Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

To build an innovative telomere-associated scoring model to predict prognosis and treatment responsiveness in acute myeloid leukemia (AML).

Background

AML is a highly heterogeneous malignant hematologic disorder with a poor prognosis. While telomere maintenance is frequently observed in tumors, investigations into telomere-related genes (TRGs) in AML remain limited.

Objectives

This study aimed to identify prognostic TRGs using the least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression, evaluate their predictive value, explore the association between TRG scores and immune cell infiltration, and assess the sensitivity of high-scoring AML patients to chemotherapeutic agents.

Methods

Univariate Cox regression analysis was conducted on the TCGA cohort to identify prognostic TRGs and to develop the TRG scoring model using LASSO-Cox and multivariate Cox regression. Validation was performed on the GSE37642 cohort. Immune cell infiltration patterns were assessed through computational analysis, and the sensitivity to chemotherapeutic agents was evaluated.

Results

Thirteen prognostic TRGs were identified, and a seven-TRG scoring model (including NOP10, OBFC1, PINX1, RPA2, SMG5, MAPKAPK5, and SMN1) was developed. Higher TRG scores were associated with a poorer prognosis, as confirmed in the GSE37642 cohort, and remained an independent prognostic factor even after adjusting for other clinical characteristics. The high-score group was characterized by elevated infiltration of B cells, T helper cells, natural killer cells, tumor-infiltrating lymphocytes, regulatory T (Treg) cells, M2 macrophages, neutrophils, and monocytes, along with reduced infiltration of gamma delta T cells, CD4- T cells, and resting mast cells. Moreover, high infiltration of M2 macrophages and Tregs was associated with poor overall survival compared to low infiltration. Notably, high-risk AML patients were resistant to Erlotinib, Parthenolide, and Nutlin-3a, but sensitive to AC220, Midostaurin, and Tipifarnib. Additionally, using RT-qPCR, we observed significantly higher expression of two model genes, OBFC1 and SMN1, in AML tissues compared to control tissues.

Conclusion

This innovative TRG scoring model demonstrates considerable predictive value for AML patient prognosis, offering valuable insights for optimizing treatment strategies and personalized medicine approaches. The identified TRGs and associated scoring models could aid in risk stratification and guide tailored therapeutic interventions in AML patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673334218241021044800
2024-11-05
2026-01-09
Loading full text...

Full text loading...

References

  1. DöhnerH. WeisdorfD.J. BloomfieldC.D. Acute myeloid leukemia.N. Engl. J. Med.2015373121136115210.1056/NEJMra140618426376137
    [Google Scholar]
  2. DiNardoC.D. JonasB.A. PullarkatV. ThirmanM.J. GarciaJ.S. WeiA.H. KonoplevaM. DöhnerH. LetaiA. FenauxP. KollerE. HavelangeV. LeberB. EsteveJ. WangJ. PejsaV. HájekR. PorkkaK. IllésÁ. LavieD. LemoliR.M. YamamotoK. YoonS.S. JangJ.H. YehS.P. TurgutM. HongW.J. ZhouY. PotluriJ. PratzK.W. Azacitidine and venetoclax in previously untreated acute myeloid leukemia.N. Engl. J. Med.2020383761762910.1056/NEJMoa201297132786187
    [Google Scholar]
  3. OranB. WeisdorfD.J. Survival for older patients with acute myeloid leukemia: A population-based study.Haematologica201297121916192410.3324/haematol.2012.06610022773600
    [Google Scholar]
  4. DöhnerH. WeiA.H. AppelbaumF.R. CraddockC. DiNardoC.D. DombretH. EbertB.L. FenauxP. GodleyL.A. HasserjianR.P. LarsonR.A. LevineR.L. MiyazakiY. NiederwieserD. OssenkoppeleG. RölligC. SierraJ. SteinE.M. TallmanM.S. TienH.F. WangJ. WierzbowskaA. LöwenbergB. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN.Blood2022140121345137710.1182/blood.202201686735797463
    [Google Scholar]
  5. ArberD.A. OraziA. HasserjianR.P. BorowitzM.J. CalvoK.R. KvasnickaH.M. WangS.A. BaggA. BarbuiT. BranfordS. Bueso-RamosC.E. CortesJ.E. Dal CinP. DiNardoC.D. DombretH. DuncavageE.J. EbertB.L. EsteyE.H. FacchettiF. FoucarK. GangatN. GianelliU. GodleyL.A. GökbugetN. GotlibJ. Hellström-LindbergE. HobbsG.S. HoffmanR. JabbourE.J. KiladjianJ.J. LarsonR.A. Le BeauM.M. LohM.L.C. LöwenbergB. MacintyreE. MalcovatiL. MullighanC.G. NiemeyerC. OdenikeO.M. OgawaS. OrfaoA. PapaemmanuilE. PassamontiF. PorkkaK. PuiC.H. RadichJ.P. ReiterA. RozmanM. RudeliusM. SavonaM.R. SchifferC.A. Schmitt-GraeffA. ShimamuraA. SierraJ. StockW.A. StoneR.M. TallmanM.S. ThieleJ. TienH.F. TzankovA. VannucchiA.M. VyasP. WeiA.H. WeinbergO.K. WierzbowskaA. CazzolaM. DöhnerH. TefferiA. International consensus classification of myeloid neoplasms and acute leukemias: Integrating morphologic, clinical, and genomic data.Blood2022140111200122810.1182/blood.202201585035767897
    [Google Scholar]
  6. EisfeldA.K. Unbiased decision-making for acute myeloid leukemia still needed.Haematologica2022108366866910.3324/haematol.2022.28114435708138
    [Google Scholar]
  7. PalmW. de LangeT. How shelterin protects mammalian telomeres.Annu. Rev. Genet.200842130133410.1146/annurev.genet.41.110306.13035018680434
    [Google Scholar]
  8. BlackburnE.H. Structure and function of telomeres.Nature1991350631956957310.1038/350569a01708110
    [Google Scholar]
  9. De VitisM. BerardinelliF. SguraA. Telomere length maintenance in cancer: At the crossroad between telomerase and Alternative Lengthening of Telomeres (ALT).Int. J. Mol. Sci.201819260610.3390/ijms1902060629463031
    [Google Scholar]
  10. KyoS. TakakuraM. FujiwaraT. InoueM. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers.Cancer Sci.20089981528153810.1111/j.1349‑7006.2008.00878.x18754863
    [Google Scholar]
  11. Londoño-VallejoJ.A. Der-SarkissianH. CazesL. BacchettiS. ReddelR.R. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange.Cancer Res.20046472324232710.1158/0008‑5472.CAN‑03‑403515059879
    [Google Scholar]
  12. ArtandiS.E. DePinhoR.A. Telomeres and telomerase in cancer.Carcinogenesis201031191810.1093/carcin/bgp26819887512
    [Google Scholar]
  13. ShayJ.W. Role of telomeres and telomerase in aging and cancer.Cancer Discov.20166658459310.1158/2159‑8290.CD‑16‑006227029895
    [Google Scholar]
  14. RamsayA.J. QuesadaV. ForondaM. CondeL. Martínez-TrillosA. VillamorN. RodríguezD. KwarciakA. GarabayaC. GallardoM. López-GuerraM. López-GuillermoA. PuenteX.S. BlascoM.A. CampoE. López-OtínC. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia.Nat. Genet.201345552653010.1038/ng.258423502782
    [Google Scholar]
  15. de MirandaN.F.C.C. PengR. GeorgiouK. WuC. SörqvistE.F. BerglundM. ChenL. GaoZ. LagerstedtK. LisboaS. RoosF. van WezelT. TeixeiraM.R. RosenquistR. SundströmC. EnbladG. NilssonM. ZengY. KiplingD. Pan-HammarströmQ. DNA repair genes are selectively mutated in diffuse large B cell lymphomas.J. Exp. Med.201321091729174210.1084/jem.2012284223960188
    [Google Scholar]
  16. JiaoX. WoodL.D. LindmanM. JonesS. BuckhaultsP. PolyakK. SukumarS. CarterH. KimD. KarchinR. SjöblomT. Somatic mutations in the notch, NF-KB, PIK3CA, and hedgehog pathways in human breast cancers.Genes Chromosomes Cancer201251548048910.1002/gcc.2193522302350
    [Google Scholar]
  17. GilmoreT.D. KalaitzidisD. LiangM.C. StarczynowskiD.T. The c-Rel transcription factor and B-cell proliferation: A deal with the devil.Oncogene200423132275228610.1038/sj.onc.120741014755244
    [Google Scholar]
  18. SamperE. GoytisoloF.A. SlijepcevicP. van BuulP.P.W. BlascoM.A. Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang.EMBO Rep.20001324425210.1093/embo‑reports/kvd05111256607
    [Google Scholar]
  19. CelliG.B. DenchiE.L. de LangeT. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination.Nat. Cell Biol.20068888589010.1038/ncb144416845382
    [Google Scholar]
  20. BenekeS. CohauszO. MalangaM. BoukampP. AlthausF. BürkleA. Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1.Nucleic Acids Res.200836196309631710.1093/nar/gkn61518835851
    [Google Scholar]
  21. AkiyamaM. YamadaO. HideshimaT. YanagisawaT. YokoiK. FujisawaK. EtoY. YamadaH. AndersonK.C. TNFα induces rapid activation and nuclear translocation of telomerase in human lymphocytes.Biochem. Biophys. Res. Commun.2004316252853210.1016/j.bbrc.2004.02.08015020249
    [Google Scholar]
  22. LansdorpP.M. Maintenance of telomere length in AML.Blood Adv.20171252467247210.1182/bloodadvances.201701211229296896
    [Google Scholar]
  23. WangY. FangM. SunX. SunJ. Telomerase activity and telomere length in acute leukemia: Correlations with disease progression, subtypes and overall survival.Int. J. Lab. Hematol.201032223023810.1111/j.1751‑553X.2009.01178.x19614710
    [Google Scholar]
  24. da MotaT.H.A. CamargoR. BiojoneE.R. GuimarãesA.F.R. Pittella-SilvaF. de OliveiraD.M. The relevance of telomerase and telomere-associated proteins in b-acute lymphoblastic leukemia.Genes (Basel)202314369110.3390/genes1403069136980962
    [Google Scholar]
  25. Mengual GomezD.L. ArmandoR.G. CerrudoC.S. GhiringhelliP.D. GomezD.E. Telomerase as a cancer target. Development of new molecules.Curr. Top. Med. Chem.201616222432244010.2174/156802661666616021212242526873194
    [Google Scholar]
  26. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  27. PodlevskyJ.D. BleyC.J. OmanaR.V. QiX. ChenJ.J.L. The telomerase database.Nucleic Acids Res.200736DatabaseD339D34310.1093/nar/gkm70018073191
    [Google Scholar]
  28. DöhnerH. EsteyE. GrimwadeD. AmadoriS. AppelbaumF.R. BüchnerT. DombretH. EbertB.L. FenauxP. LarsonR.A. LevineR.L. Lo-CocoF. NaoeT. NiederwieserD. OssenkoppeleG.J. SanzM. SierraJ. TallmanM.S. TienH.F. WeiA.H. LöwenbergB. BloomfieldC.D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.Blood2017129442444710.1182/blood‑2016‑08‑73319627895058
    [Google Scholar]
  29. AlimohammadiM. RahimzadehP. KhorramiR. BonyadiM. DaneshiS. NabaviN. RaesiR. FaraniM.R. DehkhodaF. TaheriazamA. HashemiM. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets.Pathol. Res. Pract.202426015540110.1016/j.prp.2024.15540138936094
    [Google Scholar]
  30. MafiA. RismanchiH. Malek MohammadiM. HedayatiN. GhorbanhosseiniS.S. HosseiniS.A. GholinezhadY. Mousavi DehmordiR. GhezelbashB. ZarepourF. TaghaviS.P. AsemiZ. AlimohammadiM. MirzaeiH. A spotlight on the interplay between Wnt/β- catenin signaling and circular RNAs in hepatocellular carcinoma progression.Front. Oncol.202313122413810.3389/fonc.2023.122413837546393
    [Google Scholar]
  31. AlimohammadiM. GholinezhadY. MousaviV. Circular RNAs: Novel actors of Wnt signaling pathway in lung cancer progression.EXCLI J.20232264566910.17179/EXCLI2023‑6209
    [Google Scholar]
  32. MafiA. KhoshnazarS.M. ShahparA. NabaviN. HedayatiN. AlimohammadiM. HashemiM. TaheriazamA. FarahaniN. Mechanistic insights into circRNA-mediated regulation of PI3K signaling pathway in glioma progression.Pathol. Res. Pract.202426015544210.1016/j.prp.2024.15544238991456
    [Google Scholar]
  33. CongP. XuR. TanZ. WuX. LianH. LiD. Molecular subtypes based on mitochondrial oxidative stress-related gene signature and tumor microenvironment infiltration characterization of colon adenocarcinoma.Curr. Med. Chem.202532357859787910.2174/010929867331869224082905354339238391
    [Google Scholar]
  34. LiY. LyuG. Construction of a PANoptosis-related prognostic signature for predicting prognosis, tumor microenvironment, and immune response in ovarian cancer.Curr. Med. Chem.202410.2174/010929867331486424082906462239248067
    [Google Scholar]
  35. HuangK. XieL. WangF. A novel defined pyroptosis-related gene signature for the prognosis of acute myeloid leukemia.Genes (Basel)20221312228110.3390/genes1312228136553549
    [Google Scholar]
  36. AalamiA. AbdeahadH. MokhtariA. AalamiF. AmirabadiA. AliabadiE.K. PirzadeO. SahebkarA. Blood-based microRNAs as potential diagnostic biomarkers for melanoma: A meta-analysis.Curr. Med. Chem.202431315083509610.2174/092986733066623050911011137165504
    [Google Scholar]
  37. HouH. WuY. GuoJ. ZhangW. WangR. YangH. WangZ. The prognostic signature based on glycolysis-immune related genes for acute myeloid leukemia patients.Immunobiology2023228315235510.1016/j.imbio.2023.15235536868006
    [Google Scholar]
  38. ChuM. HuangJ. WangQ. FangY. CuiD. JinY. A circadian rhythm-related signature to predict prognosis, immunei infiltration, and drug response in breast cancer.Curr. Med. Chem.202432360862610.2174/010929867332017924080307100139279697
    [Google Scholar]
  39. HuJ. ZhuW. WangW. YueX. ZhaoP. KongD. Comprehensive analysis of ligand-receptor interactions in colon adenocarcinoma to identify of tumor microenvironment oxidative stress and prognosis model.Curr. Med. Chem.202431304912493410.2174/092986733166623082109234637605402
    [Google Scholar]
  40. KishtagariA. WattsJ. Biological and clinical implications of telomere dysfunction in myeloid malignancies.Ther. Adv. Hematol.201781131732610.1177/204062071773154929093807
    [Google Scholar]
  41. SwiggersS.J.J. KuijpersM.A. de CortM.J.M. BeverlooH.B. ZijlmansJ.M.J.M. Critically short telomeres in acute myeloid leukemia with loss or gain of parts of chromosomes.Genes Chromosomes Cancer200645324725610.1002/gcc.2028616281260
    [Google Scholar]
  42. JonesC.H. PepperC. BairdD.M. Telomere dysfunction and its role in haematological cancer.Br. J. Haematol.2012156557358710.1111/j.1365‑2141.2011.09022.x22233151
    [Google Scholar]
  43. DayJ.W. HowellK. PlaceA. LongK. RosselloJ. KerteszN. NomikosG. Advances and limitations for the treatment of spinal muscular atrophy.BMC Pediatr.202222163210.1186/s12887‑022‑03671‑x36329412
    [Google Scholar]
  44. CargnelloM. RouxP.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol. Mol. Biol. Rev.2011751508310.1128/MMBR.00031‑1021372320
    [Google Scholar]
  45. MiyakeY. NakamuraM. NabetaniA. ShimamuraS. TamuraM. YoneharaS. SaitoM. IshikawaF. RPA- like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway.Mol. Cell200936219320610.1016/j.molcel.2009.08.00919854130
    [Google Scholar]
  46. DingH. SchertzerM. WuX. GertsensteinM. SeligS. KammoriM. PourvaliR. PoonS. VultoI. ChavezE. TamP.P.L. NagyA. LansdorpP.M. Regulation of murine telomere length by Rtel: An essential gene encoding a helicase-like protein.Cell2004117787388610.1016/j.cell.2004.05.02615210109
    [Google Scholar]
  47. BarberL.J. YoudsJ.L. WardJ.D. McIlwraithM.J. O’NeilN.J. PetalcorinM.I.R. MartinJ.S. CollisS.J. CantorS.B. AuclairM. TissenbaumH. WestS.C. RoseA.M. BoultonS.J. RTEL1 maintains genomic stability by suppressing homologous recombination.Cell2008135226127110.1016/j.cell.2008.08.01618957201
    [Google Scholar]
  48. HanP. DangZ. ShenZ. DaiH. BaiY. LiB. ShaoY. Association of SNPs in the OBFC1 gene and laryngeal carcinoma in Chinese Han male population.Int. J. Clin. Oncol.20192491042104810.1007/s10147‑019‑01442‑w31016429
    [Google Scholar]
  49. GrozdanovP.N. RoyS. KitturN. MeierU.T. SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs.RNA20091561188119710.1261/rna.153210919383767
    [Google Scholar]
  50. ElsharawyK.A. AlthobitiM. MohammedO.J. AljohaniA.I. TossM.S. GreenA.R. RakhaE.A. Nucleolar protein 10 (NOP10) predicts poor prognosis in invasive breast cancer.Breast Cancer Res. Treat.2021185361562710.1007/s10549‑020‑05999‑333161513
    [Google Scholar]
  51. MonteagudoM. MartínezP. Leandro-GarcíaL.J. Martínez-MontesÁ.M. CalsinaB. Pulgarín-AlfaroM. Díaz-TalaveraA. MellidS. LetónR. GilE. Pérez-MartínezM. MegíasD. Torres-RuizR. Rodriguez-PeralesS. GonzálezP. CaleirasE. Jiménez-VillaS. RoncadorG. Álvarez-EscoláC. RegojoR.M. CalatayudM. GuadalixS. Currás-FreixesM. RapizziE. CanuL. NöltingS. RemdeH. FassnachtM. BechmannN. EisenhoferG. MannelliM. BeuschleinF. QuinklerM. Rodríguez-AntonaC. CascónA. BlascoM.A. Montero-CondeC. RobledoM. Analysis of telomere maintenance related genes reveals NOP10 as a new metastatic-risk marker in pheochromocytoma/paraganglioma.Cancers (Basel)20211319475810.3390/cancers1319475834638246
    [Google Scholar]
  52. LiH.L. SongJ. YongH.M. HouP.F. ChenY.S. SongW.B. BaiJ. ZhengJ.N. PinX1: Structure, regulation and its functions in cancer.Oncotarget2016740662676627510.18632/oncotarget.1141127556185
    [Google Scholar]
  53. ZhouX.Z. LuK.P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor.Cell2001107334735910.1016/S0092‑8674(01)00538‑411701125
    [Google Scholar]
  54. LiaoC. ZhaoM.J. ZhaoJ. JiaD. SongH. LiZ.P. Over-expression of LPTS-L in hepatocellular carcinoma cell line SMMC-7721 induces crisis.World J. Gastroenterol.2002861050105210.3748/wjg.v8.i6.105012439923
    [Google Scholar]
  55. QianD. ZhangB. HeL.R. CaiM.Y. MaiS.J. LiaoY.J. LiuY.H. LinM.C. BianX.W. ZengY.X. HuangJ.J. KungH.F. XieD. The telomere/telomerase binding factor PinX1 is a new target to improve the radiotherapy effect of oesophageal squamous cell carcinomas.J. Pathol.2013229576577410.1002/path.416323341363
    [Google Scholar]
  56. TianX.P. QianD. HeL.R. HuangH. MaiS.J. LiC.P. HuangX.X. CaiM.Y. LiaoY.J. KungH. ZengY.X. XieD. The telomere/telomerase binding factor PinX1 regulates paclitaxel sensitivity depending on spindle assembly checkpoint in human cervical squamous cell carcinomas.Cancer Lett.2014353110411410.1016/j.canlet.2014.07.01225045845
    [Google Scholar]
  57. WoldM.S. Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism.Annu. Rev. Biochem.1997661619210.1146/annurev.biochem.66.1.619242902
    [Google Scholar]
  58. FanningE. KlimovichV. NagerA.R. A dynamic model for replication protein A (RPA) function in DNA processing pathways.Nucleic Acids Res.200634154126413710.1093/nar/gkl55016935876
    [Google Scholar]
  59. KanakisD. LevidouG. GakiopoulouH. EftichiadisC. ThymaraI. FragkouP. TrigkaE.A. BoviatsisE. PatsourisE. KorkolopoulouP. Replication protein A: A reliable biologic marker of prognostic and therapeutic value in human astrocytic tumors.Hum. Pathol.201142101545155310.1016/j.humpath.2010.12.01821496876
    [Google Scholar]
  60. NicholsonP. GkratsouA. JosiC. ColomboM. MühlemannO. Dissecting the functions of SMG5, SMG7, and PNRC2 in nonsense-mediated mRNA decay of human cells.RNA201824455757310.1261/rna.063719.11729348139
    [Google Scholar]
  61. TangB. ZhuJ. ZhaoZ. LuC. LiuS. FangS. ZhengL. ZhangN. ChenM. XuM. YuR. JiJ. Diagnosis and prognosis models for hepatocellular carcinoma patient’s management based on tumor mutation burden.J. Adv. Res.20213315316510.1016/j.jare.2021.01.01834603786
    [Google Scholar]
  62. LiS.C. JiaZ.K. YangJ.J. NingX. Telomere-related gene risk model for prognosis and drug treatment efficiency prediction in kidney cancer.Front. Immunol.20221397505710.3389/fimmu.2022.97505736189312
    [Google Scholar]
  63. ZhaoZ. ShenX. ZhaoS. WangJ. TianY. WangX. TangB. A novel telomere-related genes model for predicting prognosis and treatment responsiveness in diffuse large B-cell lymphoma.Aging (Albany NY)20231522129271295110.18632/aging.20521137976136
    [Google Scholar]
  64. UstunC. MillerJ.S. MunnD.H. WeisdorfD.J. BlazarB.R. Regulatory T cells in acute myelogenous leukemia: Is it time for immunomodulation?Blood2011118195084509510.1182/blood‑2011‑07‑36581721881045
    [Google Scholar]
  65. WilliamsP. BasuS. Garcia-ManeroG. HouriganC.S. OetjenK.A. CortesJ.E. RavandiF. JabbourE.J. Al-HamalZ. KonoplevaM. NingJ. XiaoL. Hidalgo LopezJ. KornblauS.M. AndreeffM. FloresW. Bueso-RamosC. BlandoJ. GaleraP. CalvoK.R. Al-AtrashG. AllisonJ.P. KantarjianH.M. SharmaP. DaverN.G. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia.Cancer201912591470148110.1002/cncr.3189630500073
    [Google Scholar]
  66. SzczepanskiM.J. SzajnikM. CzystowskaM. MandapathilM. StraussL. WelshA. FoonK.A. WhitesideT.L. BoyiadzisM. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia.Clin. Cancer Res.200915103325333210.1158/1078‑0432.CCR‑08‑301019417016
    [Google Scholar]
  67. DeliaM. CarluccioP. MesticeA. BrunettiC. AlbanoF. SpecchiaG. Impact of bone marrow aspirate tregs on the response rate of younger newly diagnosed acute myeloid leukemia patients.J. Immunol. Res.201820181710.1155/2018/932526130069492
    [Google Scholar]
  68. TakeuchiY. NishikawaH. Roles of regulatory T cells in cancer immunity.Int. Immunol.201628840140910.1093/intimm/dxw02527160722
    [Google Scholar]
  69. XuZ.J. GuY. WangC.Z. JinY. WenX.M. MaJ.C. TangL.J. MaoZ.W. QianJ. LinJ. The M2 macrophage marker CD206 : A novel prognostic indicator for acute myeloid leukemia.OncoImmunology202091168334710.1080/2162402X.2019.168334732002295
    [Google Scholar]
  70. MiariK.E. GuzmanM.L. WheadonH. WilliamsM.T.S. Macrophages in acute myeloid leukaemia: Significant players in therapy resistance and patient outcomes.Front. Cell Dev. Biol.2021969280010.3389/fcell.2021.69280034249942
    [Google Scholar]
  71. JiangX. WangJ. DengX. XiongF. GeJ. XiangB. WuX. MaJ. ZhouM. LiX. LiY. LiG. XiongW. GuoC. ZengZ. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape.Mol. Cancer20191811010.1186/s12943‑018‑0928‑430646912
    [Google Scholar]
  72. StoneR.M. MandrekarS.J. SanfordB.L. LaumannK. GeyerS. BloomfieldC.D. ThiedeC. PriorT.W. DöhnerK. MarcucciG. Lo-CocoF. KlisovicR.B. WeiA. SierraJ. SanzM.A. BrandweinJ.M. de WitteT. NiederwieserD. AppelbaumF.R. MedeirosB.C. TallmanM.S. KrauterJ. SchlenkR.F. GanserA. ServeH. EhningerG. AmadoriS. LarsonR.A. DöhnerH. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation.N. Engl. J. Med.2017377545446410.1056/NEJMoa161435928644114
    [Google Scholar]
  73. ZhouF. GeZ. ChenB. Quizartinib (AC220): A promising option for acute myeloid leukemia.Drug Des. Devel. Ther.2019131117112510.2147/DDDT.S19895031114157
    [Google Scholar]
  74. BoehrerS. AdèsL. BraunT. GalluzziL. GrosjeanJ. FabreC. Le RouxG. GardinC. MartinA. de BottonS. FenauxP. KroemerG. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: A preclinical study.Blood200811142170218010.1182/blood‑2007‑07‑10036217925489
    [Google Scholar]
  75. CaoZ.X. GuoC.J. SongX. HeJ.L. TanL. YuS. ZhangR.Q. PengF. PengC. LiY.Z. Erlotinib is effective against FLT3-ITD mutant AML and helps to overcome intratumoral heterogeneity via targeting FLT3 and Lyn.FASEB J.2020348101821019010.1096/fj.201902922RR32543003
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673334218241021044800
Loading
/content/journals/cmc/10.2174/0109298673334218241021044800
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test