Current Drug Delivery - Volume 22, Issue 5, 2025
Volume 22, Issue 5, 2025
-
-
Advances in Iron Deficiency Anaemia Management: Exploring Novel Drug Delivery Systems and Future Perspectives
Authors: Muskan Saini, Karan Trehan, Shubham Thakur, Anuj Modi and Subheet Kumar JainIron Deficiency Anaemia (IDA) is a prevalent global health issue characterized by inadequate iron levels in the body, leading to impaired red blood cell production and subsequent anaemia. Traditional treatment approaches for IDA, such as oral iron supplementation, often encounter challenges related to poor compliance, gastrointestinal side effects, and variable absorption rates. As a result, there is a growing interest in exploring novel drug delivery systems to enhance iron therapy efficacy and patient outcomes. This review discusses recent advances in IDA management, focusing on developing and utilizing innovative drug delivery systems for iron supplementation. Various strategies, including nanoformulations, microparticles, liposomes, and hydrogels, are explored for their potential to improve iron bioavailability, reduce adverse effects, and optimize therapeutic outcomes. Furthermore, promising strategies for the future management of IDA are explored, including the utilization of advanced technologies such as targeted drug delivery systems, controlled release mechanisms, and combination therapies. The integration of these novel drug delivery systems with advancements in diagnostics, personalized medicine, and patient-centered care holds great potential to revolutionize the management of IDA and improve the quality of life for individuals affected by this condition.
-
-
-
Ribavirin in Modern Antitumor Therapy: Prospects for Intranasal Administration
Ribavirin has been used as an antiviral agent to treat a variety of viral infections since the 1970s. Over the past few decades, studies have been conducted on the pharmacology of ribavirin, and the possibility of its use in new indications has been explored. According to the results of a number of studies, ribavirin efficacy in the therapy of malignant neoplasms of various genesis has been proven. Furthermore, due to the complexity of brain tumor therapy using surgical methods, targeted delivery of ribavirin to the brain becomes a promising alternative to existing treatment methods. Targeting of active pharmaceutical ingredient (API) to the brain tumor is achieved by intranasal drug delivery via a Nose-to-Brain mechanism. In addition, using this delivery mechanism, it is possible to reach the brain while bypassing the blood-brain barrier (BBB), thus avoiding the effects of the first passage through the liver. Despite the significant advantages of the method, there are limiting factors to its application - mucociliary clearance, which aims to remove foreign bodies from the surface of the nasal mucosa. In situ, systems are able to reduce the intensity of interfering factors on API and allow the achievement of maximum bioavailability during intranasal administration.
-
-
-
Frontiers of Plant-derived Exosomes from Research Methods to Pharmaceutical Applications in Plant-based Therapeutics
Authors: Wenshang Fu, Pingli Zhang, Wei Wang, Mengdie Du, Rui Ni and Yongshun SunExosomes have emerged as critical mediators of intercellular communication and various physiological processes between cells and their environment. These nano-sized vesicles have been extensively investigated and confirmed to exhibit multifunctionality in animal systems. In particular, they participate in intercellular signaling, influence disease progression, and exhibit biological activity. However, Plant-Derived Exosomes (PDEs), especially therapeutic PDEs, have received relatively limited attention in the past few decades. Recent studies have demonstrated that PDEs are involved in signaling molecule transport in addition to intercellular communication, as they serve as functional molecules in the cellular microenvironment. This characteristic highlights the immense potential of PDEs for a wide array of applications, including antioxidation, anti-inflammation, tumour cell elimination, immune modulation, and tissue regeneration. In addition, PDEs hold substantial promise as efficient drug carriers, enhancing the stability and bioavailability of therapeutic agents and consequently enabling targeted delivery to specific cells or tissues. Therefore, PDEs may serve as effective tools for drug delivery and the treatment of various diseases. This comprehensive review provides an overview of recent studies on therapeutic PDEs, focusing on their extraction, isolation, characterization methods, biological activities, and application prospects. It summarises the research progress of exosome-like nanovesicles derived from medicinal plants, with a specific emphasis on traditional Chinese medicine, and highlights their importance in disease treatment and nanoparticle delivery. The main objective is to accelerate the clinical translation of these nanovesicles while providing novel approaches and methodologies for the research and development of innovative drugs.
-
-
-
Latest Findings on the Effects of Gold Nanoparticles on the Storage Quality of Blood Products (2011-2022) - A Narrative Review
More LessA wide range of challenges are faced during the storage of blood products, including storage lesions, contamination that must be removed, and cell and protein damage due to chemicals and UV exposure. The enhancement of stability exhibited by gold nanoparticles (GNPs) is a notable advantage of these nanoparticles for the storage of blood products. The results of our review of articles from 2011 to 2022 discussing the effect of GNPs on blood products revealed that in RBCs, the dose, concentration, amount, and surface charge of GNPs significantly affect their compatibility. Purified GNPs were compatible with RBCs. Negatively charged GNPs with smaller diameters at lower concentrations were more compatible. However, in the plasma product, the nanoparticle surface modification with different agents showed greater compatibility. PEGylated nanospheres and GNPs exhibited higher albumin conformational stability than those coated with cetyltrimethylammonium bromide and rods. In the platelet product, smaller GNPs and high GNP concentrations induce platelet aggregation. PEGylation increased the platelet compatibility of GNP. The combination of GNPs with human fibrinogen and clopidogrel prevented clot formation. Finally, the findings of this investigation demonstrate that GNPs are contingent on their surface charge, dosage, and concentration.
-
-
-
A Comprehensive Analysis of Liposomal-Based Nanocarriers for Treating Skin and Soft Tissue Infection
Authors: Dyala M. Khasawneh, Rami J. Oweis and Mo'tasem AlsmadiBacterial skin and soft tissue infections (SSTIs) are widespread microbic invasions of the skin and deeper tissues. Topical drug delivery systems are the most favored administration pathway when treating SSTIs. This is down to their minimal risk of inducing systemic adverse events, reduced development of bacterial resistance, and ease of application. However, they have several drawbacks, including the lack of control over the drug release profile, skin irritations, and the limited permeability of certain compounds through the skin. To address these limitations, several nanocarrier systems were developed, with nanoliposomes standing out as the leading delivery system for the topical management of SSTIs. Despite considerable research into liposomes over the past decade, there remains a gap in detailed knowledge about designing these carriers specifically for SSTIs. Consequently, there is a pressing need for comprehensive research that focuses on the use of nanoliposomes for SSTIs and offers an extensive understanding of both SSTIs and liposomal formulations. This review explores bacterial SSTIs, covering their epidemiology, classification, microbiology, and management. It emphasizes the contribution of liposome-based nanovesicles in enhancing the local administration of antibiotics and natural antibacterial compounds for SSTI management. It also delves into the effects of liposomal formulation changes on the disease therapeutic outcomes. Additionally, it provides a guide for aligning the characteristics of the liposomes with the infection types, depths, properties, and causative agents. This signifies a substantial leap forward in the domains of drug design, development, and delivery.
-
-
-
Myristic Acid Solid Lipid Nanoparticles Enhance the Oral Bioavailability and Therapeutic Efficacy of Rifaximin against MRSA Pneumonia
Authors: Yumin Zhang, Aoxue Zhang, Dongmei Chen and Shuyu XieIntroduction/BackgroundMethicillin-resistant Staphylococcus aureus (MRSA) pneumonia is one of the leading causes of death and an immense financial burden on healthcare systems. Rifaximin (RFX) has good antibacterial activity against MRSA, but its clinical application is limited due to its poor oral absorption.
ObjectiveIn order to improve the oral bioavailability of rifaximin and expand the clinical application of RFX for MRSA pneumonia, this study developed a RFX-loaded myristic acid solid lipid nanoparticles (RFX-SLNs).
MethodsThis study first screened the formula of RFX-SLNs through single factor screening. After that, the particle size, zeta potential and polydispersity index (PDI) of the RFX-SLNs were measured, the morphology of RFX-SLNs was observed by transmission electron microscopy, and the encapsulation efficiency (EE) and drug loading capacity (LC) of RFX-SLNs were detected by high performance liquid chromatography. Then, the sustained release ability and oral bioavailability of RFX-SLNs were studied through in vitro release and pharmacokinetics. Finally, the therapeutic effect of RFX-SLNs on MRSA pneumonia infection was studied by using a mouse MRSA pneumonia infection model.
ResultsThe optimal formulation of RFX-SLNs was 1% RFX with a water (3% PVA) and oil (myristic acid) ratio of 1:19. RFX-SLNs were spherical shape with a smooth surface and uniform size. The EE and LC of three different batches of RFX-SLNs were 89.35±2.47%, 90.45±3.69%, 88.72±1.18%, and 9.50 ± 0.01%, 10.09±0.01%, and 9.68±0.00%, respectively. In vitro release and pharmacokinetic studies showed that the myristic acid solid lipid nanoparticles showed excellent sustained release as expected and increased the oral bioavailability of RFX by 2.18 times. RFX-SLNs showed a good therapeutic effects in a mouse MRSA pneumonia infection model.
ConclusionThis study indicates that the myristic acid solid lipid nanoparticles might be an effective way to enhance the oral absorption and therapy effects of RFX and other insoluble drugs.
-
-
-
Controlled Release of Aspirin in the Body using Pectin-coated ZIF-8 Nanoparticles
More LessIntroductionZeolitic imidazolate frameworks (ZIFs) play a crucial role among metal-organic frameworks due to their highly desirable properties, including high surface area, appropriate pore size, and excellent thermal and chemical stability.
MethodsIn this study, ZIF-8 loaded with aspirin and coated using pectin (ZIF-8/Asp@Pectin) was utilized as a suitable and effective platform for the drug delivery system. The preparation of this coated MOF followed environmentally friendly methods, and aspirin was successfully loaded.
ResultsCharacterization of the obtained ZIF-8/Asp@Pectin was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FT-IR) spectroscopy, and BET analysis.
ConclusionThe release of aspirin from ZIF-8/Asp@Pectin was studied using UV–Vis spectroscopy at 258 nm under in vitro conditions in HCl and PBS buffer solutions.
-
-
-
Characterization and In vitro Release & In vivo Behavior Study of Self-Assembled Nano-Emulsion in XiaoYao Pill for Enhanced Drug Delivery
Authors: Guan QingXia, Zhu MeiWei, Wang LianZhi, Chen ZhongXin, Yang FangFang, Yang ZhiPing, Dai XiaoFang and Zhao FangYuanIntroduction/BackgroundTraditional Chinese medicine formulations often contain hydrophobic components with limited solubility and stability, leading to low oral bioavailability. Self-assembled nanoparticles (SANs) have shown promise in enhancing oral bioavailability of these components. However, whether un-decocted Chinese herbal pellets can generate SANs and the impact of SANs formed by multiple components on pharmacokinetic parameters remains unexplored.
MethodsIn this study, single-factor approach was employed to determine the optimal separation method of nano-emulsion phase of XiaoYao pill (N-XY). Morphological and particle size analyses confirmed the nanoscale nature of N-XY. High-performance liquid chromatography (HPLC) fingerprint analysis was conducted to compare the distribution of active ingredients among three different phases of XiaoYao pill (XY pill). In vitro release studies were performed to evaluate the release mechanism of four ingredients from N-XY. Additionally, in vivo pharmacokinetics and tissue distribution behaviors were investigated in rats.
ResultsN-XY exhibited uniform and stable characteristics as a water-in-oil (O/W) nano-emulsion. Fingerprint analysis identified 25 characteristic peaks and 8 key ingredients in N-XY, with the highest peak areas. In vitro release studies showed a sustained release behavior of N-XY. The pharmacokinetics study showed that the ferulic acid of N-XY had a 1.37-fold higher AUC, 1.44-fold lower Vd/F, 1.39-fold lower CL/F, and a prolonged t1/2 than A-XY, indicating enhanced bioavailability due to reduced elimination. Furthermore, the tissue distribution revealed that the levels of paeoniflorin and ferulic acid from N-XY significantly increased in liver, spleen, lungs, uterus and ovaries, exhibiting targeting characteristics.
ConclusionThis study comprehensively explored the formation, characterization, and pharmacokinetics of nano-emulsion in XY pill, introducing novel perspectives and initiating preliminary research on potential SANs in un-decocted traditional Chinese medicine formulations. It also emphasized the importance of enhancing pharmacokinetics of hydrophobic components in Chinese herbal formulations and laid the foundation for future nano-formulation research for XY pill.
-
-
-
Lignin Nanoparticles as pH-responsive Nanocarriers for Gastric-Irritant Oral Drug Aspirin
Authors: Tahmidul Islam Aquib, Sheikh Manjura Hoque and Mohammad Helal UddinIntroductionAlthough lignin is one of the most naturally abundant biopolymers, the overall status of its utilization has long been subpar. The ability of Lignin to readily self-assemble into nanoparticles, along with its good biocompatibility and minimal toxicity, makes it a perfect agent for nanocarriers and drug delivery.
MethodHence, in this study, we have attempted to examine lignin nanoparticles (LNPs) as an efficient pH-responsive nanocarrier for gastric-irritant oral NSAID, aspirin. Alkali lignin (AL) was extracted from rice straw via alkaline treatment, and the lignin nanoparticles were synthesized from lignin using the acid precipitation method. The average particle size was 201.37 ± 1.20 nm, and the synthesized LNPs exhibited a spherical shape and smooth outer surface along with high polydispersity (PDI= 0.284 ± 0.012). The LNPs showed moderate hemocompatibility during in vitro hemolysis studies. The nanoparticles presented nearly similar chemical structures to the AL from which they were developed, and the FT-IR absorption spectra confirmed the similarity of this chemical structure to the LNPs and AL. Aspirin was successfully loaded into the LNPs with a satisfactory drug loading value of 39.12 ± 1.50 and an excellent encapsulation efficiency value of 91.44 ± 0.59.
ResultsFinally, the LNPs were capable of protecting the loaded drug at the acidic pH of the stomach (1.2) with just 29.20% release of the loaded aspirin after 10 h of observation in vitro. Contrarily, the LNPs were capable of rapidly releasing the aspirin at the basic pH of the intestine (7.4) with nearly 90% release of the loaded drug after 10 h observation in vitro. The basic pH of the intestine might lead to gradual dissociation of the LNPs followed by swift release of the loaded cargo.
ConclusionThese findings substantiate that the LNPs carry the potential to be an apt and safe nanocarrier for oral drugs like aspirin as well as parenteral drugs, and LNPs can be utilized as an efficient alternative to enteric coating.
-
-
-
Betulin-NLC-hydrogel for the Treatment of Psoriasis-like Skin Inflammation: Optimization, Characterisation, and In vitro and In vivo Evaluation
Authors: Dev Prakash, Anjali Chaudhary and Amit ChaudharyIntroductionPsoriasis is a chronic inflammatory skin disorder that poses significant challenges regarding effective and targeted drug delivery. Bioactive substances like betulin have shown tremendous utility in treating these conditions; however, they pose limited utility owing to their physicochemical characteristics. Here, we aimed to develop a novel topical dosage form for treating psoriasis, utilising betulin-loaded Nanostructured lipid carriers (NLCs) incorporated into a hydrogel matrix.
MethodsThe optimization of the formulation was meticulously conducted using a design expert-13 software, and its diverse physicochemical attributes were thoroughly examined. Evaluating betulin's in vitro release pattern from the NLC-hydrogel demonstrated consistent and regulated drug release properties. Additionally, the formulation demonstrated improved skin penetration abilities as determined by in vitro skin permeation experiments employing Franz diffusion cells—furthermore, the therapeutic effectiveness of the betulin-NLC-hydrogel was assessed by an in vivo experiment carried out using an imiquimod-induced psoriasis-like skin inflammation model in BALB/c female mice.
ResultsThe NLCs exhibited a pH of 5.67±0.86, particle size of 148.16±12.66 nm, and zeta potential of -22.84±2.37 mV, ensuring stability and suitability for topical use. The gel, with a pH of 6.05±0.43 and viscosity of 17550±120 cPs, showed enhanced skin hydration and lipid restoration. Drug release studies indicated a slower release from NLCs and gel, improving skin retention. Stability tests revealed that the formulations were stable at room temperature but not at elevated temperatures. The in vitro safety profile of the formulation revealed no significant adverse effects on HaCaT cell lines. The NLC gel demonstrated significant anti-psoriatic activity, reducing inflammation and cytokine levels.
ConclusionThe betulin-NLC-hydrogel formulation exhibited promising characteristics for the topical treatment of psoriasis, showcasing optimised drug delivery, sustained release, and notable therapeutic efficacy. The findings from this study provide a foundation for the potential clinical translation of this innovative topical dosage form for improved psoriasis management.
-
-
-
Preparation and Evaluation of Tetrandrine Nanocrystals to Improve Bioavailability
Authors: Fei Xue, Lan Yang, Shuai Ma, Jin hua Chang, Pei Liu, Xi Gang Liu and Ru xing WangIntroduction/BackgroundTetrandrine (TET) has multiple pharmacological activities, but its water solubility is poor, which is the main reason for its low bioavailability.
ObjectivesThe purpose of this study was to prepare TET nanocrystals (TET-NCs) using a grinding method to enhance the dissolution rate and ultimately improve the bioavailability of TET.
MethodsTET-NCs were synthesized via media milling, employing Poloxam 407 (P407) as surface stabilizer and mannitol as a cryoprotectant during freeze-drying. The crystal structure, particle diameter, and zeta potential were characterized using differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The in vitro release behavior and pharmacokinetics of TET-NCs were assessed. The cytotoxicity of TET and TET-NCS on RAW264.7 cells was determined by the CCK-8 method.
ResultsThe particle size of TET-NCs was 360.0±7.03 nm, PDI was 0.26±0.03, and zeta potential was 6.64±0.22 mV. The cumulative dissolution within 60 minutes was 96.40±2.31%. The pharmacokinetic study showed that AUC0-72 h and Cmax of TET-NCs were significantly enhanced by 3.07 and 2.57 times, respectively, compared with TET (p<0.01). TET-NCs significantly increased the cell inhibition on RAW264.7 cells compared to the TET (P<0.01).
ConclusionThe preparation of TET-NCs enhanced dissolution rate and bioavailability significantly, and it also improved the inhibition effect of RAW264.7 cells.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Preface
Authors: Deng-Guang Yu and He Lv
-
- More Less