Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Exosomes have emerged as critical mediators of intercellular communication and various physiological processes between cells and their environment. These nano-sized vesicles have been extensively investigated and confirmed to exhibit multifunctionality in animal systems. In particular, they participate in intercellular signaling, influence disease progression, and exhibit biological activity. However, Plant-Derived Exosomes (PDEs), especially therapeutic PDEs, have received relatively limited attention in the past few decades. Recent studies have demonstrated that PDEs are involved in signaling molecule transport in addition to intercellular communication, as they serve as functional molecules in the cellular microenvironment. This characteristic highlights the immense potential of PDEs for a wide array of applications, including antioxidation, anti-inflammation, tumour cell elimination, immune modulation, and tissue regeneration. In addition, PDEs hold substantial promise as efficient drug carriers, enhancing the stability and bioavailability of therapeutic agents and consequently enabling targeted delivery to specific cells or tissues. Therefore, PDEs may serve as effective tools for drug delivery and the treatment of various diseases. This comprehensive review provides an overview of recent studies on therapeutic PDEs, focusing on their extraction, isolation, characterization methods, biological activities, and application prospects. It summarises the research progress of exosome-like nanovesicles derived from medicinal plants, with a specific emphasis on traditional Chinese medicine, and highlights their importance in disease treatment and nanoparticle delivery. The main objective is to accelerate the clinical translation of these nanovesicles while providing novel approaches and methodologies for the research and development of innovative drugs.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018305953240606063911
2025-06-01
2025-10-26
Loading full text...

Full text loading...

References

  1. RudraprasadD. RawatA. JosephJ. Exosomes, extracellular vesicles and the eye.Exp. Eye Res.202221410889210.1016/j.exer.2021.10889234896308
    [Google Scholar]
  2. van DommelenS.M. VaderP. LakhalS. KooijmansS.A.A. van SolingeW.W. WoodM.J.A. SchiffelersR.M. Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery.J. Control. Release2012161263564410.1016/j.jconrel.2011.11.02122138068
    [Google Scholar]
  3. KowalJ. TkachM. ThéryC. Biogenesis and secretion of exosomes.Curr. Opin. Cell Biol.20142911612510.1016/j.ceb.2014.05.00424959705
    [Google Scholar]
  4. CamussiG. DeregibusM.C. BrunoS. CantaluppiV. BianconeL. Exosomes/microvesicles as a mechanism of cell-to-cell communication.Kidney Int.201078983884810.1038/ki.2010.27820703216
    [Google Scholar]
  5. HardingC. HeuserJ. StahlP. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes.J. Cell Biol.198397232933910.1083/jcb.97.2.3296309857
    [Google Scholar]
  6. PanB.T. JohnstoneR.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor.Cell198333396797810.1016/0092‑8674(83)90040‑56307529
    [Google Scholar]
  7. JohnstoneR.M. AdamM. HammondJ.R. OrrL. TurbideC. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes).J. Biol. Chem.1987262199412942010.1016/S0021‑9258(18)48095‑73597417
    [Google Scholar]
  8. RegenteM. PinedoM. ElizaldeM. de la CanalL. Apoplastic exosome-like vesicles: A new way of protein secretion in plants?Plant Signal. Behav.20127554454610.4161/psb.1967522516827
    [Google Scholar]
  9. RegenteM. Corti-MonzónG. MaldonadoA.M. PinedoM. JorrínJ. de la CanalL. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins.FEBS Lett.2009583203363336610.1016/j.febslet.2009.09.04119796642
    [Google Scholar]
  10. ThéryC. AmigorenaS. RaposoG. Isolation and characterization of exosomes from cell culture supernatants and biological fluids.Curr Protoc Cell Biol.20063013.22.13.22.2910.1002/0471143030.cb0322s30
    [Google Scholar]
  11. GreeningD.W. XuR. JiH. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods.Methods Mol Biol.2015129517920910.1007/978‑1‑4939‑2550‑6_15
    [Google Scholar]
  12. HuG. LiQ. NiuX. HuB. LiuJ. ShenX. WangY. DengZ. Stirring ultrafiltration:a new method to isolate exosome.Acad. J. Second Mil. Med. Coll.201435659860210.3724/SP.J.1008.2014.00598
    [Google Scholar]
  13. YakimchukK. Exosomes: Isolation and characterization methods and specific markers.Mater Methods.201551450145310.13070/mm.en.5.1450
    [Google Scholar]
  14. TaylorD.D. ZachariasW. Gercel-TaylorC. Exosome isolation for proteomic analyses and RNA profiling.Methods Mol. Biol.201172823524610.1007/978‑1‑61779‑068‑3_1521468952
    [Google Scholar]
  15. WangY. TeraokaI. HansenF.Y. PetersG.H. HassagerO. A theoretical study of the separation principle in size exclusion chromatography.Macromolecules20104331651165910.1021/ma902377g
    [Google Scholar]
  16. LigaA. VliegenthartA.D.B. OosthuyzenW. DearJ.W. Kersaudy-KerhoasM. Exosome isolation: A microfluidic road-map.Lab Chip201515112388239410.1039/C5LC00240K25940789
    [Google Scholar]
  17. MahdipourE. Beta vulgaris juice contains biologically active exosome-like nanoparticles.Tissue Cell20227610180010.1016/j.tice.2022.10180035489194
    [Google Scholar]
  18. StanlyC. FiumeI. CapassoG. PocsfalviG. Isolation of exosome-like vesicles from plants by ultracentrifugation on sucrose/deuterium oxide (D2O) density cushions.Methods Mol. Biol.2016145925926910.1007/978‑1‑4939‑3804‑9_1827665565
    [Google Scholar]
  19. ViaudS. TermeM. FlamentC. TaiebJ. AndréF. NovaultS. EscudierB. RobertC. Caillat-ZucmanS. TurszT. ZitvogelL. ChaputN. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: A role for NKG2D ligands and IL-15Ralpha.PLoS One200943e494210.1371/journal.pone.000494219319200
    [Google Scholar]
  20. ZhangM. ViennoisE. PrasadM. ZhangY. WangL. ZhangZ. HanM.K. XiaoB. XuC. SrinivasanS. MerlinD. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer.Biomaterials201610132134010.1016/j.biomaterials.2016.06.01827318094
    [Google Scholar]
  21. CaoM. YanH. HanX. WengL. WeiQ. SunX. LuW. WeiQ. YeJ. CaiX. HuC. YinX. CaoP. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth.J. Immunother. Cancer20197132610.1186/s40425‑019‑0817‑431775862
    [Google Scholar]
  22. GaoC. ZhouY. ChenZ. LiH. XiaoY. HaoW. ZhuY. VongC.T. FaragM.A. WangY. WangS. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis.Theranostics202212125596561410.7150/thno.7365035910802
    [Google Scholar]
  23. ThéryC. WitwerK.W. AikawaE. AlcarazM.J. AndersonJ.D. AndriantsitohainaR. AntoniouA. ArabT. ArcherF. Atkin-SmithG.K. AyreD.C. BachJ.M. BachurskiD. BaharvandH. BalajL. BaldacchinoS. BauerN.N. BaxterA.A. BebawyM. BeckhamC. Bedina ZavecA. BenmoussaA. BerardiA.C. BergeseP. BielskaE. BlenkironC. Bobis-WozowiczS. BoilardE. BoireauW. BongiovanniA. BorràsF.E. BoschS. BoulangerC.M. BreakefieldX. BreglioA.M. BrennanM.Á. BrigstockD.R. BrissonA. BroekmanM.L.D. BrombergJ.F. Bryl-GóreckaP. BuchS. BuckA.H. BurgerD. BusattoS. BuschmannD. BussolatiB. BuzásE.I. ByrdJ.B. CamussiG. CarterD.R.F. CarusoS. ChamleyL.W. ChangY.T. ChenC. ChenS. ChengL. ChinA.R. ClaytonA. ClericiS.P. CocksA. CocucciE. CoffeyR.J. Cordeiro-da-SilvaA. CouchY. CoumansF.A.W. CoyleB. CrescitelliR. CriadoM.F. D’Souza-SchoreyC. DasS. Datta ChaudhuriA. de CandiaP. De SantanaE.F. De WeverO. del PortilloH.A. DemaretT. DevilleS. DevittA. DhondtB. Di VizioD. DieterichL.C. DoloV. Dominguez RubioA.P. DominiciM. DouradoM.R. DriedonksT.A.P. DuarteF.V. DuncanH.M. EichenbergerR.M. EkströmK. EL AndaloussiS. Elie-CailleC. ErdbrüggerU. Falcón-PérezJ.M. FatimaF. FishJ.E. Flores-BellverM. FörsönitsA. Frelet-BarrandA. FrickeF. FuhrmannG. GabrielssonS. Gámez-ValeroA. GardinerC. GärtnerK. GaudinR. GhoY.S. GiebelB. GilbertC. GimonaM. GiustiI. GoberdhanD.C.I. GörgensA. GorskiS.M. GreeningD.W. GrossJ.C. GualerziA. GuptaG.N. GustafsonD. HandbergA. HarasztiR.A. HarrisonP. HegyesiH. HendrixA. HillA.F. HochbergF.H. HoffmannK.F. HolderB. HolthoferH. HosseinkhaniB. HuG. HuangY. HuberV. HuntS. IbrahimA.G.E. IkezuT. InalJ.M. IsinM. IvanovaA. JacksonH.K. JacobsenS. JayS.M. JayachandranM. JensterG. JiangL. JohnsonS.M. JonesJ.C. JongA. Jovanovic-TalismanT. JungS. KalluriR. KanoS. KaurS. KawamuraY. KellerE.T. KhamariD. KhomyakovaE. KhvorovaA. KierulfP. KimK.P. KislingerT. KlingebornM. KlinkeD.J.II KornekM. KosanovićM.M. KovácsÁ.F. Krämer-AlbersE.M. KrasemannS. KrauseM. KurochkinI.V. KusumaG.D. KuypersS. LaitinenS. LangevinS.M. LanguinoL.R. LanniganJ. LässerC. LaurentL.C. LavieuG. Lázaro-IbáñezE. Le LayS. LeeM.S. LeeY.X.F. LemosD.S. LenassiM. LeszczynskaA. LiI.T.S. LiaoK. LibregtsS.F. LigetiE. LimR. LimS.K. LinēA. LinnemannstönsK. LlorenteA. LombardC.A. LorenowiczM.J. LörinczÁ.M. LötvallJ. LovettJ. LowryM.C. LoyerX. LuQ. LukomskaB. LunavatT.R. MaasS.L.N. MalhiH. MarcillaA. MarianiJ. MariscalJ. Martens-UzunovaE.S. Martin-JaularL. MartinezM.C. MartinsV.R. MathieuM. MathivananS. MaugeriM. McGinnisL.K. McVeyM.J. MeckesD.G.Jr MeehanK.L. MertensI. MinciacchiV.R. MöllerA. Møller JørgensenM. Morales-KastresanaA. MorhayimJ. MullierF. MuracaM. MusanteL. MussackV. MuthD.C. MyburghK.H. NajranaT. NawazM. NazarenkoI. NejsumP. NeriC. NeriT. NieuwlandR. NimrichterL. NolanJ.P. Nolte-’t HoenE.N.M. Noren HootenN. O’DriscollL. O’GradyT. O’LoghlenA. OchiyaT. OlivierM. OrtizA. OrtizL.A. OsteikoetxeaX. ØstergaardO. OstrowskiM. ParkJ. PegtelD.M. PeinadoH. PerutF. PfafflM.W. PhinneyD.G. PietersB.C.H. PinkR.C. PisetskyD.S. Pogge von StrandmannE. PolakovicovaI. PoonI.K.H. PowellB.H. PradaI. PulliamL. QuesenberryP. RadeghieriA. RaffaiR.L. RaimondoS. RakJ. RamirezM.I. RaposoG. RayyanM.S. Regev-RudzkiN. RicklefsF.L. RobbinsP.D. RobertsD.D. RodriguesS.C. RohdeE. RomeS. RouschopK.M.A. RughettiA. RussellA.E. SaáP. SahooS. Salas-HuenuleoE. SánchezC. SaugstadJ.A. SaulM.J. SchiffelersR.M. SchneiderR. SchøyenT.H. ScottA. ShahajE. SharmaS. ShatnyevaO. ShekariF. ShelkeG.V. ShettyA.K. ShibaK. SiljanderP.R.M. SilvaA.M. SkowronekA. SnyderO.L.II SoaresR.P. SódarB.W. SoekmadjiC. SotilloJ. StahlP.D. StoorvogelW. StottS.L. StrasserE.F. SwiftS. TaharaH. TewariM. TimmsK. TiwariS. TixeiraR. TkachM. TohW.S. TomasiniR. TorrecilhasA.C. TosarJ.P. ToxavidisV. UrbanelliL. VaderP. van BalkomB.W.M. van der GreinS.G. Van DeunJ. van HerwijnenM.J.C. Van Keuren-JensenK. van NielG. van RoyenM.E. van WijnenA.J. VasconcelosM.H. VechettiI.J.Jr VeitT.D. VellaL.J. VelotÉ. VerweijF.J. VestadB. ViñasJ.L. VisnovitzT. VukmanK.V. WahlgrenJ. WatsonD.C. WaubenM.H.M. WeaverA. WebberJ.P. WeberV. WehmanA.M. WeissD.J. WelshJ.A. WendtS. WheelockA.M. WienerZ. WitteL. WolframJ. XagorariA. XanderP. XuJ. YanX. Yáñez-MóM. YinH. YuanaY. ZappulliV. ZarubovaJ. ŽėkasV. ZhangJ. ZhaoZ. ZhengL. ZheutlinA.R. ZicklerA.M. ZimmermannP. ZivkovicA.M. ZoccoD. Zuba-SurmaE.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J. Extracell. Vesicles201871153575010.1080/20013078.2018.153575030637094
    [Google Scholar]
  24. LiP. KaslanM. LeeS.H. YaoJ. GaoZ. Progress in exosome isolation techniques.Theranostics20177378980410.7150/thno.1813328255367
    [Google Scholar]
  25. LobbR.J. BeckerM. Wen WenS. WongC.S.F. WiegmansA.P. LeimgruberA. MöllerA. Optimized exosome isolation protocol for cell culture supernatant and human plasma.J. Extracell. Vesicles2015412703110.3402/jev.v4.2703126194179
    [Google Scholar]
  26. BatrakovaE.V. KimM.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery.J. Control. Release201521939640510.1016/j.jconrel.2015.07.03026241750
    [Google Scholar]
  27. PerutF. RoncuzziL. AvnetS. MassaA. ZiniN. SabbadiniS. GiampieriF. MezzettiB. BaldiniN. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells.Biomolecules20211118710.3390/biom1101008733445656
    [Google Scholar]
  28. BrusottiG. CalleriE. ColomboR. MassoliniG. RinaldiF. TemporiniC. Advances on size exclusion chromatography and applications on the analysis of protein biopharmaceuticals and protein aggregates: A mini review.Chromatographia201881132310.1007/s10337‑017‑3380‑5
    [Google Scholar]
  29. KantarcıoğluM. YildirimG. Akpinar OktarP. YanbakanS. ÖzerZ.B. Yurtsever SaricaD. TaşdelenS. BayrakE. Akin BaliD.F. ÖztürkS. AkçalıK.C. EzerU. KürekçiA.E. Coffee-derived exosome-like nanoparticles: Are they the secret heroes?Turk. J. Gastroenterol.202334216116910.5152/tjg.2022.2189536262101
    [Google Scholar]
  30. Soares MartinsT. CatitaJ. Martins RosaI. A B da Cruz E SilvaO. HenriquesA.G. Exosome isolation from distinct biofluids using precipitation and column-based approaches.PLoS One2018136e019882010.1371/journal.pone.019882029889903
    [Google Scholar]
  31. García-RomeroN. MadurgaR. RackovG. Palacín-AlianaI. Núñez-TorresR. Asensi-PuigA. Carrión-NavarroJ. Esteban-RubioS. PeinadoH. González-NeiraA. González-RumayorV. Belda-IniestaC. Ayuso-SacidoA. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation.J. Transl. Med.20191717510.1186/s12967‑019‑1825‑330871557
    [Google Scholar]
  32. WengY. SuiZ. ShanY. HuY. ChenY. ZhangL. ZhangY. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling.Analyst (Lond.)2016141154640464610.1039/C6AN00892E27229443
    [Google Scholar]
  33. KalarikkalS.P. SundaramG.M. Edible plant-derived exosomal microRNAs: Exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2.Toxicol. Appl. Pharmacol.202141411542510.1016/j.taap.2021.11542533516820
    [Google Scholar]
  34. OksvoldM.P. NeurauterA. PedersenK.W. Magnetic bead-based isolation of exosomes.Methods Mol. Biol.2015121846548110.1007/978‑1‑4939‑1538‑5_2725319668
    [Google Scholar]
  35. DeshmukhS. InciF. KaraaslanM.G. OgutM.G. DuncanD. KlevanL. DuncanG. DemirciU. A confirmatory test for sperm in sexual assault samples using a microfluidic-integrated cell phone imaging system.Forensic Sci. Int. Genet.20204810231310.1016/j.fsigen.2020.10231332570000
    [Google Scholar]
  36. GuoQ. ZhangL. LiuJ. LiZ. LiJ. ZhouW. WangH. LiJ. LiuD. YuX. ZhangJ. Multifunctional microfluidic chip for cancer diagnosis and treatment.Nanotheranostics202151738910.7150/ntno.4961433391976
    [Google Scholar]
  37. InanH. WangS. InciF. BadayM. ZangarR. KesirajuS. AndersonK.S. CunninghamB.T. DemirciU. Isolation, detection, and quantification of cancer biomarkers in HPV-associated malignancies.Sci. Rep.201771332210.1038/s41598‑017‑02672‑628607383
    [Google Scholar]
  38. InciF. KaraaslanM.G. GuptaR. AvadhaniA. OgutM.G. AtilaE.E. DuncanG. KlevanL. DemirciU. Bio-inspired magnetic beads for isolation of sperm from heterogenous samples in forensic applications.Forensic Sci. Int. Genet.20215210245110.1016/j.fsigen.2020.10245133556896
    [Google Scholar]
  39. NathS. PigulaM. KhanA.P. HannaW. RuhiM.K. DehkordyF.M. PushpavanamK. RegeK. MooreK. TsujitaY. ConradC. InciF. del CarmenM.G. FrancoW. CelliJ.P. DemirciU. HasanT. HuangH.C. RizviI. Flow-induced shear stress confers resistance to carboplatin in an adherent three-dimensional model for ovarian cancer: A role for EGFR-targeted photoimmunotherapy informed by physical stress.J. Clin. Med.20209492410.3390/jcm904092432231055
    [Google Scholar]
  40. ChenC. SkogJ. HsuC.H. LessardR.T. BalajL. WurdingerT. CarterB.S. BreakefieldX.O. TonerM. IrimiaD. Microfluidic isolation and transcriptome analysis of serum microvesicles.Lab Chip201010450551110.1039/B916199F20126692
    [Google Scholar]
  41. ZhaoZ. YangY. ZengY. HeM. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis.Lab Chip201616348949610.1039/C5LC01117E26645590
    [Google Scholar]
  42. ShirejiniS.Z. InciF. The Yin and Yang of exosome isolation methods: Conventional practice, microfluidics, and commercial kits.Biotechnol. Adv.20225410781410.1016/j.biotechadv.2021.10781434389465
    [Google Scholar]
  43. RaposoG. StoorvogelW. Extracellular vesicles: Exosomes, microvesicles, and friends.J. Cell Biol.2013200437338310.1083/jcb.20121113823420871
    [Google Scholar]
  44. InksonB.J. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. Materials Characterization Using Nondestructive Evaluation (NDE).Methods201620161743
    [Google Scholar]
  45. ZhangM. XiaoB. WangH. HanM.K. ZhangZ. ViennoisE. XuC. MerlinD. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy.Mol. Ther.201624101783179610.1038/mt.2016.15927491931
    [Google Scholar]
  46. LiX. LiangZ. DuJ. WangZ. MeiS. LiZ. ZhaoY. ZhaoD. MaY. YeJ. XuJ. ZhaoY. ChangJ. QinY. YuL. WangC. JiangC. Herbal decoctosome is a novel form of medicine.Sci. China Life Sci.201962333334810.1007/s11427‑018‑9508‑030900166
    [Google Scholar]
  47. ankaP. DoleyP.J. KalitaA. ChoudharyO.C. Uses of transmission electron microscope in microscopy and its advantages and disadvantages.Int. J. Curr. Microbiol. Appl. Sci.20187574374710.20546/ijcmas.2018.705.090
    [Google Scholar]
  48. SharmaS. LeClaireM. GimzewskiJ.K. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles.Nanotechnology2018291313200110.1088/1361‑6528/aaab0629376505
    [Google Scholar]
  49. SharmaS. RasoolH.I. PalanisamyV. MathisenC. SchmidtM. WongD.T. GimzewskiJ.K. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy.ACS Nano2010441921192610.1021/nn901824n20218655
    [Google Scholar]
  50. ChukhchinD.G. BolotovaK. SinelnikovI. ChurilovD. NovozhilovE. Exosomes in the phloem and xylem of woody plants.Planta202025111210.1007/s00425‑019‑03315‑y31776666
    [Google Scholar]
  51. GaraevaL. KamyshinskyR. KilY. VarfolomeevaE. VerlovN. KomarovaE. GarmayY. LandaS. BurdakovV. MyasnikovA. VinnikovI.A. MargulisB. GuzhovaI. KaganskyA. KonevegaA.L. ShtamT. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro.Sci. Rep.2021111648910.1038/s41598‑021‑85833‑y33753795
    [Google Scholar]
  52. McComiskeyK.P.M. TajberL. Comparison of particle size methodology and assessment of nanoparticle tracking analysis (NTA) as a tool for live monitoring of crystallisation pathways.Eur. J. Pharm. Biopharm.201813031432610.1016/j.ejpb.2018.07.01230012404
    [Google Scholar]
  53. van der PolE. CoumansF.A.W. GrootemaatA.E. GardinerC. SargentI.L. HarrisonP. SturkA. van LeeuwenT.G. NieuwlandR. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing.J. Thromb. Haemost.20141271182119210.1111/jth.1260224818656
    [Google Scholar]
  54. FilipeV. HaweA. JiskootW. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates.Pharm. Res.201027579681010.1007/s11095‑010‑0073‑220204471
    [Google Scholar]
  55. EdwardJ.T. Molecular volumes and the Stokes-Einstein equation.J. Chem. Educ.197047426110.1021/ed047p261
    [Google Scholar]
  56. LunardiC.N. GomesA.J. RochaF.S. De TommasoJ. PatienceG.S. Experimental methods in chemical engineering: Zeta potential.Can. J. Chem. Eng.202199362763910.1002/cjce.23914
    [Google Scholar]
  57. LiuN.J. WangN. BaoJ.J. ZhuH.X. WangL.J. ChenX.Y. Lipidomic analysis reveals the importance of GIPCs in Arabidopsis leaf extracellular vesicles.Mol. Plant202013101523153210.1016/j.molp.2020.07.01632717349
    [Google Scholar]
  58. CoulterW.H. US Patent 219536565081953
  59. SongY. ZhangJ. LiD. Microfluidic and nanofluidic resistive pulse sensing: A review.Micromachines (Basel)20178720410.3390/mi807020430400393
    [Google Scholar]
  60. GrabarekA.D. WeinbuchD. JiskootW. HaweA. Critical evaluation of microfluidic resistive pulse sensing for quantification and sizing of nanometer- and micrometer-sized particles in biopharmaceutical products.J. Pharm. Sci.2019108156357310.1016/j.xphs.2018.08.02030176253
    [Google Scholar]
  61. De PalmaM. AmbrosoneA. LeoneA. Del GaudioP. RuoccoM. TuriákL. BokkaR. FiumeI. TucciM. PocsfalviG. Plant roots release small extracellular vesicles with antifungal activity.Plants2020912177710.3390/plants912177733333782
    [Google Scholar]
  62. YangP-C. MahmoodT. Western blot: Technique, theory, and trouble shooting.N. Am. J. Med. Sci.20124942943410.4103/1947‑2714.10099823050259
    [Google Scholar]
  63. NiuW. XiaoQ. WangX. ZhuJ. LiJ. LiangX. PengY. WuC. LuR. PanY. LuoJ. ZhongX. HeH. RongZ. FanJ.B. WangY. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy.Nano Lett.20212131484149210.1021/acs.nanolett.0c0475333475372
    [Google Scholar]
  64. SuannoC. TonoliE. FornariE. SavocaM.P. AloisiI. ParrottaL. FaleriC. CaiG. CoveneyC. BoocockD.J. VerderioE.A.M. Del DucaS. Small extracellular vesicles released from germinated kiwi pollen (pollensomes) present characteristics similar to mammalian exosomes and carry a plant homolog of ALIX.Front. Plant Sci.202314109002610.3389/fpls.2023.109002636760648
    [Google Scholar]
  65. ZuM. XieD. CanupB.S.B. ChenN. WangY. SunR. ZhangZ. FuY. DaiF. XiaoB. ‘Green’ nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases.Biomaterials202127912117810.1016/j.biomaterials.2021.12117834656857
    [Google Scholar]
  66. WonY. LeeE. MinS. ChoB. Biological function of exosome-like particles isolated from Rose(Rosa Damascena) stem cell culture supernatan.bioRxiv2023
    [Google Scholar]
  67. De RobertisM. SarraA. D’OriaV. MuraF. BordiF. PostorinoP. FratantonioD. Blueberry-derived exosome-like nanoparticles counter the response to TNF-α-induced change on gene expression in EA. hy926 cells.Biomolecules202010574210.3390/biom1005074232397678
    [Google Scholar]
  68. TajikT. BaghaeiK. MoghadamV.E. FarrokhiN. SalamiS.A. Extracellular vesicles of cannabis with high CBD content induce anticancer signaling in human hepatocellular carcinoma.Biomed. Pharmacother.202215211320910.1016/j.biopha.2022.11320935667235
    [Google Scholar]
  69. KimD.K. RheeW.J. Antioxidative effects of carrot-derived nanovesicles in cardiomyoblast and neuroblastoma cells.Pharmaceutics2021138120310.3390/pharmaceutics1308120334452164
    [Google Scholar]
  70. ZhaoW. BianY. WangQ. YinF. YinL. ZhangY. LiuJ. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress.Acta Pharmacol. Sin.202243364565810.1038/s41401‑021‑00681‑w33990765
    [Google Scholar]
  71. WuJ. MaX. LuY. ZhangT. DuZ. XuJ. YouJ. ChenN. DengX. WuJ. Edible pueraria lobata-derived exosomes promote M2 macrophage polarization.Molecules20222723818410.3390/molecules2723818436500277
    [Google Scholar]
  72. LiuC. YanX. ZhangY. YangM. MaY. ZhangY. XuQ. TuK. ZhangM. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy.J. Nanobiotechnology202220120610.1186/s12951‑022‑01421‑w35488343
    [Google Scholar]
  73. SriwastvaM.K. DengZ.B. WangB. TengY. KumarA. SundaramK. MuJ. LeiC. DrydenG.W. XuF. ZhangL. YanJ. ZhangX. ParkJ.W. MerchantM.L. EgilmezN.K. ZhangH.G. Exosome‐like nanoparticles from Mulberry bark prevent DSS‐induced colitis via the AhR/COPS8 pathway.EMBO Rep.2022233e5336510.15252/embr.20215336534994476
    [Google Scholar]
  74. LiuJ. XiangJ. JinC. YeL. WangL. GaoY. LvN. ZhangJ. YouF. QiaoH. ShiL. Medicinal plant-derived mtDNA via nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression.J. Nanobiotechnology20232117810.1186/s12951‑023‑01835‑036879291
    [Google Scholar]
  75. ZhangL. HeF. GaoL. CongM. SunJ. XuJ. WangY. HuY. AsgharS. HuL. QiaoH. Engineering exosome-like nanovesicles derived from Asparagus Cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile.Int. J. Nanomedicine2021161575158610.2147/IJN.S29306733664572
    [Google Scholar]
  76. ChenQ. LiQ. LiangY. ZuM. ChenN. CanupB.S.B. LuoL. WangC. ZengL. XiaoB. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation.Acta Pharm. Sin. B202212290792310.1016/j.apsb.2021.08.01635256954
    [Google Scholar]
  77. HanJ.M. SongH.Y. LimS.T. KimK.I. SeoH.S. ByunE.B. Immunostimulatory potential of extracellular vesicles isolated from an edible plant, Petasites japonicus, via the induction of murine dendritic cell maturation.Int. J. Mol. Sci.202122191063410.3390/ijms22191063434638974
    [Google Scholar]
  78. OuX. WangH. TieH. LiaoJ. LuoY. HuangW. YuR. SongL. ZhuJ. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: Preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU.1 axis.J. Nanobiotechnology202321116010.1186/s12951‑023‑01919‑x37210530
    [Google Scholar]
  79. LeiC. MuJ. TengY. HeL. XuF. ZhangX. SundaramK. KumarA. SriwastvaM.K. LawrenzM.B. ZhangL. YanJ. FengW. McClainC.J. ZhangX. ZhangH.G. Lemon exosome-like nanoparticles-manipulated probiotics protect mice from C. diff infection.iScience2020231010157110.1016/j.isci.2020.10157133083738
    [Google Scholar]
  80. LiuY. TanM.L. ZhuW.J. CaoY.N. PengL.X. YanZ.Y. ZhaoG. In vitro effects of tartary buckwheat-derived nanovesicles on gut microbiota.J. Agric. Food Chem.20227082616262910.1021/acs.jafc.1c0765835167751
    [Google Scholar]
  81. CaiH. HuangL.Y. HongR. SongJ.X. GuoX.J. ZhouW. HuZ.L. WangW. WangY.L. ShenJ.G. QiS.H. Momordica charantia exosome-like nanoparticles exert neuroprotective effects against ischemic brain injury via inhibiting matrix metalloproteinase 9 and activating the AKT/GSK3β signaling pathway.Front. Pharmacol.20221390883010.3389/fphar.2022.90883035814200
    [Google Scholar]
  82. LeeR. KoH.J. KimK. SohnY. MinS.Y. KimJ.A. NaD. YeonJ.H. Anti‐melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin.J. Extracell. Vesicles202091170348010.1080/20013078.2019.170348032002169
    [Google Scholar]
  83. YıldırımM. ÜnsalN. KabataşB. Effect of solanum lycopersicum and citrus limon–derived exosome-like vesicles on chondrogenic differentiation of adipose-derived stem cells.Appl. Biochem. Biotechnol.2024196120321910.1007/s12010‑023‑04491‑037103740
    [Google Scholar]
  84. DadH.A. GuT.W. ZhuA.Q. HuangL.Q. PengL.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms.Mol. Ther.2021291133110.1016/j.ymthe.2020.11.03033278566
    [Google Scholar]
  85. HuM. PalićD. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways.Redox Biol.20203710162010.1016/j.redox.2020.10162032863185
    [Google Scholar]
  86. UmezuT. TakanashiM. MurakamiY. OhnoS. KanekuraK. SudoK. NagamineK. TakeuchiS. OchiyaT. KurodaM. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration.Mol. Ther. Methods Clin. Dev.20212119920810.1016/j.omtm.2021.03.00633850951
    [Google Scholar]
  87. LuX. HanQ. ChenJ. WuT. ChengY. LiF. XiaW. Celery (Apium graveolens L.) exosome-like nanovesicles as a new-generation chemotherapy drug delivery platform against tumor proliferation.J. Agric. Food Chem.202371228413842410.1021/acs.jafc.2c0776037222554
    [Google Scholar]
  88. PomattoM.A.C. GaiC. NegroF. MassariL. DeregibusM.C. GrangeC. De RosaF.G. CamussiG. Plant-derived extracellular vesicles as a delivery platform for RNA-based vaccine: Feasibility study of an oral and intranasal SARS-CoV-2 vaccine.Pharmaceutics202315397410.3390/pharmaceutics1503097436986835
    [Google Scholar]
  89. WangX. ZhangM. FloresS.R.L. WoloshunR.R. YangC. YinL. XiangP. XuX. GarrickM.D. VidyasagarS. MerlinD. CollinsJ.F. Oral gavage of ginger nanoparticle-derived lipid vectors carrying Dmt1 siRNA blunts iron loading in murine hereditary hemochromatosis.Mol. Ther.201927349350610.1016/j.ymthe.2019.01.00330713087
    [Google Scholar]
  90. YangC. ZhangM. LamaS. WangL. MerlinD. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis.J. Control. Release202032329331010.1016/j.jconrel.2020.04.03232335157
    [Google Scholar]
  91. XiaoQ. ZhaoW. WuC. WangX. ChenJ. ShiX. ShaS. LiJ. LiangX. YangY. GuoH. WangY. FanJ.B. Lemon-derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis-triggered energy dissipation and energy production reduction.Adv. Sci. (Weinh.)2022920210527410.1002/advs.20210527435187842
    [Google Scholar]
  92. YouJ.Y. KangS.J. RheeW.J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells.Bioact. Mater.20216124321433210.1016/j.bioactmat.2021.04.02333997509
    [Google Scholar]
  93. YangM. LuoQ. ChenX. ChenF. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma.J. Nanobiotechnology202119125910.1186/s12951‑021‑00995‑134454534
    [Google Scholar]
  94. MaoY. HanM. ChenC. WangX. HanJ. GaoY. WangS. A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies.Nanoscale20211347201572016910.1039/D1NR06015E34846415
    [Google Scholar]
  95. YangX. PengY. WangY. ZhengY. HeY. PanJ. LiuN. XuY. MaR. ZhaiJ. MaY. GuanS. Curcumae Rhizoma Exosomes-like nanoparticles loaded Astragalus components improve the absorption and enhance anti-tumor effect.J. Drug Deliv. Sci. Technol.20238110427410.1016/j.jddst.2023.104274
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018305953240606063911
Loading
/content/journals/cdd/10.2174/0115672018305953240606063911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test