Donnelly R.F. Hollow microneedles: A perspective in biomedical applications. Int. J. Pharm. 2021 599 120455 10.1016/j.ijpharm.2021.120455 33676993
    [Google Scholar]
  66. van der Maaden K. Trietsch S.J. Kraan H. Varypataki E.M. Romeijn S. Zwier R. van der Linden H.J. Kersten G. Hankemeier T. Jiskoot W. Bouwstra J. Novel hollow microneedle technology for depth-controlled microinjection-mediated dermal vaccination: a study with polio vaccine in rats. Pharm. Res. 2014 31 7 1846 1854 10.1007/s11095‑013‑1288‑9 24469907
    [Google Scholar]
  67. van der Maaden K. Heuts J. Camps M. Pontier M. Terwisscha van Scheltinga A. Jiskoot W. Ossendorp F. Bouwstra J. Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release 2018 269 347 354 10.1016/j.jconrel.2017.11.035 29174441
    [Google Scholar]
  68. Ogai N. Nonaka I. Toda Y. Ono T. Minegishi S. Inou A. Hachiya M. Fukamizu H. Enhanced immunity in intradermal vaccination by novel hollow microneedles. Skin Res. Technol. 2018 24 4 630 635 10.1111/srt.12576 29707828
    [Google Scholar]
  69. Tucak A. Sirbubalo M. Hindija L. Rahić O. Hadžiabdić J. Muhamedagić K. Čekić A. Vranić E. Microneedles: characteristics, materials, production methods and commercial development. Micromachines (Basel) 2020 11 11 961 10.3390/mi11110961 33121041
    [Google Scholar]
  70. Du G. Hathout R.M. Nasr M. Nejadnik M.R. Tu J. Koning R.I. Koster A.J. Slütter B. Kros A. Jiskoot W. Bouwstra J.A. Mönkäre J. Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J. Control. Release 2017 266 109 118 10.1016/j.jconrel.2017.09.021 28943194
    [Google Scholar]
  71. Alarcon J.B. Hartley A.W. Harvey N.G. Mikszta J.A. Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin. Vaccine Immunol. 2007 14 4 375 381 10.1128/CVI.00387‑06 17329444
    [Google Scholar]
  72. Carey J.B. Pearson F.E. Vrdoljak A. McGrath M.G. Crean A.M. Walsh P.T. Doody T. O’Mahony C. Hill A.V.S. Moore A.C. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice. PLoS One 2011 6 7 e22442 10.1371/journal.pone.0022442 21799855
    [Google Scholar]
  73. Vrdoljak A. McGrath M.G. Carey J.B. Draper S.J. Hill A.V.S. O’Mahony C. Crean A.M. Moore A.C. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J. Control. Release 2012 159 1 34 42 10.1016/j.jconrel.2011.12.026 22245683
    [Google Scholar]
  74. Edens C. Collins M.L. Ayers J. Rota P.A. Prausnitz M.R. Measles vaccination using a microneedle patch. Vaccine 2013 31 34 3403 3409 10.1016/j.vaccine.2012.09.062 23044406
    [Google Scholar]
  75. Carey J.B. Vrdoljak A. O’Mahony C. Hill A.V.S. Draper S.J. Moore A.C. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route. Sci. Rep. 2014 4 1 6154 10.1038/srep06154 25142082
    [Google Scholar]
  76. Pearson F.E. O’Mahony C. Moore A.C. Hill A.V.S. Induction of CD8+T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine. Vaccine 2015 33 28 3248 3255 10.1016/j.vaccine.2015.03.039 25839104
    [Google Scholar]
  77. Edens C. Collins M.L. Goodson J.L. Rota P.A. Prausnitz M.R. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015 33 37 4712 4718 10.1016/j.vaccine.2015.02.074 25770786
    [Google Scholar]
  78. Edens C. Dybdahl-Sissoko N.C. Weldon W.C. Oberste M.S. Prausnitz M.R. Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine 2015 33 37 4683 4690 10.1016/j.vaccine.2015.01.089 25749246
    [Google Scholar]
  79. Yang H.W. Ye L. Guo X.D. Yang C. Compans R.W. Prausnitz M.R. Ebola vaccination using a DNA vaccine coated on PLGA-PLL/γPGA nanoparticles administered using a microneedle patch. Adv. Healthc. Mater. 2017 6 1 1600750 10.1002/adhm.201600750 28075069
    [Google Scholar]
  80. Mistilis M.J. Joyce J.C. Esser E.S. Skountzou I. Compans R.W. Bommarius A.S. Prausnitz M.R. Long-term stability of influenza vaccine in a dissolving microneedle patch. Drug Deliv. Transl. Res. 2017 7 2 195 205 10.1007/s13346‑016‑0282‑2 26926241
    [Google Scholar]
  81. Zhu W. Pewin W. Wang C. Luo Y. Gonzalez G.X. Mohan T. Prausnitz M.R. Wang B.Z. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines. J. Control. Release 2017 261 1 9 10.1016/j.jconrel.2017.06.017 28642154
    [Google Scholar]
  82. Schipper P. van der Maaden K. Groeneveld V. Ruigrok M. Romeijn S. Uleman S. Oomens C. Kersten G. Jiskoot W. Bouwstra J. Diphtheria toxoid and N -trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice. J. Control. Release 2017 262 28 36 10.1016/j.jconrel.2017.07.017 28710002
    [Google Scholar]
  83. Choi I.J. Kang A. Ahn M.H. Jun H. Baek S.K. Park J.H. Na W. Choi S.O. Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine. J. Control. Release 2018 286 460 466 10.1016/j.jconrel.2018.08.017 30102940
    [Google Scholar]
  84. Courtenay A.J. Rodgers A.M. McCrudden M.T.C. McCarthy H.O. Donnelly R.F. Novel hydrogel-forming microneedle array for intradermal vaccination in mice using ovalbumin as a model protein antigen. Mol. Pharm. 2019 16 1 118 127 10.1021/acs.molpharmaceut.8b00895 30452868
    [Google Scholar]
  85. Boopathy A.V. Mandal A. Kulp D.W. Menis S. Bennett N.R. Watkins H.C. Wang W. Martin J.T. Thai N.T. He Y. Schief W.R. Hammond P.T. Irvine D.J. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc. Natl. Acad. Sci. USA 2019 116 33 16473 16478 10.1073/pnas.1902179116 31358641
    [Google Scholar]
  86. Donadei A. Kraan H. Ophorst O. Flynn O. O’Mahony C. Soema P.C. Moore A.C. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J. Control. Release 2019 311-312 96 103 10.1016/j.jconrel.2019.08.039 31484041
    [Google Scholar]
  87. Pastor Y. Larrañeta E. Erhard Á. Quincoces G. Peñuelas I. Irache J.M. Donnelly R. Gamazo C. Dissolving microneedles for intradermal vaccination against shigellosis. Vaccines (Basel) 2019 7 4 159 10.3390/vaccines7040159 31653077
    [Google Scholar]
  88. Kim E. Erdos G. Huang S. Kenniston T.W. Balmert S.C. Carey C.D. Raj V.S. Epperly M.W. Klimstra W.B. Haagmans B.L. Korkmaz E. Falo L.D. Jr Gambotto A. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 2020 55 102743 10.1016/j.ebiom.2020.102743 32249203
    [Google Scholar]
  89. Yin Y. Su W. Zhang J. Huang W. Li X. Ma H. Tan M. Song H. Cao G. Yu S. Yu D. Jeong J.H. Zhao X. Li H. Nie G. Wang H. Separable microneedle patch to protect and deliver DNA nanovaccines against COVID-19. ACS Nano 2021 15 9 14347 14359 10.1021/acsnano.1c03252 34472328
    [Google Scholar]
  90. Moon S.S. Richter-Roche M. Resch T.K. Wang Y. Foytich K.R. Wang H. Mainou B.A. Pewin W. Lee J. Henry S. McAllister D.V. Jiang B. Microneedle patch as a new platform to effectively deliver inactivated polio vaccine and inactivated rotavirus vaccine. NPJ Vaccines 2022 7 1 26 10.1038/s41541‑022‑00443‑7 35228554
    [Google Scholar]
  91. Zheng Y. Ye R. Gong X. Yang J. Liu B. Xu Y. Nie G. Xie X. Jiang L. Iontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules. Microsyst. Nanoeng. 2023 9 1 35 10.1038/s41378‑023‑00515‑1 36987502
    [Google Scholar]
  92. Zhang L. Xiu X. Li Z. Su R. Li X. Ma S. Ma F. Coated porous microneedles for effective intradermal immunization with split influenza vaccine. ACS Biomater. Sci. Eng. 2023 9 12 6880 6890 10.1021/acsbiomaterials.3c01212 37967566
    [Google Scholar]
  93. Kim E. Shin J. Ferrari A. Huang S. An E. Han D. Khan M.S. Kenniston T.W. Cassaniti I. Baldanti F. Jeong D. Gambotto A. Fourth dose of microneedle array patch of SARS-CoV-2 S1 protein subunit vaccine elicits robust long-lasting humoral responses in mice. Int. Immunopharmacol. 2024 129 111569 10.1016/j.intimp.2024.111569 38340419
    [Google Scholar]
  94. Wen Y. Deng S. Wang T. Gao M. Nan W. Tang F. Xue Q. Ju Y. Dai J. Wei Y. Xue F. Novel strategy for Poxviridae prevention: Thermostable combined subunit vaccine patch with intense immune response. Antiviral Res. 2024 228 105943 10.1016/j.antiviral.2024.105943 38909959
    [Google Scholar]
  95. Ou J. Xing M. Lu G. Wan C. Li K. Jiang W. Qian W. Liu Y. Xu R. Cheng A. Zhu M. Ju X. Gao Y. Tian Y. Niu Z. Transcutaneous immunization of 1D Rod-Like tobacco-mosaic-virus-based peptide vaccine via tip-loaded dissolving microneedles. Nano Lett. 2024 24 42 13118 13125 10.1021/acs.nanolett.4c01900 39365010
    [Google Scholar]
  96. Moore L.E. Vucen S. Moore A.C. Trends in drug- and vaccine-based dissolvable microneedle materials and methods of fabrication. Eur. J. Pharm. Biopharm. 2022 173 54 72 10.1016/j.ejpb.2022.02.013 35219862
    [Google Scholar]
  97. Ita K. Dissolving microneedles for transdermal drug delivery: Advances and challenges. Biomed. Pharmacother. 2017 93 1116 1127 10.1016/j.biopha.2017.07.019 28738520
    [Google Scholar]
  98. Pattarabhiran S.P. Saju A. Sonawane K.R. Manimaran R. Bhatnagar S. Roy G. Kulkarni R.B. Venuganti V.V.K. Dissolvable microneedle-mediated transcutaneous delivery of tetanus toxoid elicits effective immune response. AAPS PharmSciTech 2019 20 7 257 10.1208/s12249‑019‑1471‑3 31332640
    [Google Scholar]
  99. Sartawi Z. Blackshields C. Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. J. Control. Release 2022 348 186 205 10.1016/j.jconrel.2022.05.045 35662577
    [Google Scholar]
  100. Cole G. McCaffrey J. Ali A.A. McBride J.W. McCrudden C.M. Vincente-Perez E.M. Donnelly R.F. McCarthy H.O. Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation. Hum. Vaccin. Immunother. 2017 13 1 50 62 10.1080/21645515.2016.1248008 27846370
    [Google Scholar]
  101. Hassan J. Haigh C. Ahmed T. Uddin M.J. Das D.B. Potential of microneedle systems for COVID-19 vaccination: current trends and challenges. Pharmaceutics 2022 14 5 1066 10.3390/pharmaceutics14051066 35631652
    [Google Scholar]
  102. Kapnick S.M. The nanoparticle-enabled success of COVID-19 mRNA vaccines and the promise of microneedle platforms for pandemic vaccine response. DNA Cell Biol. 2022 41 1 25 29 10.1089/dna.2021.0538 34958232
    [Google Scholar]
  103. Donnelly R.F. Singh T.R.R. Garland M.J. Migalska K. Majithiya R. McCrudden C.M. Kole P.L. Mahmood T.M.T. McCarthy H.O. Woolfson A.D. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 2012 22 23 4879 4890 10.1002/adfm.201200864 23606824
    [Google Scholar]
  104. Chai Q. Jiao Y. Yu X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 2017 3 1 6 10.3390/gels3010006 30920503
    [Google Scholar]
  105. Turner J.G. White L.R. Estrela P. Leese H.S. Hydrogel-forming microneedles: current advancements and future trends. Macromol. Biosci. 2021 21 2 2000307 10.1002/mabi.202000307 33241641
    [Google Scholar]
  106. Wang X. Wang N. Li N. Zhen Y. Wang T. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems. Hum. Vaccin. Immunother. 2016 12 8 2075 2089 10.1080/21645515.2016.1158368 27159879
    [Google Scholar]
  107. Yan L. Yang Y. Zhang W. Chen X. Advanced materials and nanotechnology for drug delivery. Adv. Mater. 2014 26 31 5533 5540 10.1002/adma.201305683 24449177
    [Google Scholar]
  108. Yu Y. Lü X. Ding F. Influence of poly(L-lactic acid) aligned nanofibers on PC12 differentiation. J. Biomed. Nanotechnol. 2015 11 5 816 827 10.1166/jbn.2015.1973 26349394
    [Google Scholar]
  109. McGrath M.G. Vucen S. Vrdoljak A. Kelly A. O’Mahony C. Crean A.M. Moore A. Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration. Eur. J. Pharm. Biopharm. 2014 86 2 200 211 10.1016/j.ejpb.2013.04.023 23727511
    [Google Scholar]
  110. Chen W. Wang C. Yan L. Huang L. Zhu X. Chen B. Sant H.J. Niu X. Zhu G. Yu K.N. Roy V.A.L. Gale B.K. Chen X. Improved polyvinylpyrrolidone microneedle arrays with non-stoichiometric cyclodextrin. J. Mater. Chem. B Mater. Biol. Med. 2014 2 12 1699 1705 10.1039/C3TB21698E 32261399
    [Google Scholar]
  111. Dangol M. Yang H. Li C.G. Lahiji S.F. Kim S. Ma Y. Jung H. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles. J. Control. Release 2016 223 118 125 10.1016/j.jconrel.2015.12.038 26732554
    [Google Scholar]
  112. Martin C.J. Allender C.J. Brain K.R. Morrissey A. Birchall J.C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release 2012 158 1 93 101 10.1016/j.jconrel.2011.10.024 22063007
    [Google Scholar]
  113. Donnelly R.F. Singh T.R.R. Woolfson A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010 17 4 187 207 10.3109/10717541003667798 20297904
    [Google Scholar]
  114. Saha I. Rai V.K. Hyaluronic acid based microneedle array: Recent applications in drug delivery and cosmetology. Carbohydr. Polym. 2021 267 118168 10.1016/j.carbpol.2021.118168 34119141
    [Google Scholar]
  115. Zhu J. Tang X. Jia Y. Ho C.T. Huang Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – A review. Int. J. Pharm. 2020 578 119127 10.1016/j.ijpharm.2020.119127 32036009
    [Google Scholar]
  116. Shi Y. Zhao J. Li H. Yu M. Zhang W. Qin D. Qiu K. Chen X. Kong M. A Drug-free, hair Follicle cycling regulatable, separable, Antibacterial microneedle patch for hair regeneration therapy. Adv. Healthc. Mater. 2022 11 19 2200908 10.1002/adhm.202200908 35817085
    [Google Scholar]
  117. Ma W. Zhang X. Liu Y. Fan L. Gan J. Liu W. Zhao Y. Sun L. Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv. Sci. (Weinh.) 2022 9 13 2103317 10.1002/advs.202103317 35266637
    [Google Scholar]
  118. Park J.H. Allen M.G. Prausnitz M.R. Polymer microneedles for controlled-release drug delivery. Pharm. Res. 2006 23 5 1008 1019 10.1007/s11095‑006‑0028‑9 16715391
    [Google Scholar]
  119. Chu L.Y. Choi S.O. Prausnitz M.R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J. Pharm. Sci. 2010 99 10 4228 4238 10.1002/jps.22140 20737630
    [Google Scholar]
  120. Li J. Zeng M. Shan H. Tong C. Microneedle Patches as Drug and Vaccine Delivery Platform. Curr. Med. Chem. 2017 24 22 2413 2422 28552053
    [Google Scholar]
  121. Hong X. Wei L. Wu F. Wu Z. Chen L. Liu Z. Yuan W. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther. 2013 7 945 952 24039404
    [Google Scholar]
  122. Olatunji O. Das D.B. Garland M.J. Belaid L. Donnelly R.F. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J. Pharm. Sci. 2013 102 4 1209 1221 10.1002/jps.23439 23359221
    [Google Scholar]
  123. Unverdi O.F. Coruh A. Effects of microneedle length and duration of preconditioning on random pattern skin flaps in rats. J. Plast. Reconstr. Aesthet. Surg. 2020 73 9 1758 1767 10.1016/j.bjps.2020.03.022 32473851
    [Google Scholar]
  124. Yan G. Warner K.S. Zhang J. Sharma S. Gale B.K. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm. 2010 391 1-2 7 12 10.1016/j.ijpharm.2010.02.007 20188808
    [Google Scholar]
  125. Li Y. Hu X. Dong Z. Chen Y. Zhao W. Wang Y. Zhang L. Chen M. Wu C. Wang Q. Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur. J. Pharm. Sci. 2020 151 105361 10.1016/j.ejps.2020.105361 32422374
    [Google Scholar]
  126. Makvandi P. Kirkby M. Hutton A.R.J. Shabani M. Yiu C.K.Y. Baghbantaraghdari Z. Jamaledin R. Carlotti M. Mazzolai B. Mattoli V. Donnelly R.F. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 2021 13 1 93 10.1007/s40820‑021‑00611‑9 34138349
    [Google Scholar]
  127. Davis S.P. Landis B.J. Adams Z.H. Allen M.G. Prausnitz M.R. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 2004 37 8 1155 1163 10.1016/j.jbiomech.2003.12.010 15212920
    [Google Scholar]
  128. Donnelly R.F. Garland M.J. Morrow D.I.J. Migalska K. Singh T.R.R. Majithiya R. Woolfson A.D. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J. Control. Release 2010 147 3 333 341 10.1016/j.jconrel.2010.08.008 20727929
    [Google Scholar]
  129. van der Maaden K. Luttge R. Vos P.J. Bouwstra J. Kersten G. Ploemen I. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 2015 5 4 397 406 10.1007/s13346‑015‑0238‑y 26044672
    [Google Scholar]
  130. Guillot A.J. Martínez-Navarrete M. Zinchuk-Mironova V. Melero A. Microneedle-assisted transdermal delivery of nanoparticles: Recent insights and prospects. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 4 e1884 10.1002/wnan.1884 37041036
    [Google Scholar]
  131. Seok H. Noh J.Y. Lee D.Y. Kim S.J. Song C.S. Kim Y.C. Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. J. Control. Release 2017 265 66 74 10.1016/j.jconrel.2017.04.027 28434892
    [Google Scholar]
  132. Zhu Q. Zarnitsyn V.G. Ye L. Wen Z. Gao Y. Pan L. Skountzou I. Gill H.S. Prausnitz M.R. Yang C. Compans R.W. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc. Natl. Acad. Sci. USA 2009 106 19 7968 7973 10.1073/pnas.0812652106 19416832
    [Google Scholar]
  133. Kim M.C. Lee J.W. Choi H.J. Lee Y.N. Hwang H.S. Lee J. Kim C. Lee J.S. Montemagno C. Prausnitz M.R. Kang S.M. Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection. J. Control. Release 2015 210 208 216 10.1016/j.jconrel.2015.05.278 26003039
    [Google Scholar]
  134. Yolai N. Suttirat P. Leelawattanachai J. Boonyasiriwat C. Modchang C. Finite element analysis and optimization of microneedle arrays for transdermal vaccine delivery: comparison of coated and dissolving microneedles. Comput. Methods Biomech. Biomed. Engin. 2023 26 12 1379 1387 10.1080/10255842.2022.2116576 36048187
    [Google Scholar]
  135. Choi Y. Lee G.S. Li S. Lee J.W. Mixson-Hayden T. Woo J. Xia D. Prausnitz M.R. Kamili S. Purdy M.A. Tohme R.A. Hepatitis B vaccine delivered by microneedle patch: Immunogenicity in mice and rhesus macaques. Vaccine 2023 41 24 3663 3672 10.1016/j.vaccine.2023.05.005 37179166
    [Google Scholar]
  136. Malek-Khatabi A. Tabandeh Z. Nouri A. Mozayan E. Sartorius R. Rahimi S. Jamaledin R. Long-term vaccine delivery and immunological responses using biodegradable polymer-based carriers. ACS Appl. Bio Mater. 2022 5 11 5015 5040 10.1021/acsabm.2c00638 36214209
    [Google Scholar]
  137. Tu J. Du G. Reza Nejadnik M. Mönkäre J. van der Maaden K. Bomans P.H.H. Sommerdijk N.A.J.M. Slütter B. Jiskoot W. Bouwstra J.A. Kros A. Mesoporous silica nanoparticle-coated microneedle arrays for intradermal antigen delivery. Pharm. Res. 2017 34 8 1693 1706 10.1007/s11095‑017‑2177‑4 28536970
    [Google Scholar]
  138. Wang Q. Ma B. Liang Q. Zhu A. Wang H. Fu L. Han X. Shi X. Xiang Y. Shang H. Zhang L. Stabilized diverse HIV-1 envelope trimers for vaccine design. Emerg. Microbes Infect. 2020 9 1 775 786 10.1080/22221751.2020.1745093 32241249
    [Google Scholar]
  139. Rouphael N.G. Paine M. Mosley R. Henry S. McAllister D.V. Kalluri H. Pewin W. Frew P.M. Yu T. Thornburg N.J. Kabbani S. Lai L. Vassilieva E.V. Skountzou I. Compans R.W. Mulligan M.J. Prausnitz M.R. Beck A. Edupuganti S. Heeke S. Kelley C. Nesheim W. TIV-MNP 2015 Study Group The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 2017 390 10095 649 658 10.1016/S0140‑6736(17)30575‑5 28666680
    [Google Scholar]
  140. Van Damme P. Oosterhuis-Kafeja F. Van der Wielen M. Almagor Y. Sharon O. Levin Y. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 2009 27 3 454 459 10.1016/j.vaccine.2008.10.077 19022318
    [Google Scholar]
  141. Levin Y. Kochba E. Shukarev G. Rusch S. Herrera- Taracena G. van Damme P. A phase 1, open-label, randomized study to compare the immunogenicity and safety of different administration routes and doses of virosomal influenza vaccine in elderly. Vaccine 2016 34 44 5262 5272 10.1016/j.vaccine.2016.09.008 27667332
    [Google Scholar]
  142. Adigweme I. Akpalu E. Yisa M. Donkor S. Jarju L.B. Danso B. Mendy A. Jeffries D. Njie A. Bruce A. Royals M. Goodson J.L. Prausnitz M.R. McAllister D. Rota P.A. Henry S. Clarke E. Study protocol for a phase 1/2, single-centre, double-blind, double-dummy, randomized, active-controlled, age de-escalation trial to assess the safety, tolerability and immunogenicity of a measles and rubella vaccine delivered by a microneedle patch in healthy adults (18 to 40 years), measles and rubella vaccine-primed toddlers (15 to 18 months) and measles and rubella vaccine-naïve infants (9 to 10 months) in The Gambia [Measles and Rubella Vaccine Microneedle Patch Phase 1/2 Age De-escalation Trial]. Trials 2022 23 1 775 10.1186/s13063‑022‑06493‑5 36104719
    [Google Scholar]
  143. Vescovo P. Rettby N. Ramaniraka N. Liberman J. Hart K. Cachemaille A. Piveteau L.D. Zanoni R. Bart P.A. Pantaleo G. Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™. Vaccine 2017 35 14 1782 1788 10.1016/j.vaccine.2016.09.069 28317660
    [Google Scholar]
  144. Leroux-Roels I. Vets E. Freese R. Seiberling M. Weber F. Salamand C. Leroux-Roels G. Seasonal influenza vaccine delivered by intradermal microinjection: A randomised controlled safety and immunogenicity trial in adults. Vaccine 2008 26 51 6614 6619 10.1016/j.vaccine.2008.09.078 18930093
    [Google Scholar]
  145. Norman J.J. Arya J.M. McClain M.A. Frew P.M. Meltzer M.I. Prausnitz M.R. Microneedle patches: Usability and acceptability for self-vaccination against influenza. Vaccine 2014 32 16 1856 1862 10.1016/j.vaccine.2014.01.076 24530146
    [Google Scholar]
  146. Troy S.B. Kouiavskaia D. Siik J. Kochba E. Beydoun H. Mirochnitchenko O. Levin Y. Khardori N. Chumakov K. Maldonado Y. Comparison of the immunogenicity of various booster doses of inactivated polio vaccine delivered intradermally versus intramuscularly to HIV-Infected adults. J. Infect. Dis. 2015 211 12 1969 1976 10.1093/infdis/jiu841 25567841
    [Google Scholar]
  147. Forster A.H. Witham K. Depelsenaire A.C.I. Veitch M. Wells J.W. Wheatley A. Pryor M. Lickliter J.D. Francis B. Rockman S. Bodle J. Treasure P. Hickling J. Fernando G.J.P. Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial. PLoS Med. 2020 17 3 e1003024 10.1371/journal.pmed.1003024 32181756
    [Google Scholar]
  148. Frew P.M. Paine M.B. Rouphael N. Schamel J. Chung Y. Mulligan M.J. Prausnitz M.R. Acceptability of an inactivated influenza vaccine delivered by microneedle patch: Results from a phase I clinical trial of safety, reactogenicity, and immunogenicity. Vaccine 2020 38 45 7175 7181 10.1016/j.vaccine.2020.07.064 32792250
    [Google Scholar]
  149. Iwata H. Kakita K. Imafuku K. Takashima S. Haga N. Yamaguchi Y. Taguchi K. Oyamada T. Safety and dose-sparing effect of Japanese encephalitis vaccine administered by microneedle patch in uninfected, healthy adults (MNA-J): a randomised, partly blinded, active-controlled, phase 1 trial. Lancet Microbe 2022 3 2 e96 e104 10.1016/S2666‑5247(21)00269‑X 35544051
    [Google Scholar]
  150. Miauton A. Audran R. Besson J. Maby-El Hajjami H. Karlen M. Warpelin-Decrausaz L. Sene L. Schaufelberger S. Faivre V. Faouzi M. Hartley M.A. Spertini F. Genton B. Safety and immunogenicity of a synthetic nanoparticle-based, T cell priming peptide vaccine against dengue in healthy adults in Switzerland: a double-blind, randomized, vehicle-controlled, phase 1 study. EBioMedicine 2024 99 104922 10.1016/j.ebiom.2023.104922 38128414
    [Google Scholar]
  151. Adigweme I. Yisa M. Ooko M. Akpalu E. Bruce A. Donkor S. Jarju L.B. Danso B. Mendy A. Jeffries D. Segonds-Pichon A. Njie A. Crooke S. El-Badry E. Johnstone H. Royals M. Goodson J.L. Prausnitz M.R. McAllister D.V. Rota P.A. Henry S. Clarke E. A measles and rubella vaccine microneedle patch in The Gambia: a phase 1/2, double-blind, double-dummy, randomised, active-controlled, age de-escalation trial. Lancet 2024 403 10439 1879 1892 10.1016/S0140‑6736(24)00532‑4 38697170
    [Google Scholar]
  152. Garg N. Tellier G. Vale N. Kluge J. Portman J.L. Markowska A. Tussey L. Phase 1, randomized, rater and participant blinded placebo-controlled study of the safety, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in healthy adults. PLoS One 2024 19 6 e0303450 10.1371/journal.pone.0303450 38843267
    [Google Scholar]
  153. Kayembe L.K. Fischer L.S. Adhikari B.B. Knapp J.K. Khan E.B. Greening B.R. Papania M. Meltzer M.I. Estimates of potential demand for measles and rubella microarray patches. Vaccines (Basel) 2024 12 9 1083 10.3390/vaccines12091083 39340113
    [Google Scholar]
  154. Su R. Zhang R. Wang Y. Li Z. Zhang L. Ma S. Li X. Ma F. Fu H. Simulated skin model for in vitro evaluation of insertion performance of microneedles: design, development, and application verification. Comput. Methods Biomech. Biomed. Engin. 2024 1 10 10.1080/10255842.2024.2372621 38946229
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673336874241129081141
Loading
/content/journals/cmc/10.2174/0109298673336874241129081141
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: MN-based vaccines ; transdermal ; epidemics ; immunization ; Microneedles ; vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test