Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

A wide range of challenges are faced during the storage of blood products, including storage lesions, contamination that must be removed, and cell and protein damage due to chemicals and UV exposure. The enhancement of stability exhibited by gold nanoparticles (GNPs) is a notable advantage of these nanoparticles for the storage of blood products. The results of our review of articles from 2011 to 2022 discussing the effect of GNPs on blood products revealed that in RBCs, the dose, concentration, amount, and surface charge of GNPs significantly affect their compatibility. Purified GNPs were compatible with RBCs. Negatively charged GNPs with smaller diameters at lower concentrations were more compatible. However, in the plasma product, the nanoparticle surface modification with different agents showed greater compatibility. PEGylated nanospheres and GNPs exhibited higher albumin conformational stability than those coated with cetyltrimethylammonium bromide and rods. In the platelet product, smaller GNPs and high GNP concentrations induce platelet aggregation. PEGylation increased the platelet compatibility of GNP. The combination of GNPs with human fibrinogen and clopidogrel prevented clot formation. Finally, the findings of this investigation demonstrate that GNPs are contingent on their surface charge, dosage, and concentration.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018316266240909075316
2025-06-01
2025-09-02
Loading full text...

Full text loading...

References

  1. HardwickJ. Blood processing.ISBT Sci. Ser.20083214817610.1111/j.1751‑2824.2008.00195.x
    [Google Scholar]
  2. GreeningD.W. GlenisterK.M. SparrowR.L. SimpsonR.J. International blood collection and storage: Clinical use of blood products.J. Proteomics201073338639510.1016/j.jprot.2009.07.01119664733
    [Google Scholar]
  3. AbonnencM. TissotJ.D. PrudentM. General overview of blood products in vitro quality: Processing and storage lesions.Transfus. Clin. Biol.201825426927510.1016/j.tracli.2018.08.16230241785
    [Google Scholar]
  4. KorD.J. Van BuskirkC.M. GajicO. Red blood cell storage lesion.Bosn. J. Basic Med. Sci.200991Suppl. 1S21S2710.17305/bjbms.2009.275019912115
    [Google Scholar]
  5. ObradorR. MusulinS. HansenB. Red blood cell storage lesion.J. Vet. Emerg. Crit. Care (San Antonio)201525218719910.1111/vec.1225225428860
    [Google Scholar]
  6. DevineD.V. SerranoK. The platelet storage lesion.Clin. Lab. Med.201030247548710.1016/j.cll.2010.02.00220513565
    [Google Scholar]
  7. EpsteinJ.S. Alternative strategies in assuring blood safety: An overview.Biologicals2010381313510.1016/j.biologicals.2009.10.00920110174
    [Google Scholar]
  8. KleinH.G. Pathogen inactivation technology: Cleansing the blood supply.J. Intern. Med.2005257322423710.1111/j.1365‑2796.2005.01451.x15715679
    [Google Scholar]
  9. MehriziT.Z. ArdestaniM.S. The introduction of dendrimers as a new approach to improve the performance and quality of various blood products (platelets, plasma and erythrocytes): A 2010-2022 review study.Curr. Nanosci.202319110312210.2174/1573413718666220728141511
    [Google Scholar]
  10. MehriziT.Z. ArdestaniM.S. KafiabadS.A. A review of the use of metallic nanoparticles as a novel approach for overcoming the stability challenges of blood products: A narrative review from 2011-2021.Curr. Drug Deliv.202320326128010.2174/156720181966622051309202035570560
    [Google Scholar]
  11. BelousovA. MalygonE. YavorskiyV. BelousovaE. Stabilization of molecular structure membranes of preserved rbcs by means nanotechnology.Ann Med Surg Case Rep AMSCR20193116000204
    [Google Scholar]
  12. Zadeh MehriziT. Assessment of the effect of polymeric nanoparticles on storage and stability of blood products (red blood cells, plasma, and platelet).Polym. Bull.2022202280
    [Google Scholar]
  13. Zadeh MehriziT. MosaffaN. KhamesipourA. Haji Molla HoseiniM. Ebrahimi ShahmabadiH. Shafiee ArdestaniM. RamezaniA. A novel nanoformulation for reducing the toxicity and increasing the efficacy of betulinic acid using anionic linear globular dendrimer.J. Nanostruct.2021111143152
    [Google Scholar]
  14. Zadeh MehriziT. Shafiee ArdestaniM. RezayatS.M. JavanmardA. A review study of the use of modified chitosan as a new approach to increase the preservation of blood products (erythrocytes, platelets, and plasma products): 2010-2022.Nanomed. J.20231011632
    [Google Scholar]
  15. ShiL. WangJ.X. StevensL. NessP. ShanH. Blood safety and availability: Continuing challenges in C hina’s blood banking system.Transfusion201454247148210.1111/trf.1227323710600
    [Google Scholar]
  16. Zadeh MehriziT. KhamesipourA. Shafiee ArdestaniM. Ebrahimi ShahmabadiH. Haji Molla HoseiniM. MosaffaN. RamezaniA. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: Real-time PCR assay plus.Int. J. Nanomedicine2019147593760710.2147/IJN.S22041031802863
    [Google Scholar]
  17. MehriziT.Z. ArdestaniM.S. Therapeutic application of nanoparticles in hepatitis diseases: A narrative review (2011-2021).Curr. Pharm. Biotechnol.202324561163210.2174/138920102366622072714162435894465
    [Google Scholar]
  18. Zadeh MehriziT. MosaffaN. HoseiniH.M. In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of leishmaniasis.Arch Clin Infect Dis.2018135e80314
    [Google Scholar]
  19. SperlingR.A. Rivera GilP. ZhangF. ZanellaM. ParakW.J. Biological applications of gold nanoparticles.Chem. Soc. Rev.20083791896190810.1039/b712170a18762838
    [Google Scholar]
  20. DasM. ShimK.H. AnS.S.A. YiD.K. Review on gold nanoparticles and their applications.Toxicol. Environ. Health Sci.20113419320510.1007/s13530‑011‑0109‑y
    [Google Scholar]
  21. DykmanL. KhlebtsovN. Gold nanoparticles in biomedical applications: Recent advances and perspectives.Chem. Soc. Rev.20124162256228210.1039/C1CS15166E22130549
    [Google Scholar]
  22. Zadeh MehriziT. Shafiee ArdestaniM. Application of non-metal nanoparticles, as a novel approach, for improving the stability of blood products: 2011–2021.Prog. Biomater.202211213716110.1007/s40204‑022‑00188‑535536502
    [Google Scholar]
  23. JayeoyeT.J. EzeF.N. SinghS. OlatundeO.O. BenjakulS. RujiralaiT. Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications.Int. J. Biol. Macromol.202117919620510.1016/j.ijbiomac.2021.02.19933675826
    [Google Scholar]
  24. JayeoyeT.J. NwudeE.F. SinghS. PrajapatiB.G. KapoorD.U. MuangsinN. Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: A review.Bionanoscience202410.1007/s12668‑024‑01436‑7
    [Google Scholar]
  25. GiljohannD.A. SeferosD.S. DanielW.L. MassichM.D. PatelP.C. MirkinC.A. Gold nanoparticles for biology and medicine.Angew. Chem. Int. Ed.201049193280329410.1002/anie.20090435920401880
    [Google Scholar]
  26. MehriziT.Z. ArdestaniM.S. Molla HoseiniM.H. KhamesipourA. MosaffaN. RamezaniA. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major.Nanomedicine (Lond.)201813243129314710.2217/nnm‑2018‑006330463469
    [Google Scholar]
  27. MehriziT.Z. ArdestaniM.S. KhamesipourA. HoseiniM.H.M. MosaffaN. AnissianA. RamezaniA. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major.J. Mater. Sci. Mater. Med.201829812510.1007/s10856‑018‑6122‑930056571
    [Google Scholar]
  28. SodduL. TrinhD.N. DunneE. KennyD. BernardiniG. KokalariI. MaruccoA. MonopoliM.P. FenoglioI. Identification of physicochemical properties that modulate nanoparticle aggregation in blood.Beilstein J. Nanotechnol.202011155056710.3762/bjnano.11.4432280579
    [Google Scholar]
  29. Zadeh MehriziT. Shafiee ArdestaniM. Haji Molla HoseiniM. KhamesipourA. MosaffaN. RamezaniA. Novel nanosized chitosan-betulinic acid against resistant leishmania major and first clinical observation of such parasite in kidney.Sci. Rep.2018811175910.1038/s41598‑018‑30103‑730082741
    [Google Scholar]
  30. MehriziT.Z. RezayatS.M. ArdestaniM.S. ShahmabadiH.E. RamezaniA. A Review Study about the Effect of Chitosan Nanocarrier on Improving the Efficacy of Amphotericin B in the Treatment of Leishmania from 2010 to 2020.Curr. Drug Deliv.20211891234124310.2174/156720181866621031611194133726648
    [Google Scholar]
  31. BelousovA. MalygonE. YavorskiyV. BelousovaE. Application of nanotechnology for the preservation of red blood cells.J. Adv. Nanotechnol.201811183110.14302/issn.2689‑2855.jan‑18‑2342
    [Google Scholar]
  32. MehriziT.Z. Hemocompatibility and hemolytic effects of functionalized nanoparticles on red blood cells: A recent review study.Nano2021168213000710.1142/S1793292021300073
    [Google Scholar]
  33. LopesL.C. LimaD. Mendes HackeA.C. SchveigertB.S. CalaçaG.N. SimasF.F. PereiraR.P. IacominiM. VianaA.G. PessôaC.A. Gold nanoparticles capped with polysaccharides extracted from pineapple gum: Evaluation of their hemocompatibility and electrochemical sensing properties.Talanta2021223Pt 112163410.1016/j.talanta.2020.12163433303133
    [Google Scholar]
  34. AsharaniP.V. SethuS. VadukumpullyS. ZhongS. LimC.T. HandeM.P. ValiyaveettilS. Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles.Adv. Funct. Mater.20102081233124210.1002/adfm.200901846
    [Google Scholar]
  35. BeurtonJ. LavalleP. PallottaA. ChaigneauT. ClarotI. BoudierA. Design of surface ligands for blood compatible gold nanoparticles: Effect of charge and binding energy.Int. J. Pharm.202058011924410.1016/j.ijpharm.2020.11924432201250
    [Google Scholar]
  36. ShahN.B. BischofJ.C. Blood protein and blood cell interactions with gold nanoparticles: The need for in vivo studies.BioNanoMaterials2013141-2657910.1515/bnm‑2012‑0003
    [Google Scholar]
  37. MehriziT.Z. MirzaeiM. ArdestaniM.S. Pegylation, a successful strategy to address the storage and instability problems of blood products: Review 2011-2021.Curr. Pharm. Biotechnol.202337218184
    [Google Scholar]
  38. ZhaoX. LuD. LiuQ.S. LiY. FengR. HaoF. QuG. ZhouQ. JiangG. Hematological effects of gold nanorods on erythrocytes: Hemolysis and hemoglobin conformational and functional changes.Adv. Sci. (Weinh.)2017412170029610.1002/advs.20170029629270341
    [Google Scholar]
  39. KumarS. JhaI. MoghaN.K. VenkatesuP. Biocompatibility of surface-modified gold nanoparticles towards red blood cells and haemoglobin.Appl. Surf. Sci.202051214557310.1016/j.apsusc.2020.145573
    [Google Scholar]
  40. LauI.P. ChenH. WangJ. OngH.C. LeungK.C.F. HoH.P. KongS.K. In vitro effect of CTAB- and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes.Nanotoxicology20126884785610.3109/17435390.2011.62513222022996
    [Google Scholar]
  41. HeZ LiC ZhangX ZhongR WangH LiuJ DuL The effects of gold nanoparticles on the human blood functions.Artif Cells Nanomed Biotechnol.201846sup272072610.1080/21691401.2018.1468769
    [Google Scholar]
  42. HeZ. LiuJ. DuL. The unexpected effect of PEGylated gold nanoparticles on the primary function of erythrocytes.Nanoscale20146159017902410.1039/C4NR01857E24970029
    [Google Scholar]
  43. AseichevA.V. AzizovaO.A. BeckmanE.M. SkotnikovaO.I. DudnikL.B. ShcheglovitovaO.N. SergienkoV.I. Effects of gold nanoparticles on erythrocyte hemolysis.Bull. Exp. Biol. Med.2014156449549810.1007/s10517‑014‑2383‑624771436
    [Google Scholar]
  44. PurohitR. VallabaniN.V.S. ShuklaR.K. KumarA. SinghS. Effect of gold nanoparticle size and surface coating on human red blood cells.Bioinspired, Biomimetic Nanobiomater.20165312113110.1680/jbibn.15.00018
    [Google Scholar]
  45. SharmaS. SharmaP. TylerL.N. Transfusion of blood and blood products: Indications and complications.Am. Fam. Physician201183671972421404983
    [Google Scholar]
  46. KorD.J. GajicO. Blood product transfusion in the critical care setting.Curr. Opin. Crit. Care201016430931610.1097/MCC.0b013e32833bc4a420543684
    [Google Scholar]
  47. MehriziT.Z. An overview of the latest applications of platelet-derived microparticles and nanoparticles in medical technology 2010-2020.Curr. Mol. Med.202222652453910.2174/156652402166621092815201534602037
    [Google Scholar]
  48. Zadeh MehriziT. EshghiP. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020.Int. Nano Lett.2021202112
    [Google Scholar]
  49. MehriziT.Z. KafiabadS.A. EshghiP. Effects and treatment applications of polymeric nanoparticles on improving platelets’ storage time: A review of the literature from 2010 to 2020.Blood Res.202156421522810.5045/br.2021.202109434880140
    [Google Scholar]
  50. Zadeh MehriziT. Shafiee ArdestaniM. KafiabadS. A Review Study of Dendrimer Nanoparticles Influences on Stored Platelet in Order to Treat Patients (2001-2020).Curr. Nanosci.2021202117
    [Google Scholar]
  51. Zadeh MehriziT. Amini KafiabadS. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: A review.J. Pharm. Pharmacol.202274217919010.1093/jpp/rgab08934244798
    [Google Scholar]
  52. DebS. PatraH.K. LahiriP. DasguptaA.K. ChakrabartiK. ChaudhuriU. Multistability in platelets and their response to gold nanoparticles.Nanomedicine20117437638410.1016/j.nano.2011.01.00721310267
    [Google Scholar]
  53. MontagueS.J. PatelP. MartinE.M. SlaterA. QuintanillaL.G. PerrellaG. KardebyC. NagyM. MezzanoD. MendesP.M. WatsonS.P. Platelet activation by charged ligands and nanoparticles: Platelet glycoprotein receptors as pattern recognition receptors.Platelets20213281018103010.1080/09537104.2021.194557134266346
    [Google Scholar]
  54. AseychevA.V. AzizovaO.A. BeckmanE.M. DudnikL.B. SergienkoV.I. Effect of gold nanoparticles coated with plasma components on ADP-induced platelet aggregation.Bull. Exp. Biol. Med.2013155568568810.1007/s10517‑013‑2226‑x24288740
    [Google Scholar]
  55. AjdariN. VyasC. BoganS.L. LwaleedB.A. CousinsB.G. Gold nanoparticle interactions in human blood: A model evaluation.Nanomedicine20171341531154210.1016/j.nano.2017.01.01928238752
    [Google Scholar]
  56. EncisoA. NeunB. RodriguezJ. RanjanA. DobrovolskaiaM. SimanekE. Nanoparticle effects on human platelets in vitro: A comparison between PAMAM and triazine dendrimers.Molecules201621442810.3390/molecules2104042827043508
    [Google Scholar]
  57. McGuinnesC. DuffinR. BrownS. L MillsN. MegsonI.L. MacneeW. JohnstonS. LuS.L. TranL. LiR. WangX. NewbyD.E. DonaldsonK. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro.Toxicol. Sci.2011119235936810.1093/toxsci/kfq34921123846
    [Google Scholar]
  58. LoveS.A. ThompsonJ.W. HaynesC.L. Development of screening assays for nanoparticle toxicity assessment in human blood: Preliminary studies with charged Au nanoparticles.Nanomedicine (Lond.)2012791355136410.2217/nnm.12.1722583573
    [Google Scholar]
  59. DobrovolskaiaM.A. PatriA.K. ZhengJ. ClogstonJ.D. AyubN. AggarwalP. NeunB.W. HallJ.B. McNeilS.E. Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles.Nanomedicine20095210611710.1016/j.nano.2008.08.00119071065
    [Google Scholar]
  60. MaryczK. KolankowskiJ. GrzesiakJ. HecoldM. RacO. TeteryczH. Application of gold nanoparticles of different concentrations to improve the therapeutic potential of autologous conditioned serum: Potential implications for equine regenerative medicine.J. Nanomater.201520151910.1155/2015/521207
    [Google Scholar]
  61. HanteN.K. MedinaC. Santos-MartinezM.J. Effect on platelet function of metal-based nanoparticles developed for medical applications.Front. Cardiovasc. Med.2019613910.3389/fcvm.2019.0013931620449
    [Google Scholar]
  62. Santos-MartinezM.J. RahmeK. CorbalanJ.J. FaulknerC. HolmesJ.D. TajberL. MedinaC. RadomskiM.W. Pegylation increases platelet biocompatibility of gold nanoparticles.J. Biomed. Nanotechnol.20141061004101510.1166/jbn.2014.181324749395
    [Google Scholar]
  63. YouJ. ZhouJ. ZhouM. LiuY. RobertsonJ.D. LiangD. Van PeltC. LiC. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres.Part. Fibre Toxicol.20141112610.1186/1743‑8977‑11‑2624886070
    [Google Scholar]
  64. HecoldM. BuczkowskaR. MuchaA. GrzesiakJ. Rac-RumijowskaO. TeteryczH. MaryczK. The Effect of PEI and PVP-Stabilized Gold Nanoparticles on Equine Platelets Activation: Potential Application in Equine Regenerative Medicine.J. Nanomater.201720178706921
    [Google Scholar]
  65. AlbaneseA. TangP.S. ChanW.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu. Rev. Biomed. Eng.201214111610.1146/annurev‑bioeng‑071811‑15012422524388
    [Google Scholar]
  66. EhmannH.M.A. BreitwieserD. WinterS. GspanC. KoraimannG. MaverU. SegaM. KöstlerS. Stana-KleinschekK. SpirkS. RibitschV. Gold nanoparticles in the engineering of antibacterial and anticoagulant surfaces.Carbohydr. Polym.2015117344210.1016/j.carbpol.2014.08.11625498606
    [Google Scholar]
  67. TianY. ZhaoY. ZhengW. ZhangW. JiangX. Antithrombotic functions of small molecule-capped gold nanoparticles.Nanoscale20146158543855010.1039/C4NR01937G24965704
    [Google Scholar]
  68. DebS. RajaS.O. DasguptaA.K. SarkarR. ChattopadhyayA.P. ChaudhuriU. GuhaP. SardarP. Surface tunability of nanoparticles in modulating platelet functions.Blood Cells Mol. Dis.2012481364410.1016/j.bcmd.2011.09.01122033068
    [Google Scholar]
  69. KrystofiakES Fibrinogen-Conjugated Gold-coated Magnetite Nanoparticles for Antiplatelet Therapy.University of Wisconsin-Milwaukee2013
    [Google Scholar]
  70. LeeS.B. JiH.D. LeeI.K. KimK.S. LeeJ. LeeS.W. JeonY.H. Visualization of platelet recruitment to tumor lesions using highly sensitive and stable radioiodine studded gold nanoprobes.J. Mater. Chem. B Mater. Biol. Med.20219122931293610.1039/D0TB02265A33885648
    [Google Scholar]
  71. BurnoufT. An overview of plasma fractionation.Ann. Blood201833310.21037/aob.2018.05.03
    [Google Scholar]
  72. HessJ.R. Conventional blood banking and blood component storage regulation: Opportunities for improvement.Blood Transfus.20108Suppl 3Suppl. 3s9s1520606757
    [Google Scholar]
  73. PintoJ. DominguesM.R.M. GalhanoE. PitaC. AlmeidaM.C. CarreiraI.M. GilA.M. Human plasma stability during handling and storage: Impact on NMR metabolomics.Analyst (Lond.)201413951168117710.1039/C3AN02188B24443722
    [Google Scholar]
  74. Zadeh MehriziT. Mousavi HosseiniK. An overview on the investigation of nanomaterials’ effect on plasma components: Immunoglobulins and coagulation factor VIII, 2010–2020 review.Nanoscale Adv.20213133730374510.1039/D1NA00119A36133015
    [Google Scholar]
  75. HeX.M. CarterD.C. Atomic structure and chemistry of human serum albumin.Nature1992358638320921510.1038/358209a01630489
    [Google Scholar]
  76. FarrugiaA. Albumin usage in clinical medicine: Tradition or therapeutic?Transfus. Med. Rev.2010241536310.1016/j.tmrv.2009.09.00519962575
    [Google Scholar]
  77. SenT. MandalS. HaldarS. ChattopadhyayK. PatraA. Interaction of gold nanoparticle with human serum albumin (HSA) protein using surface energy transfer.J. Phys. Chem. C201111549240372404410.1021/jp207374g
    [Google Scholar]
  78. Zadeh MehriziT. Shafiee ArdestaniM. MirzaeiM. JavanmardA. A review study on the application of polymeric-based nanoparticles as a novel approach for enhancing the stability of albumins.Nanomed. J.202294261272
    [Google Scholar]
  79. MehriziT.Z. Impact of Metallic, Quantum Dots and Carbon-Based Nanoparticles on Quality and Storage of Albumin Products for Clinical Use.Nano20211614213001310.1142/S1793292021300139
    [Google Scholar]
  80. CapomaccioR OsórioI Ojea-JiménezI CecconeG ColpoP GillilandD Gold nanoparticles increases UV and thermal stability of human serum albumin.Biointerphases201611404B31010.1116/1.4972113
    [Google Scholar]
  81. CalzolaiL. LaeraS. CecconeG. GillilandD. HussainR. SiligardiG. RossiF. Gold nanoparticles’ blocking effect on UV-induced damage to human serum albumin.J. Nanopart. Res.2013151141210.1007/s11051‑012‑1412‑5
    [Google Scholar]
  82. LaeraS. CecconeG. RossiF. GillilandD. HussainR. SiligardiG. CalzolaiL. Measuring protein structure and stability of protein-nanoparticle systems with synchrotron radiation circular dichroism.Nano Lett.201111104480448410.1021/nl202909s21932791
    [Google Scholar]
  83. DasS. PurkayasthaP. Gold Nanocluster Protection of Protein from UVC Radiation: A Model Study on Bovine Serum Albumin.ACS Omega2017262451245810.1021/acsomega.7b0030231457592
    [Google Scholar]
  84. ShaoQ. HallC.K. Allosteric effects of gold nanoparticles on human serum albumin.Nanoscale20179138039010.1039/C6NR07665C27924337
    [Google Scholar]
  85. MajiA. BegM. DasS. SahooN.K. JhaP.K. IslamM.M. HossainM. Binding interaction study on human serum albumin with bactericidal gold nanoparticles synthesized from a leaf extract of Musa balbisiana: A multispectroscopic approach.Luminescence201934656357510.1002/bio.363931044511
    [Google Scholar]
  86. AlexS.A. ChakrabortyD. ChandrasekaranN. MukherjeeA. A comprehensive investigation of the differential interaction of human serum albumin with gold nanoparticles based on the variation in morphology and surface functionalization.RSC Advances2016658526835269410.1039/C6RA10506H
    [Google Scholar]
  87. StrengersPF Evidence-based clinical indications of plasma products and future prospects.Ann. Blood20172493010.21037/aob.2017.12.03
    [Google Scholar]
  88. VaillantA.A.J. JamalZ. RamphulK. Immunoglobulin. StatPearls.Treasure Island (FL)StatPearls Publishing2021
    [Google Scholar]
  89. Ortiz-DosalA Loredo-GarcíaE Álvarez-ContrerasAG Núñez-LeyvaJM Ortiz-DosalLC Kolosovas-MachucaES Determination of the Immunoglobulin G Spectrum by Surface-Enhanced Raman Spectroscopy Using Quasispherical Gold Nanoparticles.J. Nanomater.202120218874193
    [Google Scholar]
  90. DykmanL.A. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases.Expert Rev. Vaccines202019546547710.1080/14760584.2020.175807032306785
    [Google Scholar]
  91. WangY.C. LuL. GunasekaranS. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage.Mikrochim. Acta20151827-81305131110.1007/s00604‑015‑1451‑6
    [Google Scholar]
  92. SotnikovD.V. SafenkovaI.V. ZherdevA.V. AvdienkoV.G. KozlovaI.V. BabayanS.S. GergertV.Y. DzantievB.B. A mechanism of gold nanoparticle aggregation by immunoglobulin G preparation.Appl. Sci. (Basel)202010247510.3390/app10020475
    [Google Scholar]
  93. BuschR.T. KarimF. WeisJ. SunY. ZhaoC. VasquezE.S. Optimization and structural stability of gold nanoparticle–antibody bioconjugates.ACS Omega2019412152691527910.1021/acsomega.9b0227631552374
    [Google Scholar]
  94. GouwS.C. van der BomJ.G. LjungR. EscuriolaC. CidA.R. Claeyssens-DonadelS. van GeetC. KenetG. MäkipernaaA. MolinariA.C. MunteanW. KobeltR. RivardG. SantagostinoE. ThomasA. van den BergH.M. Factor VIII products and inhibitor development in severe hemophilia A.N. Engl. J. Med.2013368323123910.1056/NEJMoa120802423323899
    [Google Scholar]
  95. WangW. WangY.J. KelnerD.N. Coagulation factor VIII: Structure and stability.Int. J. Pharm.20032591-211510.1016/S0378‑5173(03)00227‑812787631
    [Google Scholar]
  96. ChandrawatiR. StevensM.M. Controlled assembly of peptide-functionalized gold nanoparticles for label-free detection of blood coagulation Factor XIII activity.Chem. Commun. (Camb.)201450415431543410.1039/c4cc00572d24618788
    [Google Scholar]
  97. SharafiZ. RanjbariJ. JavidiJ. Nafissi-VarchehN. TabarzadM. Direct immobilization of coagulation factor VIII on Au/Fe3O4 shell/core magnetic nanoparticles for analytical application.Trends in Peptide and Protein Sciences.2016112026
    [Google Scholar]
  98. ZarabiM.F. FarhangiA. MazdehS.K. AnsarianZ. ZareD. MehrabiM.R. AkbarzadehA. Synthesis of gold nanoparticles coated with aspartic acid and their conjugation with FVIII protein and FVIII antibody.Indian J. Clin. Biochem.201429215416010.1007/s12291‑013‑0323‑224757296
    [Google Scholar]
  99. EghtedariM. LiopoA.V. CoplandJ.A. OraevskyA.A. MotamediM. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells.Nano Lett.20099128729110.1021/nl802915q19072129
    [Google Scholar]
  100. DobrovolskaiaM.A. AggarwalP. HallJ.B. McNeilS.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.Mol. Pharm.20085448749510.1021/mp800032f18510338
    [Google Scholar]
  101. ChenY.S. HungY.C. LiauI. HuangG.S. Assessment of the In Vivo Toxicity of Gold Nanoparticles.Nanoscale Res. Lett.20094885886410.1007/s11671‑009‑9334‑620596373
    [Google Scholar]
  102. ChoW.S. ChoM. JeongJ. ChoiM. ChoH.Y. HanB.S. KimS.H. KimH.O. LimY.T. ChungB.H. JeongJ. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles.Toxicol. Appl. Pharmacol.20092361162410.1016/j.taap.2008.12.02319162059
    [Google Scholar]
  103. HillyerJ.F. AlbrechtR.M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles.J. Pharm. Sci.200190121927193610.1002/jps.114311745751
    [Google Scholar]
  104. De JongW.H. HagensW.I. KrystekP. BurgerM.C. SipsA.J.A.M. GeertsmaR.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.Biomaterials200829121912191910.1016/j.biomaterials.2007.12.03718242692
    [Google Scholar]
  105. von MaltzahnG. ParkJ.H. AgrawalA. BandaruN.K. DasS.K. SailorM.J. BhatiaS.N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas.Cancer Res.20096993892390010.1158/0008‑5472.CAN‑08‑424219366797
    [Google Scholar]
  106. ConnorE.E. MwamukaJ. GoleA. MurphyC.J. WyattM.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity.Small20051332532710.1002/smll.20040009317193451
    [Google Scholar]
  107. ShuklaR. BansalV. ChaudharyM. BasuA. BhondeR.R. SastryM. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview.Langmuir20052123106441065410.1021/la051371216262332
    [Google Scholar]
  108. VilliersC.L. FreitasH. CoudercR. VilliersM.B. MarcheP.N. Analysis of the toxicity of gold nano particles on the immune system: Effect on dendritic cell functions.J. Nanopart. Res.2010121556010.1007/s11051‑009‑9692‑021841911
    [Google Scholar]
  109. GoodmanC.M. McCuskerC.D. YilmazT. RotelloV.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains.Bioconjug. Chem.200415489790010.1021/bc049951i15264879
    [Google Scholar]
  110. PanY. LeifertA. RuauD. NeussS. BornemannJ. SchmidG. BrandauW. SimonU. Jahnen-DechentW. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage.Small20095182067207610.1002/smll.20090046619642089
    [Google Scholar]
  111. TurnerM. GolovkoV.B. VaughanO.P.H. AbdulkinP. Berenguer-MurciaA. TikhovM.S. JohnsonB.F.G. LambertR.M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters.Nature2008454720798198310.1038/nature0719418719586
    [Google Scholar]
  112. PatraH.K. BanerjeeS. ChaudhuriU. LahiriP. DasguptaA.K. Cell selective response to gold nanoparticles.Nanomedicine20073211111910.1016/j.nano.2007.03.00517572353
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018316266240909075316
Loading
/content/journals/cdd/10.2174/0115672018316266240909075316
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): albumin; blood products; Gold nanoparticles; immunoglobulin; RBC; virus detection
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test