Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Psoriasis is a chronic inflammatory skin disorder that poses significant challenges regarding effective and targeted drug delivery. Bioactive substances like betulin have shown tremendous utility in treating these conditions; however, they pose limited utility owing to their physicochemical characteristics. Here, we aimed to develop a novel topical dosage form for treating psoriasis, utilising betulin-loaded Nanostructured lipid carriers (NLCs) incorporated into a hydrogel matrix.

Methods

The optimization of the formulation was meticulously conducted using a design expert-13 software, and its diverse physicochemical attributes were thoroughly examined. Evaluating betulin's release pattern from the NLC-hydrogel demonstrated consistent and regulated drug release properties. Additionally, the formulation demonstrated improved skin penetration abilities as determined by skin permeation experiments employing Franz diffusion cells—furthermore, the therapeutic effectiveness of the betulin-NLC-hydrogel was assessed by an experiment carried out using an imiquimod-induced psoriasis-like skin inflammation model in BALB/c female mice.

Results

The NLCs exhibited a pH of 5.67±0.86, particle size of 148.16±12.66 nm, and zeta potential of -22.84±2.37 mV, ensuring stability and suitability for topical use. The gel, with a pH of 6.05±0.43 and viscosity of 17550±120 cPs, showed enhanced skin hydration and lipid restoration. Drug release studies indicated a slower release from NLCs and gel, improving skin retention. Stability tests revealed that the formulations were stable at room temperature but not at elevated temperatures. The safety profile of the formulation revealed no significant adverse effects on HaCaT cell lines. The NLC gel demonstrated significant anti-psoriatic activity, reducing inflammation and cytokine levels.

Conclusion

The betulin-NLC-hydrogel formulation exhibited promising characteristics for the topical treatment of psoriasis, showcasing optimised drug delivery, sustained release, and notable therapeutic efficacy. The findings from this study provide a foundation for the potential clinical translation of this innovative topical dosage form for improved psoriasis management.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018329544240922151617
2025-06-01
2025-10-09
Loading full text...

Full text loading...

References

  1. Anonymous IFPA applauds WHO report on psoriasis and WHO EB adoption of resolution.2013Available from: https://mb.cision.com/Main/3458/9435752/138156.pdf
    [Google Scholar]
  2. Anonymous IFPA welcomes WHO member state efforts to raise awareness for psoriasis.2013
    [Google Scholar]
  3. AnonymousI.F.P.A. IPC and ILDS form partnership to develop Global Psoriasis Atlas.2014Available from: https://mb.cision.com/Main/3458/9569312/233426.pdf
    [Google Scholar]
  4. ZhaoY. SunJ. DouW. HuJ-H. Curcumin inhibits proliferation of interleukin-22-treated HaCaT cells.Int. J. Clin. Exp. Med.20158695809584 26309628
    [Google Scholar]
  5. PoligoneB. GhoshS. Method of preventing development of psoriatic lesions.Patent WO20121546842014
  6. RaiV.K. SharmaA. UpadhyayD.K. GuptaG.D. NarangR.K. IL-23/Th17 axis: A potential therapeutic target of psoriasis.Curr. Drug Res. Rev.2022141243610.2174/2589977513666210707114520 34238181
    [Google Scholar]
  7. WangH. SyrovetsT. KessD. BücheleB. HainzlH. LunovO. WeissJ.M. Scharffetter-KochanekK. SimmetT. Targeting NF-kappa B with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis.J. Immunol.200918374755476310.4049/jimmunol.0900521 19752240
    [Google Scholar]
  8. SunJ. ZhaoY. HuJ. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice.PLoS One201386e6707810.1371/journal.pone.0067078 23825622
    [Google Scholar]
  9. LauroF. GiancottiL.A. IlariS. DagostinoC. GliozziM. MorabitoC. MalafogliaV. RaffaeliW. MuracaM. GoffredoB.M. MollaceV. MuscoliC. Inhibition of spinal oxidative stress by bergamot polyphenolic fraction attenuates the development of morphine induced tolerance and hyperalgesia in mice.PLoS One2016115e015603910.1371/journal.pone.0156039 27227548
    [Google Scholar]
  10. CeliaC. TrapassoE. LocatelliM. NavarraM. VenturaC.A. WolframJ. CarafaM. MorittuV.M. BrittiD. Di MarzioL. PaolinoD. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.Colloids Surf. B Biointerfaces201311254855310.1016/j.colsurfb.2013.09.017 24099646
    [Google Scholar]
  11. WeiA. ShibamotoT. Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils.J. Agric. Food Chem.201058127218722510.1021/jf101077s 20499917
    [Google Scholar]
  12. CaceresA.I. LiuB. JabbaS.V. AchantaS. MorrisJ.B. JordtS.E. Transient receptor potential cation channel subfamily M member 8 channels mediate the anti‐inflammatory effects of eucalyptol.Br. J. Pharmacol.2017174986787910.1111/bph.13760 28240768
    [Google Scholar]
  13. GbenouJ.D. AhounouJ.F. AkakpoH.B. LaleyeA. YayiE. GbaguidiF. Baba-MoussaL. DarbouxR. DansouP. MoudachirouM. KotchoniS.O. Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats.Mol. Biol. Rep.20134021127113410.1007/s11033‑012‑2155‑1 23065287
    [Google Scholar]
  14. BiswasroyP. PradhanD. HaldarJ. KarB. GhoshG. RathG. Recent advancements in herbal bioactive-based nanoformulations for the treatment of psoriasis.Curr. Bioact. Compd.202218
    [Google Scholar]
  15. BiswasroyP. PradhanD. SahuD.K. RaiV. HalderJ. RajwarT.K. BholaR.K. KarB. GhoshG. RathG. Phytochemical investigation, structural elucidation, in silico study and anti-psoriatic activity of potent bioactive from Betula utilis.J. Biomol. Struct. Dyn.202341178093810810.1080/07391102.2022.2130981 36214696
    [Google Scholar]
  16. DubininM.V. SemenovaA.A. IlzorkinaA.I. MarkelovaN.Y. PenkovN.V. ShakurovaE.R. BelosludtsevK.N. ParfenovaL.V. New quaternized pyridinium derivatives of betulin: Synthesis and evaluation of membranotropic properties on liposomes, pro- and eukaryotic cells, and isolated mitochondria.Chem. Biol. Interact.202134910967810.1016/j.cbi.2021.109678 34600868
    [Google Scholar]
  17. MorganM.T. NakanishiY. KrollD.J. GrisetA.P. CarnahanM.A. WathierM. OberliesN.H. ManikumarG. WaniM.C. GrinstaffM.W. Dendrimer-encapsulated camptothecins: Increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro.Cancer Res.20066624119131192110.1158/0008‑5472.CAN‑06‑2066 17178889
    [Google Scholar]
  18. YousafA.M. KimD.W. OhY.K. YongC.S. KimJ.O. ChoiH.G. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: Physicochemical characterization and in vivo investigation.Int. J. Nanomedicine20151018191830 25784807
    [Google Scholar]
  19. Vázquez-GonzálezM.L. CalpenaA.C. DomènechÒ. MonteroM.T. BorrellJ.H. Enhanced topical delivery of hyaluronic acid encapsulated in liposomes: A surface-dependent phenomenon.Colloids Surf. B Biointerfaces2015134313910.1016/j.colsurfb.2015.06.029 26142626
    [Google Scholar]
  20. GuanY. ZuoT. ChangM. ZhangF. WeiT. ShaoW. LinG. Propranolol hydrochloride-loaded liposomal gel for transdermal delivery: Characterization and in vivo evaluation.Int. J. Pharm.20154871-213514110.1016/j.ijpharm.2015.04.023 25882014
    [Google Scholar]
  21. BijuS.S. AhujaA. KharR.K. Tea tree oil concentration in follicular casts after topical delivery: Determination by high-performance thin layer chromatography using a perfused bovine udder model.J. Pharm. Sci.200594224024510.1002/jps.20250 15570606
    [Google Scholar]
  22. AnwerM.K. JamilS. IbnoufE.O. ShakeelF. Enhanced antibacterial effects of clove essential oil by nanoemulsion.J. Oleo Sci.201463434735410.5650/jos.ess13213 24599109
    [Google Scholar]
  23. SeverinoR. VuK.D. DonsìF. SalmieriS. FerrariG. LacroixM. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans.Int. J. Food Microbiol.2014191828810.1016/j.ijfoodmicro.2014.09.007 25255308
    [Google Scholar]
  24. KumariR. HalderJ. SharmaA. RaiV.K. Recent advancement in topical drug delivery for psoriasis: Clinical pertinence and potential market.Curr. Drug Targets202122131507152310.2174/1389450122666210412124256 33845737
    [Google Scholar]
  25. MishraN. RaiV.K. YadavK.S. SinhaP. KanaujiaA. ChandaD. Encapsulation of mentha oil in chitosan polymer matrix alleviates skin irritation.AAPS PharmSciTech2016172462492 26248538
    [Google Scholar]
  26. GhalandarlakiN. AlizadehA.M. Nanotechnology-applied curcumin for different diseases therapy.BioMed Res. Int.2014201439426410.1155/2014/394264
    [Google Scholar]
  27. HussainA. SamadA. SinghS.K. AhsanM.N. HaqueM.W. FarukA. Nanoemulsion gel-based topical delivery of an antifungal drug: In vitro activity and in vivo evaluation.Drug Deliv.2016232642647 25013957
    [Google Scholar]
  28. AhmadM.Z. AhmadJ. AlasmaryM.Y. AkhterS. AslamM. PathakK. JamilP. AbdullahM.M. Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application.J. Drug Deliv. Sci. Technol.20227210342010.1016/j.jddst.2022.103420
    [Google Scholar]
  29. SandhuP.S. BegS. KatareO.P. SinghB. QbD-driven development and validation of a HPLC method for estimation of tamoxifen citrate with improved performance.J. Chromatogr. Sci.20165481373138410.1093/chromsci/bmw090 27226463
    [Google Scholar]
  30. RaviP.R. VatsR. DalalV. GadekarN.N.A. Design, optimization and evaluation of poly- ɛ -caprolactone (PCL) based polymeric nanoparticles for oral delivery of lopinavir.Drug Dev. Ind. Pharm.201541113114010.3109/03639045.2013.850710 24180260
    [Google Scholar]
  31. ChaudharyH. KohliK. AminS. RatheeP. KumarV. Optimization and formulation design of gels of Diclofenac and Curcumin for transdermal drug delivery by Box-Behnken statistical design.J. Pharm. Sci.2011100258059310.1002/jps.22292 20669331
    [Google Scholar]
  32. RaiV.K. YadavN.P. SinhaP. MishraN. LuqmanS. DwivediH. KymonilK.M. SarafS.A. Development of cellulosic polymer based gel of novel ternary mixture of miconazole nitrate for buccal delivery.Carbohydr. Polym.201410312613310.1016/j.carbpol.2013.12.019 24528709
    [Google Scholar]
  33. AljuffaliI.A. SungC.T. ShenF.M. HuangC.T. FangJ.Y. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.AAPS J.201416114015010.1208/s12248‑013‑9550‑y 24307611
    [Google Scholar]
  34. SharmaA. MehtaV. ParasharA. PatrwalR. MalairamanU. Solid lipid nanoparticle: Fabricated through nanoprecipitation and their physicochemical characterization.Int. J. Pharm. Pharm. Sci.201681014414810.22159/ijpps.2016v8i10.13207
    [Google Scholar]
  35. SinhaP. SrivastavaN. RaiV.K. MishraR. AjayakumarP.V. YadavN.P. A novel approach for dermal controlled release of salicylic acid for improved anti-inflammatory action: Combination of hydrophilic-lipophilic balance and response surface methodology.J. Drug Deliv. Sci. Technol.20195287088410.1016/j.jddst.2019.06.007
    [Google Scholar]
  36. MishraN. YadavK.S. RaiV.K. YadavN.P. Polysaccharide encrusted multilayered nano-colloidal system of andrographolide for improved hepatoprotection.AAPS PharmSciTech201718238139210.1208/s12249‑016‑0512‑4 27007741
    [Google Scholar]
  37. SrivastavaN. PatelD.K. RaiV.K. PalA. YadavN.P. Development of emulgel formulation for vaginal candidiasis: Pharmaceutical characterization, in vitro and in vivo evaluation.J. Drug Deliv. Sci. Technol.20184849049810.1016/j.jddst.2018.10.013
    [Google Scholar]
  38. NandaA. NandaS. NguyenT.A. RajendranS. SlimaniY. Nanocosmetics: Fundamentals.Applications and Toxicity2020
    [Google Scholar]
  39. YadavN.P. RaiV.K. MishraN. SinhaP. BawankuleD.U. PalA. TripathiA.K. ChanotiyaC.S. A novel approach for development and characterization of effective mosquito repellent cream formulation containing citronella oil.BioMed Res. Int.2014201411110.1155/2014/786084 25379509
    [Google Scholar]
  40. SahaI. PalakA. RaiV.K. Relevance of NLC-gel and microneedling-assisted tacrolimus ointment against severe psoriasiform: In vitro dermal retention kinetics, in vivo activity and drug distribution.J. Drug Deliv. Sci. Technol.20227110327210.1016/j.jddst.2022.103272
    [Google Scholar]
  41. AnsilP.N. WillsP.J. VarunR. LathaM.S. Cytotoxic and apoptotic activities of Amorphophallus campanulatus (Roxb.) Bl. tuber extracts against human colon carcinoma cell line HCT-15.Saudi J. Biol. Sci.201421652453110.1016/j.sjbs.2014.01.004 25473360
    [Google Scholar]
  42. BogaczA. MikołajczakP.Ł. WolekM. GórskaA. SzulcM. OżarowskiM. KujawskiR. CzernyB. WolskiH. KarpińskiT.M. Seremak-MrozikiewiczA. Combined Effects of Methyldopa and Flavonoids on the Expression of Selected Factors Related to Inflammatory Processes and Vascular Diseases in Human Placenta Cells—An In vitro Study.Molecules2021265125910.3390/molecules26051259 33652665
    [Google Scholar]
  43. van der FitsL. MouritsS. VoermanJ.S.A. KantM. BoonL. LamanJ.D. CornelissenF. MusA.M. FlorenciaE. PrensE.P. LubbertsE. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis.J. Immunol.200918295836584510.4049/jimmunol.0802999 19380832
    [Google Scholar]
  44. AkhtarN. KhanA.B. MuhammadS. AhmedM. KhanH.M. RasoolF. Formulation and characterization of a cream containing Terminalia chebula extract.Res Complement Med.2012191202510.1159/000335823
    [Google Scholar]
  45. IncecayirT. AgabeyogluI. DericiU. SindelS. Assessment of topical bioequivalence using dermal microdialysis and tape stripping methods.Pharm. Res.20112892165217510.1007/s11095‑011‑0444‑3 21499834
    [Google Scholar]
  46. SharmaA. UpadhyayD.K. SarmaG.S. KaurN. GuptaG.D. NarangR.K. RaiV.K. Squalene integrated NLC based gel of tamoxifen citrate for efficient treatment of psoriasis: A preclinical investigation.J. Drug Deliv. Sci. Technol.20205610156810.1016/j.jddst.2020.101568
    [Google Scholar]
  47. Na TakuathungM. WongnoppavichA. PanthongA. KhonsungP. ChiranthanutN. Antipsoriatic effects of wannachawee recipe on imiquimod-induced psoriasis-like dermatitis in BALB/c mice.Evid. Based Complement. Alternat. Med.201820187931031
    [Google Scholar]
  48. SchneiderM. StrackeF. HansenS. SchaeferU.F. Nanoparticles and their interactions with the dermal barrier.Dermatoendocrinol20091419720610.4161/derm.1.4.9501 20592791
    [Google Scholar]
  49. WeberS. ZimmerA. PardeikeJ. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art.Eur. J. Pharm. Biopharm.201486172210.1016/j.ejpb.2013.08.013 24007657
    [Google Scholar]
  50. AlexanderA. DwivediS. Ajazuddin; Giri, T.K.; Saraf, S.; Saraf, S.; Tripathi, D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery.J. Control. Release20121641264010.1016/j.jconrel.2012.09.017 23064010
    [Google Scholar]
  51. KraftJ.N. LyndeC.W. Moisturizers: What they are and a practical approach to product selection.Skin Therapy Lett.200510518 15986082
    [Google Scholar]
  52. PapakostasD. RancanF. SterryW. Blume-PeytaviU. VogtA. Nanoparticles in dermatology.Arch. Dermatol. Res.2011303853355010.1007/s00403‑011‑1163‑7 21837474
    [Google Scholar]
  53. KnaggsH.E. WoodE.J. RizerR.L. MillsO.H. Post‐adolescent acne.Int. J. Cosmet. Sci.200426312913810.1111/j.1467‑2494.2004.00210.x 18494869
    [Google Scholar]
  54. RaiV.K. ChandaD. ChanotiyaC.S. YadavN.P. A combination of linalool and linalyl acetate synergistically alleviates imiquimod-induced psoriasis-like skin inflammation in BALB/c mice.Front. Pharmacol.20221391317410.3389/fphar.2022.913174 35991888
    [Google Scholar]
  55. RaiV.K. SinhaP. YadavK.S. ShuklaA. SaxenaA. BawankuleD.U. TandonS. KhanF. ChanotiyaC.S. YadavN.P. Anti-psoriatic effect of Lavandula angustifolia essential oil and its major components linalool and linalyl acetate.J. Ethnopharmacol.202026111312710.1016/j.jep.2020.113127 32623016
    [Google Scholar]
  56. BehjatiS. FrankM. The effects of tamoxifen on immunity.Curr. Med. Chem.200916243076308010.2174/092986709788803042 19689284
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018329544240922151617
Loading
/content/journals/cdd/10.2174/0115672018329544240922151617
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): betulin; dermal; gel; inflammation; NLC; Psoriasis; topical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test