Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction/Objectives

strains are known to cause various gastrointestinal disorders, with Shiga toxin 2, a potent cytotoxin, being a key virulence factor contributing to disease severity. Targeting Shiga toxin 2 presents a promising approach for therapeutic intervention in controlling O157 infections. This study aims to explore natural and synthetic inhibitors as potential therapeutic agents against Shiga toxin 2 through molecular docking and drug-likeness predictions.

Methods

An molecular docking study was conducted using AutoDock Vina and Chimera to assess the binding affinity of various natural and synthetic inhibitors against Shiga toxin 2. The selected inhibitors were evaluated for their drug-likeness based on adsorption, distribution, metabolism, and excretion (ADME) properties, applying Lipinski's rule of five and the Boiled-Egg technique to predict their suitability as potential drugs in biological systems.

Results

During the screening process, luteolin, a natural flavonoid, exhibited the highest binding affinity to Shiga toxin 2, with a notable negative binding energy of -8.7 kcal/mol, indicating strong interaction potential.

Conclusion

The findings suggest that luteolin holds promise as a lead molecule for further development as a therapeutic agent against infections, warranting additional studies to validate its efficacy and safety.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673363373250118144235
2025-02-04
2025-12-31
Loading full text...

Full text loading...

References

  1. MakvanaS. KrilovL.R. Escherichia coli infections.Pediatr. Rev.201536416717110.1542/pir.36.4.167
    [Google Scholar]
  2. BlountZ.D. The unexhausted potential of E. coli.eLife20154e0582610.7554/eLife.0582625807083
    [Google Scholar]
  3. GomesT.A.T. EliasW.P. ScaletskyI.C.A. GuthB.E.C. RodriguesJ.F. PiazzaR.M.F. FerreiraL.C.S. MartinezM.B. Diarrheagenic Escherichia coli.Braz. J. Microbiol.201647Suppl 133010.1016/j.bjm.2016.10.01527866935
    [Google Scholar]
  4. ThomasD.E. ElliottE.J. Interventions for preventing diarrhea-associated hemolytic uremic syndrome: systematic review.BMC Public Health201313179910.1186/1471‑2458‑13‑79924007265
    [Google Scholar]
  5. AmeerM.A.W. SalenP. Multiple-drug resistant shiga toxin-producing E. coli in raw milk of dairy bovine.Trop. Med. Infect. Dis.2022936410.3390/tropicalmed9030064
    [Google Scholar]
  6. ByrneL. AdamsN. JenkinsC. Association between shiga toxin–producing Escherichia coli o157:h7 stx gene subtype and disease severity, england, 2009–2019.Emerg. Infect. Dis.202026102394240010.3201/eid2610.200319
    [Google Scholar]
  7. NaseerU. LøbersliI. HindrumM. BruvikT. BrandalL.T. Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uraemic syndrome in Norway, 1992–2013.Eur. J. Clin. Microbiol. Infect. Dis.20173691613162010.1007/s10096‑017‑2974‑z
    [Google Scholar]
  8. SmithK.E. WilkerP.R. ReiterP.L. HedicanE.B. BenderJ.B. HedbergC.W. Antibiotic treatment of Escherichia coli O157 infection and the risk of hemolytic uremic syndrome, Minnesota.Pediatr. Infect. Dis. J.2012311374110.1097/INF.0b013e31823096a8
    [Google Scholar]
  9. MenneJ. NitschkeM. StingeleR. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study.BMJ2012345e456510.1136/bmj.e456522815429
    [Google Scholar]
  10. Geerdes-FengeH.F. LöbermannM. NürnbergM. FritzscheC. KoballS. HenschelJ. HöhnR. SchoberH.C. MitznerS. PodbielskiA. ReisingerE.C. Ciprofloxacin reduces the risk of hemolytic uremic syndrome in patients with Escherichia coli O104:H4-associated diarrhea.Infection201341366967310.1007/s15010‑012‑0387‑623292662
    [Google Scholar]
  11. TajiriH. NishiJ. UshijimaK. ShimizuT. IshigeT. ShimizuM. TanakaH. BrooksS. A role for fosfomycin treatment in children for prevention of haemolytic-uraemic syndrome accompanying Shiga toxin-producing Escherichia coli infection.Int. J. Antimicrob. Agents.201546558658910.1016/j.ijantimicag.2015.08.00626391378
    [Google Scholar]
  12. RamstadS.N. TaxtA.M NaseerU. WastesonY. BjørnholtJ. BrandalL.T. Effects of antimicrobials on Shiga toxin production in high-virulent Shiga toxin-producing Escherichia coli.Microb. Pathog.202115210463610.1016/j.micpath.2020.10463633242644
    [Google Scholar]
  13. RamstadS.N. BrandalL.T. TaxtA.M. WastesonY. BjørnholtJ.V. NaseerU. Prevalence of genotypic antimicrobial resistance in clinical Shiga toxin-producing Escherichia coli in Norway, 2018 to 2020.J. Med. Microbiol.202170127010.1099/jmm.0.00145434870582
    [Google Scholar]
  14. MirR.A. KudvaI.T. Antibiotic-resistant Shiga toxin-producing Escherichia coli : An overview of prevalence and intervention strategies.Zoonoses Public Health201966111310.1111/zph.1253330375197
    [Google Scholar]
  15. HiroiM. TakahashiN. HaradaT. KawamoriF. IidaN. KandaT. SugiyamaK. OhashiN. Hara-KudoY. MasudaT. Serotype, Shiga toxin (Stx) type, and antimicrobial resistance of Stx-producing Escherichia coli isolated from humans in Shizuoka Prefecture, Japan (2003-2007).Jpn. J. Infect. Dis.201265319820210.7883/yoken.65.19822627299
    [Google Scholar]
  16. KouranovA. XieL. de la CruzJ. ChenL. WestbrookJ. BourneP.E. BermanH.M. The RCSB PDB information portal for structural genomics.Nucleic Acids Res.20063490001D302D30510.1093/nar/gkj12016381872
    [Google Scholar]
  17. StanleyC. von HillP.H. Calculation of protein extinction coefficients from amino acid sequence data.Anal. Biochem.1989182231932610.1016/0003‑2697(89)90602‑72610349
    [Google Scholar]
  18. GuruprasadK. ReddyB.V. PanditM.W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence.Protein Eng. Des. Sel.19904215516110.1093/protein/4.2.1552075190
    [Google Scholar]
  19. BiroJ.C. Amino acid size, charge, hydropathy indices and matrices for protein structure analysis.Theor. Biol. Med. Model.2006311510.1186/1742‑4682‑3‑1516551371
    [Google Scholar]
  20. McGuffinL.J. BrysonK. JonesD.T. The PSIPRED protein structure prediction server.Bioinformatics200016440440510.1093/bioinformatics/16.4.40410869041
    [Google Scholar]
  21. ArtimoP. JonnalageddaM. ArnoldK. BaratinD. CsardiG. de CastroE. DuvaudS. FlegelV. FortierA. GasteigerE. GrosdidierA. HernandezC. IoannidisV. KuznetsovD. LiechtiR. MorettiS. MostaguirK. RedaschiN. RossierG. XenariosI. StockingerH. ExPASy: SIB bioinformatics resource portal.Nucleic Acids Res.201240Web Server issueW597-60322661580
    [Google Scholar]
  22. BaileyT.L. JohnsonJ. GrantC.E. NobleW.S. The MEME suite.Nucleic Acids Res.201543W1W39W4910.1093/nar/gkv41625953851
    [Google Scholar]
  23. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv95126400175
    [Google Scholar]
  24. YuanS ChanHCS FilipekS VogelH. PyMOL and inkscape bridge the data and the data visualization.Structure.201624122041204210.1016/j.str.2016.11.01227926832
    [Google Scholar]
  25. GaillardT. Evaluation of autodock and autodock vina on the casf-2013 benchmark.J. Chem. Inf. Model.20185881697170610.1021/acs.jcim.8b0031229989806
    [Google Scholar]
  26. JiaC.Y. LiJ.Y. HaoG.F. YangG.F. A drug-likeness toolbox facilitates ADMET study in drug discovery.Drug Discov. Today202025124825810.1016/j.drudis.2019.10.01431705979
    [Google Scholar]
  27. DainaA. ZoeteV. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.20160018227218427
    [Google Scholar]
  28. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  29. AmruthaB. SundarK. ShettyP.H. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables.Microb. Pathog.201711115616210.1016/j.micpath.2017.08.04228867627
    [Google Scholar]
  30. NemesD. KovácsR. NagyF. Comparative biocompatibility and antimicrobial studies of sorbic acid derivates.Eur. J. Pharm. Sci.202014310516210.1016/j.ejps.2019.10516231756446
    [Google Scholar]
  31. ChenH. ZhongQ. Antibacterial activity of acidified sodium benzoate against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in tryptic soy broth and on cherry tomatoes.Int. J. Food Microbiol.2018274384410.1016/j.ijfoodmicro.2018.03.017
    [Google Scholar]
  32. Chun-Xue YangH-T.W. LiX-X. WuH-Y. NiuT-X. WangX-N. Comparison of the inhibitory potential of benzyl isothiocyanate and phenethyl isothiocyanate on Shiga toxin-producing and enterotoxigenic Escherichia coli.Lebensm. Wiss. Technol.202011810880610.1016/j.lwt.2019.108806
    [Google Scholar]
  33. BarrecaD. BelloccoE. LaganàG. GinestraG. BisignanoC. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat.Food Chem.201416029229710.1016/j.foodchem.2014.03.11824799241
    [Google Scholar]
  34. BaiY.B. ShiM.Y. WangW.W. WuL.Y. BaiY.T LiB. ZhouX.Z. ZhangJ.Y. Novel quorum sensing inhibitor Echinatin as an antibacterial synergist against Escherichia coli.Front. Microbiol.202213100369210.3389/fmicb.2022.100369236386683
    [Google Scholar]
  35. ChienS.Y. SheenS. SommersC.H. SheenL.Y. Modeling the inactivation of Escherichia coli O157:H7 and Uropathogenic E. coli in ground beef by high pressure processing and citral.Food Control2017792010.3389/fmicb.2016.0092027379050
    [Google Scholar]
  36. Sugita-KonishiY. Hara-KudoY. AmanoF. OkuboT. AoiN. IwakiM. KumagaiS. Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7.Biochim. Biophys. Acta, Gen. Subj.199914721-2425010.1016/S0304‑4165(99)00102‑610572924
    [Google Scholar]
  37. QianW. FuY. LiuM. ZhangJ. WangW. LiJ. ZengQ. WangT. LiY. Mechanisms of action of luteolin against single- and dual-species of Escherichia coli and enterobacter cloacae and its antibiofilm activities.Appl. Biochem. Biotechnol.202119351397141410.1007/s12010‑020‑03330‑w33009585
    [Google Scholar]
  38. VinhP.T. ShinoharaY. YamadaA. DucH.M. NakayamaM. OzawaT. SatoJ. MasudaY. HonjohK.I. MiyamotoT. Baicalein inhibits stx1 and 2 of EHE: effects of baicalein on the cytotoxicity, production, and secretion of shiga toxins of enterohaemorrhagic Escherichia coli.Toxins (Basel)201911950510.3390/toxins1109050531470657
    [Google Scholar]
  39. HeT.F. WangL.H. NiuD. WenQ. ZengX.A. Cinnamaldehyde inhibit Escherichia coli associated with membrane disruption and oxidative damage.Arch. Microbiol.2019201445145810.1007/s00203‑018‑1572‑530293114
    [Google Scholar]
  40. LipinskiC.A. Lead- and drug-like compounds: the rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  41. LipinskiC.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.Adv. Drug Deliv. Rev.2016101344110.1016/j.addr.2016.04.02927154268
    [Google Scholar]
  42. AttiqueS.A. HassanM. UsmanM. AtifR.M. MahboobS. Al-GhanimK.A. BilalM. NawazM.Z. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension.Int. J. Environ. Res. Public Health201916692310.3390/ijerph1606092330875817
    [Google Scholar]
  43. ZhangM.Q. WilkinsonB. Drug discovery beyond the ‘rule-of-five’.Curr. Opin. Biotechnol.200718647848810.1016/j.copbio.2007.10.00518035532
    [Google Scholar]
  44. ChedikL. Mias-LucquinD. BruyereA. FardelO. In silico prediction for intestinal absorption and brain penetration of chemical pesticides in humans.Int. J. Environ. Res. Publ. Heal.201714770810.3390/ijerph1407070828665355
    [Google Scholar]
  45. AhadI.I. HossainM.M. UddinM.A. BariM.L. HossainM.S. Therapeutic effect of antibiotics against Escherichia coli o157:h7 in silk moth larvae animal model.Curr. Microbiol.20207792172218010.1007/s00284‑020‑02023‑1
    [Google Scholar]
  46. MauroS.A. KoudelkaG.B. Shiga toxin: expression, distribution, and its role in the environment.Toxins (Basel)20113660862510.3390/toxins306060822069728
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673363373250118144235
Loading
/content/journals/cmc/10.2174/0109298673363373250118144235
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test