Skip to content
2000
image of Experimental Research Progress of mPGES-1 Inhibitor 2,5-dimethylcelecoxib in Various Diseases

Abstract

Prostaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases. Hence, it is imperative to discover safer and more efficient targets for reducing inflammation. Research has demonstrated that mPGES-1 serves as the final enzyme that controls the rate of prostaglandin E2 synthesis. Moreover, it is only triggered by inflammation and could serve as a possible treatment target instead of COX in cases of inflammation. 2,5-dimethylcelecoxib (DMC) can effectively inhibit mPGES-1 expression, maintain the overall balance of prostaglandins, reduce the secretion of PGE2, and, most importantly, avoid the side effects of COX inhibitors. DMC has the ability to address illnesses through the stimulation of autophagy and apoptosis, as well as the regulation of the immune microenvironment and intestinal flora. This study provides a comprehensive overview of the advancements in DMC within experimental research and offers suggestions for potential avenues of future investigation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673327820241004042817
2025-01-14
2025-02-10
Loading full text...

Full text loading...

References

  1. Szeto C.C. Sugano K. Wang J.G. Fujimoto K. Whittle S. Modi G.K. Chen C.H. Park J.B. Tam L.S. Vareesangthip K. Tsoi K.K.F. Chan F.K.L. Non-steroidal anti-inflammatory drug (NSAID) therapy in patients with hypertension, cardiovascular, renal or gastrointestinal comorbidities: Joint APAGE/APLAR/APSDE/APSH/APSN/PoA recommendations. Gut 2020 69 4 617 629 10.1136/gutjnl‑2019‑319300 31937550
    [Google Scholar]
  2. Oura K. Morishita A. Tani J. Masaki T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: A review. Int. J. Mol. Sci. 2021 22 11 5801 10.3390/ijms22115801 34071550
    [Google Scholar]
  3. Rizzo A. Mollica V. Massari F. Expression of programmed cell death ligand 1 as a predictive biomarker in metastatic urothelial carcinoma patients treated with first- line immune checkpoint inhibitors versus chemotherapy: A systematic review and meta-analysis. Eur. Urol. Focus 2022 8 1 152 159 10.1016/j.euf.2021.01.003 33516645
    [Google Scholar]
  4. Di Federico A. Mosca M. Pagani R. Carloni R. Frega G. De Giglio A. Rizzo A. Ricci D. Tavolari S. Di Marco M. Palloni A. Brandi G. Immunotherapy in pancreatic cancer: Why do we keep failing? A focus on tumor immune microenvironment, predictive biomarkers and treatment outcomes. Cancers (Basel) 2022 14 10 2429 10.3390/cancers14102429 35626033
    [Google Scholar]
  5. Ramos-Casals M. Brahmer J.R. Callahan M.K. Flores-Chávez A. Keegan N. Khamashta M.A. Lambotte O. Mariette X. Prat A. Suárez-Almazor M.E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 2020 6 1 38 10.1038/s41572‑020‑0160‑6 32382051
    [Google Scholar]
  6. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. De Luca R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data. Supportive Care in Cancer 2023 31 12 624
    [Google Scholar]
  7. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  8. Deckmann K. Rörsch F. Steri R. Schubert-Zsilavecz M. Geisslinger G. Grösch S. Dimethylcelecoxib inhibits mPGES-1 promoter activity by influencing EGR1 and NF-κB. Biochem. Pharmacol. 2010 80 9 1365 1372 10.1016/j.bcp.2010.07.032 20688046
    [Google Scholar]
  9. Pyrko P. Soriano N. Kardosh A. Liu Y.T. Uddin J. Petasis N.A. Hofman F.M. Chen C.S. Chen T.C. Schönthal A.H. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol. Cancer 2006 5 1 19 10.1186/1476‑4598‑5‑19 16707021
    [Google Scholar]
  10. Tan T. Fu X. Qu J. Zhang M. Chen H. Wang Y. Wang B. Li J. Liu J. Liu P. 2,5-dimethyl celecoxib induces apoptosis and autophagy via activation of ROS/JNK axis in nasopharyngeal carcinoma cells. Aging (Albany NY) 2021 13 17 21483 21496 10.18632/aging.203488 34511433
    [Google Scholar]
  11. Chen Z. Chen Y. Peng L. Wang X. Tang N. 2,5-dimethylcelecoxib improves immune microenvironment of hepatocellular carcinoma by promoting ubiquitination of HBx-induced PD-L1. J. Immunother. Cancer 2020 8 2 e001377 10.1136/jitc‑2020‑001377 33028694
    [Google Scholar]
  12. Chen S. Liu X. Yue P. Schönthal A.H. Khuri F.R. Sun S.Y. CCAAT/enhancer binding protein homologous protein-dependent death receptor 5 induction and ubiquitin/proteasome-mediated cellular FLICE-inhibitory protein down-regulation contribute to enhancement of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by dimethyl-celecoxib in human non small-cell lung cancer cells. Mol. Pharmacol. 2007 72 5 1269 1279 10.1124/mol.107.037465 17684158
    [Google Scholar]
  13. Greten F.R. Eckmann L. Greten T.F. Park J.M. Li Z.W. Egan L.J. Kagnoff M.F. Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004 118 3 285 296 10.1016/j.cell.2004.07.013 15294155
    [Google Scholar]
  14. Grivennikov S. Karin E. Terzic J. Mucida D. Yu G.Y. Vallabhapurapu S. Scheller J. Rose-John S. Cheroutre H. Eckmann L. Karin M. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009 15 2 103 113 10.1016/j.ccr.2009.01.001 19185845
    [Google Scholar]
  15. Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer. Cell 2010 140 6 883 899 10.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  16. Wang D. Cabalag C.S. Clemons N.J. DuBois R.N. Cyclooxygenases and prostaglandins in tumor immunology and microenvironment of gastrointestinal cancer. Gastroenterology 2021 161 6 1813 1829 10.1053/j.gastro.2021.09.059 34606846
    [Google Scholar]
  17. Xia D. Wang D. Kim S.H. Katoh H. DuBois R.N. Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat. Med. 2012 18 2 224 226 10.1038/nm.2608 22270723
    [Google Scholar]
  18. Wong C.C. Kang W. Xu J. Qian Y. Luk S.T.Y. Chen H. Li W. Zhao L. Zhang X. Chiu P.W.Y. Ng E.K.W. Yu J. Prostaglandin E2 induces DNA hypermethylation in gastric cancer in vitro and in vivo. Theranostics 2019 9 21 6256 6268 10.7150/thno.35766 31534549
    [Google Scholar]
  19. Pawitan Y. Yin L. Setiawan A. Auer G. Smedby K.E. Czene K. Distinct effects of anti-inflammatory and anti-thrombotic drugs on cancer characteristics at diagnosis. Eur J Cancer. 2015 51 6 751 7
    [Google Scholar]
  20. Das S. Chandrasekhar S. Yadav J.S. Grée R. Recent developments in the synthesis of prostaglandins and analogues. Chem. Rev. 2007 107 7 3286 3337 10.1021/cr068365a 17590055
    [Google Scholar]
  21. Tanioka T. Nakatani Y. Semmyo N. Murakami M. Kudo I. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J. Biol. Chem. 2000 275 42 32775 32782 10.1074/jbc.M003504200 10922363
    [Google Scholar]
  22. Graham D.J. Campen D. Hui R. Spence M. Cheetham C. Levy G. Shoor S. Ray W.A. Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: Nested case- control study. Lancet 2005 365 9458 475 481 10.1016/S0140‑6736(05)17864‑7 15705456
    [Google Scholar]
  23. Bresalier R.S. Sandler R.S. Quan H. Bolognese J.A. Oxenius B. Horgan K. Lines C. Riddell R. Morton D. Lanas A. Konstam M.A. Baron J.A. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 2005 352 11 1092 1102 10.1056/NEJMoa050493 15713943
    [Google Scholar]
  24. Cheng Y. Wang M. Yu Y. Lawson J. Funk C.D. Fitzgerald G.A. Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function. J. Clin. Invest. 2006 116 5 1391 1399 10.1172/JCI27540 16614756
    [Google Scholar]
  25. Chen L. Yang G. Monslow J. Todd L. Cormode D.P. Tang J. Grant G.R. DeLong J.H. Tang S.Y. Lawson J.A. Pure E. FitzGerald G.A. Myeloid cell microsomal prostaglandin E synthase-1 fosters atherogenesis in mice. Proc. Natl. Acad. Sci. USA 2014 111 18 6828 6833 10.1073/pnas.1401797111 24753592
    [Google Scholar]
  26. Cimino P. Keene C. Breyer R. Montine K. Montine T. Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr. Med. Chem. 2008 15 19 1863 1869 10.2174/092986708785132915 18691044
    [Google Scholar]
  27. Yang S. Huh E. Moon G.H. Ahn J. Woo J. Han H.S. Lee H.H. Chung K.S. Lee K.T. Oh M.S. Lee J.Y. In vitro and in vivo neuroprotective effect of novel mPGES-1 inhibitor in animal model of Parkinson’s disease. Bioorg. Med. Chem. Lett. 2022 74 128920 10.1016/j.bmcl.2022.128920 35931244
    [Google Scholar]
  28. Li L. Yasmen N. Hou R. Yang S. Lee J.Y. Hao J. Yu Y. Jiang J. Inducible prostaglandin E synthase as a pharmacological target for ischemic stroke. Neurotherapeutics 2022 19 1 366 385 10.1007/s13311‑022‑01191‑1 35099767
    [Google Scholar]
  29. Claveau D. Sirinyan M. Guay J. Gordon R. Chan C.C. Bureau Y. Riendeau D. Mancini J.A. Microsomal prostaglandin E synthase-1 is a major terminal synthase that is selectively up-regulated during cyclooxygenase-2-dependent prostaglandin E2 production in the rat adjuvant-induced arthritis model. J Immunol. 2003 170 9 4738 44
    [Google Scholar]
  30. Riendeau D. Aspiotis R. Ethier D. Gareau Y. Grimm E.L. Guay J. Guiral S. Juteau H. Mancini J.A. Méthot N. Rubin J. Friesen R.W. Inhibitors of the inducible microsomal prostaglandin E2 synthase (mPGES-1) derived from MK-886. Bioorg. Med. Chem. Lett. 2005 15 14 3352 3355 10.1016/j.bmcl.2005.05.027 15953724
    [Google Scholar]
  31. Koeberle A. Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem. Pharmacol. 2015 98 1 1 15 10.1016/j.bcp.2015.06.022 26123522
    [Google Scholar]
  32. Côté B. Boulet L. Brideau C. Claveau D. Ethier D. Frenette R. Gagnon M. Giroux A. Guay J. Guiral S. Mancini J. Martins E. Massé F. Méthot N. Riendeau D. Rubin J. Xu D. Yu H. Ducharme Y. Friesen R.W. Substituted phenanthrene imidazoles as potent, selective, and orally active mPGES-1 inhibitors. Bioorg. Med. Chem. Lett. 2007 17 24 6816 6820 10.1016/j.bmcl.2007.10.033 18029174
    [Google Scholar]
  33. Chiasson J.F. Boulet L. Brideau C. Chau A. Claveau D. Côté B. Ethier D. Giroux A. Guay J. Guiral S. Mancini J. Massé F. Méthot N. Riendeau D. Roy P. Rubin J. Xu D. Yu H. Ducharme Y. Friesen R.W. Trisubstituted ureas as potent and selective mPGES-1 inhibitors. Bioorg. Med. Chem. Lett. 2011 21 5 1488 1492 10.1016/j.bmcl.2011.01.006 21295979
    [Google Scholar]
  34. Singh Bahia M. Kumar Katare Y. Silakari O. Vyas B. Silakari P. Inhibitors of microsomal prostaglandin E2 synthase-1 enzyme as emerging anti-inflammatory candidates. Med. Res. Rev. 2014 34 4 825 855 10.1002/med.21306 25019142
    [Google Scholar]
  35. Arhancet G.B. Walker D.P. Metz S. Fobian Y.M. Heasley S.E. Carter J.S. Springer J.R. Jones D.E. Hayes M.J. Shaffer A.F. Jerome G.M. Baratta M.T. Zweifel B. Moore W.M. Masferrer J.L. Vazquez M.L. Discovery and SAR of PF-4693627, a potent, selective and orally bioavailable mPGES-1 inhibitor for the potential treatment of inflammation. Bioorg. Med. Chem. Lett. 2013 23 4 1114 1119 10.1016/j.bmcl.2012.11.109 23260349
    [Google Scholar]
  36. Banerjee A. Pawar M.Y. Patil S. Yadav P.S. Kadam P.A. Kattige V.G. Deshpande D.S. Pednekar P.V. Pisat M.K. Gharat L.A. Development of 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)- one and pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as microsomal prostaglandin E2 synthase-1 inhibitors. Bioorg. Med. Chem. Lett. 2014 24 20 4838 4844 10.1016/j.bmcl.2014.08.056 25260492
    [Google Scholar]
  37. Schiffler M.A. Antonysamy S. Bhattachar S.N. Campanale K.M. Chandrasekhar S. Condon B. Desai P.V. Fisher M.J. Groshong C. Harvey A. Hickey M.J. Hughes N.E. Jones S.A. Kim E.J. Kuklish S.L. Luz J.G. Norman B.H. Rathmell R.E. Rizzo J.R. Seng T.W. Thibodeaux S.J. Woods T.A. York J.S. Yu X.P. Discovery and characterization of 2-acylaminoimidazole microsomal prostaglandin E synthase-1 inhibitors. J. Med. Chem. 2016 59 1 194 205 10.1021/acs.jmedchem.5b01249 26653180
    [Google Scholar]
  38. Koeberle A. Pollastro F. Northoff H. Werz O. Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E2 synthase-1. Br. J. Pharmacol. 2009 156 6 952 961 10.1111/j.1476‑5381.2009.00070.x 19298395
    [Google Scholar]
  39. Koeberle A. Bauer J. Verhoff M. Hoffmann M. Northoff H. Werz O. Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E2 synthase-1. Biochem. Biophys. Res. Commun. 2009 388 2 350 354 10.1016/j.bbrc.2009.08.005 19665000
    [Google Scholar]
  40. Moon Y. Glasgow W.C. Eling T.E. Curcumin suppresses interleukin 1 beta-mediated microsomal prostaglandin E synthase 1 by altering early growth response gene 1 and other signaling pathways. J. Pharmacol. Exp. Ther. 2005 315 2 788 795 10.1124/jpet.105.084434 16081677
    [Google Scholar]
  41. Zhang X.D. Wang Y. Ye L.H. Hepatitis B virus X protein accelerates the development of hepatoma. Cancer Biol. Med. 2014 11 3 182 190 25364579
    [Google Scholar]
  42. Liu C. Chen S. Wang X. Chen Y. Tang N. 15d-PGJ2 decreases PGE 2 synthesis in HBx-positive liver cells by interfering EGR1 binding to mPGES-1 promoter. Biochem. Pharmacol. 2014 91 3 337 347 10.1016/j.bcp.2014.07.032 25108236
    [Google Scholar]
  43. Xu D. Cai J. Wan Z. Gao H. Sun Y. Pathophysiological role of prostaglandin E synthases in liver diseases. Prostaglandins Other Lipid Mediat. 2021 154 106552 10.1016/j.prostaglandins.2021.106552 33930567
    [Google Scholar]
  44. Ma Y. Wang X. Tang N. Downregulation of mPGES-1 expression via EGR1 Plays an important role in inhibition of caffeine on PGE2 synthesis of HBx(+) hepatocytes. Mediators Inflamm. 2015 2015 1 372750 10.1155/2015/372750 26538827
    [Google Scholar]
  45. Henkel J. Coleman C.D. Schraplau A. Jöhrens K. Weiss T.S. Jonas W. Schürmann A. Püschel G.P. Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model. Sci. Rep. 2018 8 1 16127 10.1038/s41598‑018‑34633‑y 30382148
    [Google Scholar]
  46. Ceddia R.P. Lee D. Maulis M.F. Carboneau B.A. Threadgill D.W. Poffenberger G. Milne G. Boyd K.L. Powers A.C. McGuinness O.P. Gannon M. Breyer R.M. The PGE2 EP3 receptor regulates diet-induced adiposity in male mice. Endocrinology 2016 157 1 220 232 10.1210/en.2015‑1693 26485614
    [Google Scholar]
  47. Zhang T. Ma Y. Xu K.Q. Huang W.Q. Pretreatment of parecoxib attenuates hepatic ischemia/reperfusion injury in rats. BMC Anesthesiol. 2015 15 1 165 10.1186/s12871‑015‑0147‑0 26577339
    [Google Scholar]
  48. Llovet J.M. Burroughs A. Bruix J. Hepatocellular carcinoma. Lancet 2003 362 9399 1907 1917 10.1016/S0140‑6736(03)14964‑1 14667750
    [Google Scholar]
  49. El-Serag H.B. Hepatocellular carcinoma: Recent trends in the United States. Gastroenterology 2004 127 5 Suppl. 1 S27 S34 10.1053/j.gastro.2004.09.013 15508094
    [Google Scholar]
  50. Kern M.A. Breuhahn K. Schirmacher P. Molecular pathogenesis of human hepatocellular carcinoma. Adv. Cancer Res. 2002 86 67 112 10.1016/S0065‑230X(02)86003‑1 12374281
    [Google Scholar]
  51. Chang H.H. Meuillet E.J. Identification and development of mPGES-1 inhibitors: Where we are at? Future Med. Chem. 2011 3 15 1909 1934 10.4155/fmc.11.136 22023034
    [Google Scholar]
  52. Yoshimatsu K. Altorki N.K. Golijanin D. Zhang F. Jakobsson P.J. Dannenberg A.J. Subbaramaiah K. Inducible prostaglandin E synthase is overexpressed in non- small cell lung cancer. Clin. Cancer Res. 2001 7 9 2669 2674 11555578
    [Google Scholar]
  53. Hyodo T. Ito Y. Hosono K. Uematsu S. Akira S. Majima M. Takeda A. Amano H. The role of mPGES-1 in promoting granulation tissue angiogenesis through regulatory T-cell accumulation. In Vivo 2022 36 5 2061 2073 10.21873/invivo.12932 36099134
    [Google Scholar]
  54. Amano H. Haysahi I. Yoshida S. Yoshimura H. Majima M. Cyclooxygenase-2 and adenylate cyclase/protein kinase A signaling pathway enhances angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Hum. Cell 2002 15 1 13 24 10.1111/j.1749‑0774.2002.tb00095.x 12126060
    [Google Scholar]
  55. Majima M. Hayashi I. Muramatsu M. Katada J. Yamashina S. Katori M. Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br. J. Pharmacol. 2000 130 3 641 649 10.1038/sj.bjp.0703327 10821793
    [Google Scholar]
  56. Steinmetz-Späh J. Jakobsson P.J. The anti-inflammatory and vasoprotective properties of mPGES-1 inhibition offer promising therapeutic potential. Expert Opin. Ther. Targets 2023 27 11 1115 1123 10.1080/14728222.2023.2285785 38015194
    [Google Scholar]
  57. Wang M. Lee E. Song W. Ricciotti E. Rader D.J. Lawson J.A. Puré E. FitzGerald G.A. Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation 2008 117 10 1302 1309 10.1161/CIRCULATIONAHA.107.731398 18285567
    [Google Scholar]
  58. Werner N. Nickenig G. Sinning J.M. Complex PCI procedures: challenges for the interventional cardiologist. Clin. Res. Cardiol. 2018 107 S2 Suppl. 2 64 73 10.1007/s00392‑018‑1316‑1 29978353
    [Google Scholar]
  59. Zhu L. Xu C. Huo X. Hao H. Wan Q. Chen H. Zhang X. Breyer R.M. Huang Y. Cao X. Liu D.P. FitzGerald G.A. Wang M. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat. Commun. 2019 10 1 1888 10.1038/s41467‑019‑09492‑4 31015404
    [Google Scholar]
  60. Fain J.N. Kanu A. Bahouth S.W. Cowan G.S.M. Jr Hiler M.L. Leffler C.W. Comparison of PGE2, prostacyclin and leptin release by human adipocytes versus explants of adipose tissue in primary culture. Prostaglandins Leukot. Essent. Fatty Acids 2002 67 6 467 473 10.1054/plef.2002.0430 12468269
    [Google Scholar]
  61. García-Alonso V. Clària J. Prostaglandin E2 signals white-to-brown adipogenic differentiation. Adipocyte 2014 3 4 290 296 10.4161/adip.29993 26317053
    [Google Scholar]
  62. Ballesteros-Martínez C. Rodrigues-Díez R. Beltrán L.M. Moreno-Carriles R. Martínez-Martínez E. González-Amor M. Martínez-González J. Rodríguez C. Cachofeiro V. Salaices M. Briones A.M. Microsomal prostaglandin E synthase-1 is involved in the metabolic and cardiovascular alterations associated with obesity. Br. J. Pharmacol. 2022 179 11 2733 2753 10.1111/bph.15776 34877656
    [Google Scholar]
  63. Maseda D. Banerjee A. Johnson E.M. Washington M.K. Kim H. Lau K.S. Crofford L.J. mPGES-1-mediated production of PGE2 and EP4 receptor sensing regulate T cell colonic inflammation. Front. Immunol. 2018 9 2954 10.3389/fimmu.2018.02954 30619314
    [Google Scholar]
  64. Muthuswamy R. Mueller-Berghaus J. Haberkorn U. Reinhart T.A. Schadendorf D. Kalinski P. PGE2 transiently enhances DC expression of CCR7 but inhibits the ability of DCs to produce CCL19 and attract naive T cells. Blood 2010 116 9 1454 1459 10.1182/blood‑2009‑12‑258038 20498301
    [Google Scholar]
  65. Monrad S.U. Kojima F. Kapoor M. Kuan E.L. Sarkar S. Randolph G.J. Crofford L.J. Genetic deletion of mPGES-1 abolishes PGE2 production in murine dendritic cells and alters the cytokine profile, but does not affect maturation or migration. Prostaglandins Leukot. Essent. Fatty Acids 2011 84 3-4 113 121 10.1016/j.plefa.2010.10.003 21190819
    [Google Scholar]
  66. Duffin R. O’Connor R.A. Crittenden S. Forster T. Yu C. Zheng X. Smyth D. Robb C.T. Rossi F. Skouras C. Tang S. Richards J. Pellicoro A. Weller R.B. Breyer R.M. Mole D.J. Iredale J.P. Anderton S.M. Narumiya S. Maizels R.M. Ghazal P. Howie S.E. Rossi A.G. Yao C. Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cell-IL-22 axis. Science 2016 351 6279 1333 1338 10.1126/science.aad9903 26989254
    [Google Scholar]
  67. Nakanishi M. Rosenberg D.W. Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol. 2013 35 2 123 137 10.1007/s00281‑012‑0342‑8 22996682
    [Google Scholar]
  68. Schumacher Y. Aparicio T. Ourabah S. Baraille F. Martin A. Wind P. Dentin R. Postic C. Guilmeau S. Dysregulated CRTC1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth. Oncogene 2016 35 20 2602 2614 10.1038/onc.2015.283 26300003
    [Google Scholar]
  69. Sasaki Y. Nakatani Y. Hara S. Role of microsomal prostaglandin E synthase-1 (mPGES-1)-derived prostaglandin E2 in colon carcinogenesis. Prostaglandins Other Lipid Mediat. 2015 121 Pt A 42 5
    [Google Scholar]
  70. Kalinski P. Regulation of immune responses by prostaglandin E2. J. Immunol. 2012 188 1 21 8
    [Google Scholar]
  71. Roulis M. Nikolaou C. Kotsaki E. Kaffe E. Karagianni N. Koliaraki V. Salpea K. Ragoussis J. Aidinis V. Martini E. Becker C. Herschman H.R. Vetrano S. Danese S. Kollias G. Intestinal myofibroblast-specific Tpl2- Cox-2-PGE2 pathway links innate sensing to epithelial homeostasis. Proc. Natl. Acad. Sci. USA 2014 111 43 E4658 E4667 10.1073/pnas.1415762111 25316791
    [Google Scholar]
  72. Hao C.M. Breyer M.D. Physiological regulation of prostaglandins in the kidney. Annu. Rev. Physiol. 2008 70 1 357 377 10.1146/annurev.physiol.70.113006.100614 17988207
    [Google Scholar]
  73. Samuelsson B. Morgenstern R. Jakobsson P.J. Membrane prostaglandin E synthase-1: A novel therapeutic target. Pharmacol. Rev. 2007 59 3 207 224 10.1124/pr.59.3.1 17878511
    [Google Scholar]
  74. Jia Z. Wang H. Yang T. Microsomal prostaglandin E synthase 1 deletion retards renal disease progression but exacerbates anemia in mice with renal mass reduction. Hypertension 2012 59 1 122 8
    [Google Scholar]
  75. Regner K.R. Dual role of microsomal prostaglandin E synthase 1 in chronic kidney disease. Hypertension 2012 59 1 12 13
    [Google Scholar]
  76. Sluter M.N. Li Q. Yasmen N. Chen Y. Li L. Hou R. Yu Y. Yang C.Y. Meibohm B. Jiang J. The inducible prostaglandin E synthase (mPGES-1) in neuroinflammatory disorders. Exp. Biol. Med. (Maywood) 2023 248 9 811 819 10.1177/15353702231179926 37515545
    [Google Scholar]
  77. Sang N. Zhang J. Marcheselli V. Bazan N.G. Chen C. Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J. Neurosci. 2005 25 43 9858 9870 10.1523/JNEUROSCI.2392‑05.2005 16251433
    [Google Scholar]
  78. Nakano Y. Kuroda E. Kito T. Uematsu S. Akira S. Yokota A. Nishizawa S. Yamashita U. Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase-1 expression in murine microglia by glioma-derived soluble factors. J. Neurosurg. 2008 108 2 311 319 10.3171/JNS/2008/108/2/0311 18240928
    [Google Scholar]
  79. Zhu J. Song X. Lin H.P. Young D.C. Yan S. Marquez V.E. Chen C.S. Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J. Natl. Cancer Inst. 2002 94 23 1745 1757 10.1093/jnci/94.23.1745 12464646
    [Google Scholar]
  80. Wang C. Chen Y. Wang Y. Liu X. Liu Y. Li Y. Chen H. Fan C. Wu D. Yang J. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J. Exp. Clin. Cancer Res. 2019 38 1 371 10.1186/s13046‑019‑1361‑2 31438982
    [Google Scholar]
  81. Pritchard R. Rodríguez-Enríquez S. Pacheco-Velázquez S.C. Bortnik V. Moreno-Sánchez R. Ralph S. Celecoxib inhibits mitochondrial O2 consumption, promoting ROS dependent death of murine and human metastatic cancer cells via the apoptotic signalling pathway. Biochem. Pharmacol. 2018 154 318 334 10.1016/j.bcp.2018.05.013 29800556
    [Google Scholar]
  82. Coca R. Soler F. Cortés-Castell E. Gil-Guillén V. Fernández-Belda F. Inhibition mechanism of the intracellular transporter Ca2+-pump from sarco-endoplasmic reticulum by the antitumor agent dimethyl-celecoxib. PLoS One 2014 9 7 e102083 10.1371/journal.pone.0102083 25003576
    [Google Scholar]
  83. Lee S.H. Moon H.J. Lee Y.S. Kang C.D. Kim S.H. Potentiation of TRAIL-induced cell death by nonsteroidal anti-inflammatory drug in human hepatocellular carcinoma cells through the ER stress-dependent autophagy pathway. Oncol. Rep. 2020 44 3 1136 1148 10.3892/or.2020.7662 32705218
    [Google Scholar]
  84. Kardosh A. Golden E.B. Pyrko P. Uddin J. Hofman F.M. Chen T.C. Louie S.G. Petasis N.A. Schönthal A.H. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res. 2008 68 3 843 851 10.1158/0008‑5472.CAN‑07‑5555 18245486
    [Google Scholar]
  85. Pyrko P. Kardosh A. Liu Y.T. Soriano N. Xiong W. Chow R.H. Uddin J. Petasis N.A. Mircheff A.K. Farley R.A. Louie S.G. Chen T.C. Schönthal A.H. Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib. Mol. Cancer Ther. 2007 6 4 1262 1275 10.1158/1535‑7163.MCT‑06‑0629 17431104
    [Google Scholar]
  86. Sobolewski C. Rhim J. Legrand N. Muller F. Cerella C. Mack F. Chateauvieux S. Kim J.G. Yoon A.Y. Kim K.W. Dicato M. Diederich M. 2,5-dimethyl-celecoxib inhibits cell cycle progression and induces apoptosis in human leukemia cells. J. Pharmacol. Exp. Ther. 2015 355 2 308 328 10.1124/jpet.115.225011 26330537
    [Google Scholar]
  87. Kardosh A. Wang W. Uddin J. Petasis N.A. Hofman F.M. Chen T.C. Schönthal A.H. Dimethyl-celecoxib (DMC), a derivative of celecoxib that lacks cyclooxygenase-2-inhibitory function, potently mimics the anti-tumor effects of celecoxib on burkitt’s lymphoma in vitro and in vivo. Cancer Biol. Ther. 2005 4 5 571 582 10.4161/cbt.4.5.1699 15846081
    [Google Scholar]
  88. Chou J.P. Ramirez C.M. Ryba D.M. Koduri M.P. Effros R.B. Prostaglandin E2 promotes features of replicative senescence in chronically activated human CD8+ T cells. PLoS One 2014 9 6 e99432 10.1371/journal.pone.0099432 24918932
    [Google Scholar]
  89. Ye B. Liu X. Li X. Kong H. Tian L. Chen Y. T-cell exhaustion in chronic hepatitis B infection: Current knowledge and clinical significance. Cell Death Dis. 2015 6 3 e1694 10.1038/cddis.2015.42 25789969
    [Google Scholar]
  90. Pi C. Jing P. Li B. Feng Y. Xu L. Xie K. Huang T. Xu X. Gu H. Fang J. Reversing PD-1 resistance in B16F10 cells and recovering tumour immunity using a COX2 inhibitor. Cancers (Basel) 2022 14 17 4134 10.3390/cancers14174134 36077671
    [Google Scholar]
  91. Pan B. Chen Z. Zhang X. Wang Z. Yao Y. Wu X. Qiu J. Lin H. Yu L. Tu H. Tang N. 2,5-dimethylcelecoxib alleviated NK and T-cell exhaustion in hepatocellular carcinoma via the gastrointestinal microbiota-AMPK-mTOR axis. J. Immunother. Cancer 2023 11 6 e006817 10.1136/jitc‑2023‑006817 37316264
    [Google Scholar]
  92. Rogers M.A.M. Aronoff D.M. The influence of non- steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect. 2016 22 2 178
    [Google Scholar]
  93. Fujita A. Takahashi-Yanaga F. Morimoto S. Yoshihara T. Arioka M. Igawa K. Tomooka K. Hoka S. Sasaguri T. 2,5-dimethylcelecoxib prevents pressure-induced left ventricular remodeling through GSK-3 activation. Hypertens Res. 2017 40 2 130 139
    [Google Scholar]
  94. Morishige S. Takahashi-Yanaga F. Ishikane S. Arioka M. Igawa K. Kuroo A. Tomooka K. Shiose A. Sasaguri T. 2,5-dimethylcelecoxib prevents isoprenaline-induced cardiomyocyte hypertrophy and cardiac fibroblast activation by inhibiting Akt-mediated GSK-3 phosphorylation. Biochem. Pharmacol. 2019 168 82 90 10.1016/j.bcp.2019.06.018 31229551
    [Google Scholar]
  95. Yamamoto M. Takahashi-Yanaga F. Arioka M. Igawa K. Tomooka K. Yamaura K. Sasaguri T. Cardiac and renal protective effects of 2,5-dimethylcelecoxib in angiotensin II and high-salt-induced hypertension model mice. J. Hypertens. 2021 39 5 892 903 10.1097/HJH.0000000000002728 33252422
    [Google Scholar]
  96. Egashira I. Takahashi-Yanaga F. Nishida R. Arioka M. Igawa K. Tomooka K. Nakatsu Y. Tsuzuki T. Nakabeppu Y. Kitazono T. Sasaguri T. Celecoxib and 2,5-dimethylcelecoxib inhibit intestinal cancer growth by suppressing the Wnt/β-catenin signaling pathway. Cancer Sci. 2017 108 1 108 115 10.1111/cas.13106 27761963
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673327820241004042817
Loading
/content/journals/cmc/10.2174/0109298673327820241004042817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test