Skip to content
2000
image of Enhance Anti-obesity Effect of Natural Compounds through Carrier Mediation

Abstract

Obesity is a global public health problem that can lead to many health complications or comorbidities. Medication alone or in combination with lifestyle changes or surgery is the main way to combat obesity and its complications. Most anti-obesity drugs are limited by their bioavailability, target-specific, and potentially toxic effects, so there is an urgent need for alternative treatments. Based on the new revelation of the pathogenesis of obesity, as well as the efforts of multidisciplinary integration of materials, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. By analyzing the current status and challenges of natural compounds in obesity treatment, this review systematically summarizes the advanced functions and prospects of carrier delivery of natural ingredients in targeted delivery of obesity, as well as their application in obesity treatment. Finally, on the basis of systematic analysis of anti-obesity, the future prospects and challenges in this field are put forward.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673324660241205114930
2025-01-03
2025-09-07
Loading full text...

Full text loading...

References

  1. Malik S. Guha A. Wang X. Weintraub N.L. Harris R. Datta B. Moore J. Nain P. Patel S.A. Coughlin S. Polter E. Prizment A. Blaes A. Florido R. Kutty S. Alonso A. Joshu C.E. Platz E.A. Association between obesity and risk of total and obesity-related cancer in people with incident cardiovascular disease. J. Am. Heart Assoc. 2024 13 17 e034438 10.1161/JAHA.124.034438 39189606
    [Google Scholar]
  2. Bays H.E. Kirkpatrick C.F. Maki K.C. Toth P.P. Morgan R.T. Tondt J. Christensen S.M. Dixon D.L. Jacobson T.A. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the obesity medicine association and the national lipid association 2024. J. Clin. Lipidol. 2024 18 3 e320 e350 10.1016/j.jacl.2024.04.001 38664184
    [Google Scholar]
  3. Luo H. Liu Y. Tian X. Zhao Y. Liu L. Zhao Z. Luo L. Zhang Y. Jiang X. Liu Y. Luo Y. Wang A. Association of obesity with cardiovascular disease in the absence of traditional risk factors. Int. J. Obes. 2024 48 2 263 270 10.1038/s41366‑023‑01408‑z 37938287
    [Google Scholar]
  4. Tuccinardi D. Watanabe M. Masi D. Monte L. Meffe L.B. Cavallari I. Nusca A. Maddaloni E. Gnessi L. Napoli N. Manfrini S. Grigioni F. Rethinking weight loss treatments as cardiovascular medicine in obesity, a comprehensive review. Eur. J. Prev. Cardiol. 2024 31 10 1260 1273 10.1093/eurjpc/zwae171 38833329
    [Google Scholar]
  5. Balan A.I. Halațiu V.B. Scridon A. Oxidative stress, inflammation, and mitochondrial dysfunction: A link between obesity and atrial fibrillation. Antioxidants 2024 13 1 117
    [Google Scholar]
  6. Goudis C.A. Korantzopoulos P. Ntalas I.V. Kallergis E.M. Ketikoglou D.G. Obesity and atrial fibrillation: A comprehensive review of the pathophysiological mechanisms and links. J. Cardiol. 2015 66 5 361 369 10.1016/j.jjcc.2015.04.002 25959929
    [Google Scholar]
  7. Scridon A. Dobreanu D. Chevalier P. Şerban R.C. Inflammation, a link between obesity and atrial fibrillation. Inflamm. Res. 2015 64 6 383 393 10.1007/s00011‑015‑0827‑8 25929437
    [Google Scholar]
  8. Adesunloye B.A. Mechanistic insights into the link between obesity and prostate cancer. Int. J. Mol. Sci. 2021 22 8 3935 10.3390/ijms22083935
    [Google Scholar]
  9. Glassman I. Le N. Asif A. Goulding A. Alcantara C.A. Vu A. Chorbajian A. Mirhosseini M. Singh M. Venketaraman V. The role of obesity in breast cancer pathogenesis. Cells 2023 12 16 2061 10.3390/cells12162061
    [Google Scholar]
  10. Guha A. Wang X. Harris R.A. Nelson A.G. Stepp D. Klaassen Z. Raval P. Cortes J. Coughlin S.S. Bogdanov V.Y. Moore J.X. Desai N. Miller D.D. Lu X.Y. Kim H.W. Weintraub N.L. Obesity and the bidirectional risk of cancer and cardiovascular diseases in African Americans: Disparity r33 ancestry. Front. Cardiovasc. Med. 2021 8 761488 10.3389/fcvm.2021.761488 34733899
    [Google Scholar]
  11. Hopkins B.D. Goncalves M.D. Cantley L.C. Obesity and cancer mechanisms: Cancer metabolism. J. Clin. Oncol. 2016 34 35 4277 4283 10.1200/JCO.2016.67.9712 27903152
    [Google Scholar]
  12. Jovanović M. Kovačević S. Brkljačić J. Djordjevic A. Oxidative stress linking obesity and cancer: Is obesity a ‘Radical Trigger’ to cancer? Int. J. Mol. Sci. 2023 24 9 8452
    [Google Scholar]
  13. Kakkat S. Suman P. Herrera T.E.A. Singh S. Chakroborty D. Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front. Cell Dev. Biol. 2024 12 1408844
    [Google Scholar]
  14. Laurent V. Guérard A. Mazerolles C. Le Gonidec S. Toulet A. Nieto L. Zaidi F. Majed B. Garandeau D. Socrier Y. Golzio M. Cadoudal T. Chaoui K. Dray C. Monsarrat B. Schiltz O. Wang Y.Y. Couderc B. Valet P. Malavaud B. Muller C. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat. Commun. 2016 7 1 10230 10.1038/ncomms10230 26756352
    [Google Scholar]
  15. Prousi G.S. Joshi A.M. Atti V. Addison D. Brown S.A. Guha A. Patel B. Vascular inflammation, cancer, and cardiovascular diseases. Curr. Oncol. Rep. 2023 25 9 955 963 10.1007/s11912‑023‑01426‑0 37261651
    [Google Scholar]
  16. Wilson R.L. Taaffe D.R. Newton R.U. Hart N.H. Lyons-Wall P. Galvão D.A. Obesity and prostate cancer: A narrative review. Crit. Rev. Oncol. Hematol. 2022 169 103543 10.1016/j.critrevonc.2021.103543 34808374
    [Google Scholar]
  17. Zou Y. Pitchumoni C.S. Obesity, obesities and gastrointestinal cancers. Dis. Mon. 2023 69 12 101592 10.1016/j.disamonth.2023.101592 37308362
    [Google Scholar]
  18. Buzzetti E. Pinzani M. Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016 65 8 1038 1048 10.1016/j.metabol.2015.12.012 26823198
    [Google Scholar]
  19. Lima S.I. Kim H.J. Jones J. Kim Y.B. Rho-kinase as a therapeutic target for nonalcoholic fatty liver diseases. Diabetes Metab. J. 2021 45 5 655 674 10.4093/dmj.2021.0197 34610720
    [Google Scholar]
  20. Zhang Y. Xiang L. Qi F. Cao Y. Zhang W. Lv T. Zhou X. The metabolic profiles and body composition of non-obese metabolic associated fatty liver disease. Front. Endocrinol. 2024 15 1322563 10.3389/fendo.2024.1322563 38375190
    [Google Scholar]
  21. Tao J. Li H. Wang H. Tan J. Yang X. Metabolic dysfunction–associated fatty liver disease and osteoporosis: The mechanisms and roles of adiposity. Osteoporos. Int. 2024 35 12 2087 2098 10.1007/s00198‑024‑07217‑y 39136721
    [Google Scholar]
  22. Neto A. Fernandes A. Barateiro A. The complex relationship between obesity and neurodegenerative diseases: An updated review. Front. Cell. Neurosci. 2023 17 1294420 10.3389/fncel.2023.1294420 38026693
    [Google Scholar]
  23. Mazon J.N. de Mello A.H. Ferreira G.K. Rezin G.T. The impact of obesity on neurodegenerative diseases. Life Sci. 2017 182 22 28 10.1016/j.lfs.2017.06.002 28583368
    [Google Scholar]
  24. Mitolo M. Meneghello F. Iaia V. Levedianos G. Cosentino E. Burgio F. Duzzi D. Venneri A. P4-181: Obesity as a risk factor in the early stage of neurodegeneration: Relationship between body mass index and brain structure. Alzheimer's Dement. 2016 12 7S_Part_22 P1089 P1089
    [Google Scholar]
  25. Mullard A. New hope for anti-obesity drugs. Nat. Rev. Drug Discov. 2021 20 8 575 10.1038/d41573‑021‑00109‑4 34127838
    [Google Scholar]
  26. Savova M.S. Mihaylova L.V. Tews D. Wabitsch M. Georgiev M.I. Targeting PI3K/Akt signaling pathway in obesity. Biomed. Pharmacother. 2023 159 114244 10.1016/j.biopha.2023.114244 36638594
    [Google Scholar]
  27. Wang J.Y. Wang Q.W. Yang X.Y. Yang W. Li D.R. Jin J.Y. Zhang H.C. Zhang X.F. GLP−1 receptor agonists for the treatment of obesity: Role as a promising approach. Front. Endocrinol. 2023 14 1085799 10.3389/fendo.2023.1085799 36843578
    [Google Scholar]
  28. Daneschvar H.L. Aronson M.D. Smetana G.W. FDA-approved anti-obesity drugs in the United States. Am. J. Med. 2016 129 8 879.e1 879.e6 10.1016/j.amjmed.2016.02.009 26949003
    [Google Scholar]
  29. Davies M.J. Bergenstal R. Bode B. Kushner R.F. Lewin A. Skjøth T.V. Andreasen A.H. Jensen C.B. DeFronzo R.A. For the, N.N.S.G., Efficacy of liraglutide for weight loss among patients with Type 2 diabetes: The scale diabetes randomized clinical trial. JAMA 2015 314 7 687 699 10.1001/jama.2015.9676 26284720
    [Google Scholar]
  30. Rubino D. Abrahamsson N. Davies M. Hesse D. Greenway F.L. Jensen C. Lingvay I. Mosenzon O. Rosenstock J. Rubio M.A. Rudofsky G. Tadayon S. Wadden T.A. Dicker D. Friberg M. Sjödin A. Dicker D. Segal G. Mosenzon O. Sabbah M. Sofer Y. Vishlitzky V. Meesters E.W. Serlie M. van Bon A. Cardoso H. Freitas P. Melo C.P. Monteiro M. Monteiro M. Rodrigues D. Badat A. Joshi P. Latiff G. Mitha E.A. Snyman H.H. van Nieuwenhuizen E. Albarrán G.O. Caixas A. de al Cuesta C. Luna G.P.P. Portillo M.C. Raya M.P. Rubio M.A. Abrahamsson N. Hoffstedt J. von Wowern F. Uddman E. Kliegel B.B. Beuschlein F. Bilz S. Golay A. Rudofsky G. Strey C. Fadieienko G. Kosei N. Tatarchuk T. Velychko V. Zinych O. Aronoff S.L. Bays H.E. Brockmyre A.P. Call R.S. Crump C. Desouza C.V. Espinosa V. Free A.L. Gandy W.H. Geller S.A. Gottschlich G.M. Greenway F.L. Conrad H.L. Harper W. Herman L. Hewitt M. Hollander P. Kaster S.R. Manessis A. Martin F.A. McNeill R.E. Murray A.V. Norwood P.C. Reed J.C.H. Rosenstock J. Rubino D.M. Schear M.J. Warren M.L. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: The STEP 4 randomized clinical trial. JAMA 2021 325 14 1414 1425 10.1001/jama.2021.3224 33755728
    [Google Scholar]
  31. Taha M.B. Yahya T. Satish P. Laird R. Agatston A.S. Achirica C.M. Patel K.V. Nasir K. Glucagon-like peptide 1 receptor agonists: A medication for obesity management. Curr. Atheroscler. Rep. 2022 24 8 643 654 10.1007/s11883‑022‑01041‑7 35624390
    [Google Scholar]
  32. Syed Y.Y. Tirzepatide: First approval. Drugs 2022 82 11 1213 1220 10.1007/s40265‑022‑01746‑8 35830001
    [Google Scholar]
  33. Kim K.J. Jeong E.S. Lee K.H. Na J.R. Park S. Kim J.S. Na C.S. Kim Y.R. Kim S. Unripe Rubus coreanus Miquel extract containing ellagic acid promotes lipolysis and thermogenesis in vitro and in vivo. Molecules 2020 25 24 5954 10.3390/molecules25245954 33339214
    [Google Scholar]
  34. Jin Q. Yu H. Li P. The evaluation and utilization of marine-derived bioactive compounds with anti-obesity effect. Curr. Med. Chem. 2018 25 7 861 878 10.2174/0929867324666170602082620 28571534
    [Google Scholar]
  35. Xu S. Liao Y. Wang Q. Liu L. Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit. Rev. Food Sci. Nutr. 2023 63 25 7722 7748 10.1080/10408398.2022.2049691 35293826
    [Google Scholar]
  36. Goktas Z. Zu Y. Abbasi M. Galyean S. Wu D. Fan Z. Wang S. Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities. J. Agric. Food Chem. 2020 68 31 8119 8131 10.1021/acs.jafc.0c00131 32633507
    [Google Scholar]
  37. Ghosh B. Biswas S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release 2021 332 127 147 10.1016/j.jconrel.2021.02.016 33609621
    [Google Scholar]
  38. Sibuyi N.R.S. Moabelo K.L. Meyer M. Onani M.O. Dube A. Madiehe A.M. Nanotechnology advances towards development of targeted-treatment for obesity. J. Nanobiotechnology 2019 17 1 122 10.1186/s12951‑019‑0554‑3 31842876
    [Google Scholar]
  39. González V.M. Willner I. Aptamer-functionalized micro- and nanocarriers for controlled release. ACS Appl. Mater. Interfaces 2021 13 8 9520 9541 10.1021/acsami.0c17121 33395247
    [Google Scholar]
  40. Zhu J. Tang X. Jia Y. Ho C.T. Huang Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – A review. Int. J. Pharm. 2020 578 119127 10.1016/j.ijpharm.2020.119127 32036009
    [Google Scholar]
  41. Kumari A. Yadav S.K. Pakade Y.B. Singh B. Yadav S.C. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf. B Biointerfaces 2010 80 2 184 192 10.1016/j.colsurfb.2010.06.002 20598513
    [Google Scholar]
  42. Trandafir L.M. Dodi G. Frasinariu O. Luca A.C. Butnariu L.I. Tarca E. Moisa S.M. Tackling dyslipidemia in obesity from a nanotechnology perspective. Nutrients 2022 14 18 3774 10.3390/nu14183774 36145147
    [Google Scholar]
  43. Zhou Y. Feng X. Xu H. Guo J. Yang C. Kong L. Zhang Z. The application of natural product-delivering micro/nano systems in the treatment of inflammatory bowel disease. J. Mater. Chem. B Mater. Biol. Med. 2023 11 2 244 260 10.1039/D2TB01965E 36512384
    [Google Scholar]
  44. Li J. Duan H. Liu Y. Wang L. Zhou X. Biomaterial-based therapeutic strategies for obesity and its comorbidities. Pharmaceutics 2022 14 7 1445 10.3390/pharmaceutics14071445 35890340
    [Google Scholar]
  45. Saka R. Chella N. Nanotechnology for delivery of natural therapeutic substances: A review. Environ. Chem. Lett. 2021 19 2 1097 1106 10.1007/s10311‑020‑01103‑9
    [Google Scholar]
  46. Tilg H. Zmora N. Adolph T.E. Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2020 20 1 40 54 10.1038/s41577‑019‑0198‑4 31388093
    [Google Scholar]
  47. Cheng Z. Zhang L. Yang L. Chu H. The critical role of gut microbiota in obesity. Front. Endocrinol. 2022 13 1025706 10.3389/fendo.2022.1025706 36339448
    [Google Scholar]
  48. Wang Y. Yao W. Li B. Qian S. Wei B. Gong S. Wang J. Liu M. Wei M. Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats. Exp. Mol. Med. 2020 52 12 1959 1975 10.1038/s12276‑020‑00534‑2 33262480
    [Google Scholar]
  49. Islam T. Koboziev I. Schulte A.K. Mistretta B. Scoggin S. Yosofvand M. Moussa H. Moghaddam Z.M. Ramalingam L. Gunaratne P.H. Moussa M.N. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice. Mol. Nutr. Food Res. 2021 65 22 2100274 10.1002/mnfr.202100274 34510720
    [Google Scholar]
  50. Chang C.J. Lin C.S. Lu C.C. Martel J. Ko Y.F. Ojcius D.M. Tseng S.F. Wu T.R. Chen Y.Y.M. Young J.D. Lai H.C. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 2015 6 1 7489 10.1038/ncomms8489 26102296
    [Google Scholar]
  51. Cox A.J. West N.P. Cripps A.W. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015 3 3 207 215 10.1016/S2213‑8587(14)70134‑2 25066177
    [Google Scholar]
  52. Vetrani C. Di Nisio A. Paschou S.A. Barrea L. Muscogiuri G. Graziadio C. Savastano S. Colao A.R. Assessment Opera G. From gut microbiota through low-grade inflammation to obesity: Key players and potential targets. Nutrients 2022 14 10 2103 10.3390/nu14102103 35631244
    [Google Scholar]
  53. Chaiittianan R. Sutthanut K. Rattanathongkom A. Purple corn silk: A potential anti-obesity agent with inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes. J. Ethnopharmacol. 2017 201 9 16 10.1016/j.jep.2017.02.044 28257978
    [Google Scholar]
  54. Ghaben A.L. Scherer P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019 20 4 242 258 10.1038/s41580‑018‑0093‑z 30610207
    [Google Scholar]
  55. Rungsa P. San H.T. Sritularak B. Böttcher C. Prompetchara E. Chaotham C. Likhitwitayawuid K. Inhibitory effect of isopanduratin a on adipogenesis: A study of possible mechanisms. Foods 2023 12 5 1014
    [Google Scholar]
  56. Kim J.H. Lee S. Cho E.J. Flavonoids from Acer okamotoanum inhibit adipocyte differentiation and promote lipolysis in the 3T3-L1 cells. Molecules 2020 25 8 1920 10.3390/molecules25081920 32326254
    [Google Scholar]
  57. Camargo A. Zúñiga R.O.A. Díaz A.J. Delgado G.F. Lista D.J. Carpintero G.S. Marín C. Almadén Y. Serrano Y.E.M. Moreno L.J. Tinahones F.J. Martínez P.P. Roche H.M. Miranda L.J. Dietary fat may modulate adipose tissue homeostasis through the processes of autophagy and apoptosis. Eur. J. Nutr. 2017 56 4 1621 1628 10.1007/s00394‑016‑1208‑y 27029919
    [Google Scholar]
  58. Wang G. Wu B. Xu W. Jin X. Wang K. Wang H. The inhibitory effects of juglanin on adipogenesis in 3T3-L1 adipocytes. Drug Des. Devel. Ther. 2020 14 5349 5357 10.2147/DDDT.S256504 33293796
    [Google Scholar]
  59. Betz M.J. Enerbäck S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol. 2018 14 2 77 87 10.1038/nrendo.2017.132 29052591
    [Google Scholar]
  60. Patil M. Sharma B.K. Elattar S. Chang J. Kapil S. Yuan J. Satyanarayana A. Id1 promotes obesity by suppressing brown adipose thermogenesis and white adipose browning. Diabetes 2017 66 6 1611 1625 10.2337/db16‑1079 28270523
    [Google Scholar]
  61. Liu J. Wang Y. Lin L. Small molecules for fat combustion: Targeting obesity. Acta Pharm. Sin. B 2019 9 2 220 236 10.1016/j.apsb.2018.09.007 30976490
    [Google Scholar]
  62. Chouchani E.T. Kajimura S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 2019 1 2 189 200 10.1038/s42255‑018‑0021‑8 31903450
    [Google Scholar]
  63. Ye J. Gao C. Liang Y. Hou Z. Shi Y. Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. Cell Regen. 2023 12 1 13 10.1186/s13619‑023‑00157‑8 37138165
    [Google Scholar]
  64. Cheng M. Zhang X. Miao Y. Cao J. Wu Z. Weng P. The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Res. Int. 2017 92 9 16 10.1016/j.foodres.2016.12.008 28290302
    [Google Scholar]
  65. Sharma V.K. Prateeksha Gupta S.C. Singh B.N. Rao C.V. Barik S.K. Cinnamomum verum-derived bioactives-functionalized gold nanoparticles for prevention of obesity through gut microbiota reshaping. Mater. Today Bio 2022 13 100204 10.1016/j.mtbio.2022.100204 35146405
    [Google Scholar]
  66. Zeng Z. Deng S. Liu Y. Li C. Fang Z. Hu B. Chen H. Wang C. Chen S. Wu W. Liu Y. Targeting transportation of curcumin by soybean lipophilic protein nano emulsion: Improving its bioaccessibility and regulating intestinal microorganisms in mice. Food Hydrocoll. 2023 142 108781 10.1016/j.foodhyd.2023.108781
    [Google Scholar]
  67. Drozd K.K. Oniszczuk T. Gancarz M. Kondracka A. Rusinek R. Oniszczuk A. Curcumin and weight loss: Does it work? Int. J. Mol. Sci. 2022 23 2 639 10.3390/ijms23020639 35054828
    [Google Scholar]
  68. Zhao J. Luo D. Zhang Z. Fan N. Wang Y. Nie H. Rong J. Celastrol-loaded PEG-PCL nanomicelles ameliorate inflammation, lipid accumulation, insulin resistance and gastrointestinal injury in diet-induced obese mice. J. Control. Release 2019 310 188 197 10.1016/j.jconrel.2019.08.026 31454532
    [Google Scholar]
  69. Hu W. Wang L. Du G. Guan Q. Dong T. Song L. Xia Y. Wang X. Effects of microbiota on the treatment of obesity with the natural product celastrol in rats. Diabetes Metab. J. 2020 44 5 747 763 10.4093/dmj.2019.0124 32431112
    [Google Scholar]
  70. Oliyaei N. Tanideh N. Nasab M.M. Dehghanian A.R. Iraji A. Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model. Int. J. Biol. Macromol. 2023 235 123867 10.1016/j.ijbiomac.2023.123867 36870664
    [Google Scholar]
  71. Liang D. Liu C. Li J. Li Y. Li J. Tan M. Su W. Engineering probiotics-derived membrane vesicles for encapsulating fucoxanthin: Evaluation of stability, bioavailability, and biosafety. Food Funct. 2023 14 8 3475 3487 10.1039/D2FO04116B 37000562
    [Google Scholar]
  72. Sharma P.P. Baskaran V. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. Algal Res. 2021 54 102187 10.1016/j.algal.2021.102187
    [Google Scholar]
  73. Ariamoghaddam A. Hosseinzadeh E.B. Zarmi H.A. Sahraeian R. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. Mater. Sci. Eng. C 2018 92 161 171 10.1016/j.msec.2018.06.030 30184739
    [Google Scholar]
  74. Oskouie N.M. Moghaddam A.N.S. Sathyapalan T. Sahebkar A. Impact of curcumin on fatty acid metabolism. Phytother. Res. 2021 35 9 4748 4762 10.1002/ptr.7105 33825246
    [Google Scholar]
  75. Kazmi I. Imam S.S. Al-Abbasi F.A. Afzal M. Nadeem S.M. Alshehri S. Environment friendly green synthesis method based natural bioactive functional “catechin and gingerol” loaded nanomedicine for the management of obesity. Int. J. Pharm. 2022 628 122340 10.1016/j.ijpharm.2022.122340 36341920
    [Google Scholar]
  76. Shende P. Narvenker R. Herbal nanotherapy: A new paradigm over conventional obesity treatment. J. Drug Deliv. Sci. Technol. 2021 61 102291 10.1016/j.jddst.2020.102291
    [Google Scholar]
  77. Pangeni R. Kang S.W. Oak M. Park E.Y. Park J.W. Oral delivery of quercetin in oil-in-water nanoemulsion: In vitro characterization and in vivo anti-obesity efficacy in mice. J. Funct. Foods 2017 38 571 581 10.1016/j.jff.2017.09.059
    [Google Scholar]
  78. Kábelová A. Malínská H. Marková I. Hűttl M. Chylíková B. Šeda O. Quercetin supplementation alters adipose tissue and hepatic transcriptomes and ameliorates adiposity, dyslipidemia, and glucose intolerance in adult male rats. Front. Nutr. 2022 9 952065 10.3389/fnut.2022.952065 36245490
    [Google Scholar]
  79. Xian J. Zhong X. Huang Q. Gu H. Feng Y. Sun J. Wang D. Li J. Zhang C. Wu Y. Zhang J. N-Trimethylated chitosan coating white adipose tissue vascular-targeting oral nano-system for the enhanced anti-obesity effects of celastrol. Int. J. Biol. Macromol. 2023 236 124023 10.1016/j.ijbiomac.2023.124023 36924876
    [Google Scholar]
  80. Huang R. Guo F. Li Y. Liang Y. Li G. Fu P. Ma L. Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis. Phytomedicine 2021 92 153739 10.1016/j.phymed.2021.153739 34592488
    [Google Scholar]
  81. Lacatusu I. Badea N. Udeanu D. Coc L. Pop A. Negut C.C. Tanase C. Stan R. Meghea A. Improved anti-obesity effect of herbal active and endogenous lipids co-loaded lipid nanocarriers: Preparation, in vitro and in vivo evaluation. Mater. Sci. Eng. C 2019 99 12 24 10.1016/j.msec.2019.01.071 30889655
    [Google Scholar]
  82. Li R. Lan Y. Chen C. Cao Y. Huang Q. Ho C.T. Lu M. Anti-obesity effects of capsaicin and the underlying mechanisms: A review. Food Funct. 2020 11 9 7356 7370 10.1039/D0FO01467B 32820787
    [Google Scholar]
  83. El-Menshawe S. Ali A. Rabeh M. Khalil N. Nanosized soy phytosome-based thermogel as topical anti-obesity formulation: An approach for acceptable level of evidence of an effective novel herbal weight loss product. Int. J. Nanomedicine 2018 13 307 318 10.2147/IJN.S153429 29391791
    [Google Scholar]
  84. Kim M. Im S. Cho Y. Choi C. Son Y. Kwon D. Jung Y.S. Lee Y.H. Anti-obesity effects of soybean embryo extract and enzymatically-modified isoquercitrin. Biomolecules 2020 10 10 1394 10.3390/biom10101394 33008006
    [Google Scholar]
  85. Kou G. Li P. Hu Y. Chen H. Amoah N.A. Traore S.S. Cui Z. Lyu Q. Nobiletin activates thermogenesis of brown and white adipose tissue in high-fat diet-fed C57BL/6 mice by shaping the gut microbiota. FASEB J. 2021 35 2 e21267 10.1096/fj.202002197R 33475201
    [Google Scholar]
  86. Zu Y. Zhao L. Hao L. Mechref Y. Moghaddam Z.M. Keyel P.A. Abbasi M. Wu D. Dawson J.A. Zhang R. Nie S. Moussa M.N. Kolonin M.G. Daquinag A.C. Brandi L. Warraich I. Francisco S.S.K. Sun X. Fan Z. Wang S. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. J. Control. Release 2021 333 339 351 10.1016/j.jconrel.2021.03.022 33766692
    [Google Scholar]
  87. Lu Q. Lu P.M. Piao J.H. Xu X.L. Chen J. Zhu L. Jiang J.G. Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. Lebensm. Wiss. Technol. 2014 57 2 686 695 10.1016/j.lwt.2014.01.044
    [Google Scholar]
  88. Chen X. He X. Gao R. Lan X. Zhu L. Chen K. Hu Y. Huang K. Xu W. Aptamer-functionalized binary-drug delivery system for synergetic obesity therapy. ACS Nano 2022 16 1 1036 1050 10.1021/acsnano.1c08690 34967620
    [Google Scholar]
  89. Tian J. He X. Lan X. Liang X. Zhong Z. Zhu L. Chen K. Chang Q. Xu W. One-pot controllable assembly of a baicalin-condensed aptamer nanodrug for synergistic anti-obesity. Small 2023 19 6 2205933 10.1002/smll.202205933 36461678
    [Google Scholar]
  90. Bao C. Li Z. Liang S. Hu Y. Wang X. Fang B. Wang P. Chen S. Li Y. Microneedle patch delivery of capsaicin-containing α-lactalbumin nanomicelles to adipocytes achieves potent anti-obesity effects. Adv. Funct. Mater. 2021 31 20 2011130 10.1002/adfm.202011130
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673324660241205114930
Loading
/content/journals/cmc/10.2174/0109298673324660241205114930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test