Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Iron Deficiency Anaemia (IDA) is a prevalent global health issue characterized by inadequate iron levels in the body, leading to impaired red blood cell production and subsequent anaemia. Traditional treatment approaches for IDA, such as oral iron supplementation, often encounter challenges related to poor compliance, gastrointestinal side effects, and variable absorption rates. As a result, there is a growing interest in exploring novel drug delivery systems to enhance iron therapy efficacy and patient outcomes. This review discusses recent advances in IDA management, focusing on developing and utilizing innovative drug delivery systems for iron supplementation. Various strategies, including nanoformulations, microparticles, liposomes, and hydrogels, are explored for their potential to improve iron bioavailability, reduce adverse effects, and optimize therapeutic outcomes. Furthermore, promising strategies for the future management of IDA are explored, including the utilization of advanced technologies such as targeted drug delivery systems, controlled release mechanisms, and combination therapies. The integration of these novel drug delivery systems with advancements in diagnostics, personalized medicine, and patient-centered care holds great potential to revolutionize the management of IDA and improve the quality of life for individuals affected by this condition.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018300804240426070552
2025-06-01
2025-10-24
Loading full text...

Full text loading...

References

  1. RajakarunaRM AriyarathnaIR KarunaratneDN Challenges and strategies to combat global iron deficiency by food fortification.Ceylon J. Sci.201645231410.4038/cjs.v45i2.7384
    [Google Scholar]
  2. NiJ. WHO calls for accelerated action to reduce anaemia.WHO2023Available from: https://www.who.int/news/item/12-05-2023-who-calls-for-accelerated-action-to-reduce-anaemia#:~:text=WHO%20launches%20its%20first%2Dever,to%20reach%20the%20global%20target.
    [Google Scholar]
  3. AnandT. RahiM. SharmaP. IngleG.K. Issues in prevention of iron deficiency anemia in India.Nutrition2014307-876477010.1016/j.nut.2013.11.02224984990
    [Google Scholar]
  4. NatekarP. DeshmukhC. LimayeD. RamanathanV. PawarA. A micro review of a nutritional public health challenge: Iron deficiency anemia in India.Clin. Epidemiol. Glob. Health20221410099210.1016/j.cegh.2022.100992
    [Google Scholar]
  5. Wessling-ResnickM. Crossing the iron gate: Why and how transferrin receptors mediate viral entry.Annu. Rev. Nutr.201838143145810.1146/annurev‑nutr‑082117‑05174929852086
    [Google Scholar]
  6. MilmanN.T. A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: Making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis.J. Nutr. Metab.2020202011510.1155/2020/737349833005455
    [Google Scholar]
  7. PiskinE. CianciosiD. GulecS. TomasM. CapanogluE. Iron absorption: Factors, limitations, and improvement methods.ACS Omega2022724204412045610.1021/acsomega.2c0183335755397
    [Google Scholar]
  8. FerruzziM.G. KrugerJ. MohamedshahZ. DebeloH. TaylorJ.R.N. Insights from in vitro exploration of factors influencing iron, zinc and provitamin A carotenoid bioaccessibility and intestinal absorption from cereals.J. Cereal Sci.20209610312610.1016/j.jcs.2020.103126
    [Google Scholar]
  9. PilvenyteG. RatautaiteV. BoguzaiteR. Samukaite-BubnieneU. PlausinaitisD. RamanavicieneA. BechelanyM. RamanaviciusA. Molecularly imprinted polymers for the recognition of biomarkers of certain neurodegenerative diseases.J. Pharm. Biomed. Anal.202322811534310.1016/j.jpba.2023.11534336934618
    [Google Scholar]
  10. PilvenyteG. RatautaiteV. BoguzaiteR. RamanaviciusS. ChenC.F. ViterR. RamanaviciusA. Molecularly imprinted polymer-based electrochemical sensors for the diagnosis of infectious diseases.Biosensors202313662010.3390/bios1306062037366985
    [Google Scholar]
  11. SkolmowskaD. GłąbskaD. Analysis of heme and non-heme iron intake and iron dietary sources in adolescent menstruating females in a national polish sample.Nutrients2019115104910.3390/nu1105104931083370
    [Google Scholar]
  12. BryszewskaM. Comparison study of iron bioaccessibility from dietary supplements and microencapsulated preparations.Nutrients201911227310.3390/nu1102027330691123
    [Google Scholar]
  13. SilvaA.M.N. MonizT. de CastroB. RangelM. Human transferrin: An inorganic biochemistry perspective.Coord. Chem. Rev.202144921418610.1016/j.ccr.2021.214186
    [Google Scholar]
  14. RichardC. VerdierF. Transferrin receptors in erythropoiesis.Int. J. Mol. Sci.20202124971310.3390/ijms2124971333352721
    [Google Scholar]
  15. SchoenerB BorgerJ. Erythropoietin stimulating agentsStatPearls Treasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  16. Serum ferritin concentrations for the assessment of iron status in individuals and populations: Technical brief.Avaiable from: https://www.who.int/publications/i/item/9789240008526
  17. PanY. RenZ. GaoS. ShenJ. FanX. YanN. ZhouM. Structural basis of ion transport and inhibition in ferroportin.Biophys. J.2021120372a10.1016/j.bpj.2020.11.656
    [Google Scholar]
  18. ChambersK AshrafMA SharmaS Physiology, hepcidin.StatPearls Treasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  19. BillesbølleC.B. AzumayaC.M. KretschR.C. PowersA.S. GonenS. SchneiderS. ArvedsonT. DrorR.O. ChengY. ManglikA. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms.Nature2020586783180781110.1038/s41586‑020‑2668‑z32814342
    [Google Scholar]
  20. GulecS. AndersonG.J. CollinsJ.F. Mechanistic and regulatory aspects of intestinal iron absorption.Am. J. Physiol. Gastrointest. Liver Physiol.20143074G397G40910.1152/ajpgi.00348.201324994858
    [Google Scholar]
  21. KulkarniA. KhadeM. ArunS. BadamiP. KumarG.R.K. DattaroyT. SoniB. DasguptaS. An overview on mechanism, cause, prevention and multi-nation policy level interventions of dietary iron deficiency.Crit. Rev. Food Sci. Nutr.202262184893490710.1080/10408398.2021.187900533543636
    [Google Scholar]
  22. ItoH. KurokawaH. MatsuiH. Mitochondrial reactive oxygen species and heme, non-heme iron metabolism.Arch. Biochem. Biophys.202170010869510.1016/j.abb.2020.10869533232715
    [Google Scholar]
  23. KondaiahP. YaduvanshiP.S. SharpP.A. PullakhandamR. Iron and zinc homeostasis and interactions: Does enteric zinc excretion cross-talk with intestinal iron absorption?Nutrients2019118188510.3390/nu1108188531412634
    [Google Scholar]
  24. SharpP. SraiS.K. Molecular mechanisms involved in intestinal iron absorption.World J. Gastroenterol.200713354716472410.3748/wjg.v13.i35.471617729393
    [Google Scholar]
  25. Waldvogel-AbramowskiS. WaeberG. GassnerC. BuserA. FreyB.M. FavratB. TissotJ.D. Physiology of iron metabolism.Transfus. Med. Hemother.201441321322110.1159/00036288825053935
    [Google Scholar]
  26. LesjakM. K S SraiS. Role of dietary flavonoids in iron homeostasis.Pharmaceuticals201912311910.3390/ph1203011931398897
    [Google Scholar]
  27. KaithaS. BashirM. AliT. Iron deficiency anemia in inflammatory bowel disease.World J. Gastrointest. Pathophysiol.201563627210.4291/wjgp.v6.i3.6226301120
    [Google Scholar]
  28. MahadeaD. AdamczewskaE. RatajczakA.E. RychterA.M. ZawadaA. EderP. DobrowolskaA. Krela-KaźmierczakI. Iron deficiency anaemia in inflammatory bowel diseases—a narrative review.Nutrients20211311400810.3390/nu1311400834836263
    [Google Scholar]
  29. FertrinKY Diagnosis and management of iron deficiency in chronic inflammatory conditions (CIC): Is too little iron making your patient sick?. Hematology Am Soc Hematol Educ Program. 202020201478486
    [Google Scholar]
  30. NiepelD. KlagT. MalekN.P. WehkampJ. Practical guidance for the management of iron deficiency in patients with inflammatory bowel disease.Therap. Adv. Gastroenterol.20181110.1177/175628481876907429760784
    [Google Scholar]
  31. JimenezK. Kulnigg-DabschS. GascheC. Management of iron deficiency anaemia.Gastroenterol. Hepatol.201511424125027099596
    [Google Scholar]
  32. PortolésJ. MartínL. BrosetaJ.J. CasesA. Anaemia in chronic kidney disease: From pathophysiology and current treatments, to future agents.Front. Med.2021864229610.3389/fmed.2021.64229633842503
    [Google Scholar]
  33. Gafter-GviliA. SchechterA. Rozen-ZviB. Iron deficiency anaemia in chronic kidney disease.Acta Haematol.20191421445010.1159/00049649230970355
    [Google Scholar]
  34. GanzT NemethE Iron balance and the role of hepcidin in chronic kidney disease.Seminars in nephrology WB Saunders2016362879310.1016/j.semnephrol.2016.02.001
    [Google Scholar]
  35. LoréalO. Haziza-PigeonC. TroadecM.B. DetivaudL. TurlinB. CourselaudB. IlyinG. BrissotP. Hepcidin in iron metabolism.Curr. Protein Pept. Sci.20056327929110.2174/138920305406539215974953
    [Google Scholar]
  36. ShahR. AgarwalA.K. Anemia associated with chronic heart failure: Clinurrent concepts.Clin. Interv. Aging2013811112223403618
    [Google Scholar]
  37. AnandI.S. GuptaP. Anaemia and iron deficiency in heart failure: Current concepts and emerging therapies.Circulation20181381809810.1161/CIRCULATIONAHA.118.03009929967232
    [Google Scholar]
  38. NemethE GanzT. Anaemia of inflammation.Hematology/Oncology Clinics2014284671681
    [Google Scholar]
  39. SilverbergD.S. WexlerD. IainaA. SteinbruchS. WollmanY. SchwartzD. Anemia, chronic renal disease and congestive heart failure—the cardio renal anemia syndrome: The need for cooperation between cardiologists and nephrologists.Int. Urol. Nephrol.200638229531010.1007/s11255‑006‑0064‑816868702
    [Google Scholar]
  40. CoadJ. ConlonC. Iron deficiency in women.Curr. Opin. Clin. Nutr. Metab. Care201114662563410.1097/MCO.0b013e32834be6fd21934611
    [Google Scholar]
  41. MansourD. HofmannA. Gemzell-DanielssonK. A review of clinical guidelines on the management of iron deficiency and iron-deficiency anaemia in women with heavy menstrual bleeding.Adv. Ther.202138120122510.1007/s12325‑020‑01564‑y33247314
    [Google Scholar]
  42. GeorgieffM.K. Iron deficiency in pregnancy.Am. J. Obstet. Gynecol.2020223451652410.1016/j.ajog.2020.03.00632184147
    [Google Scholar]
  43. GarzonS. CacciatoP.M. CertelliC. SalvaggioC. MagliarditiM. RizzoG. Iron deficiency anaemia in pregnancy: Novel approaches for an old problem.Oman Med. J.2020355e16610.5001/omj.2020.10832953141
    [Google Scholar]
  44. SrivastavaS. ShuklaA.K. VermaG. Effect of maternal anemia on the status of iron stores in infants: A cohort study.J. Family Community Med.201926211812210.4103/jfcm.JFCM_115_1831143084
    [Google Scholar]
  45. BermejoF. García-LópezS. A guide to diagnosis of iron deficiency and iron deficiency anaemia in digestive diseases.WJG20091537463810.3748/wjg.15.463819787826
    [Google Scholar]
  46. BazeleyJ.W. WishJ.B. Recent and emerging therapies for iron deficiency in anaemia of CKD: A review.Am. J. Kidney Dis.202279686887610.1053/j.ajkd.2021.09.01734758368
    [Google Scholar]
  47. MahroumN. AlghoryA. KiyakZ. AlwaniA. SeidaR. AlraisM. ShoenfeldY. Ferritin – from iron, through inflammation and autoimmunity, to COVID-19.J. Autoimmun.202212610277810.1016/j.jaut.2021.10277834883281
    [Google Scholar]
  48. HawkinsR.C. Total iron binding capacity or transferrin concentration alone outperforms iron and saturation indices in predicting iron deficiency.Clin. Chim. Acta20073801-220320710.1016/j.cca.2007.02.03217376421
    [Google Scholar]
  49. KawabataH. Transferrin and transferrin receptors update.Free Radic. Biol. Med.2019133465410.1016/j.freeradbiomed.2018.06.03729969719
    [Google Scholar]
  50. Al-NaseemA. SallamA. ChoudhuryS. ThachilJ. Iron deficiency without anaemia: A diagnosis that matters.Clin. Med.202121210711310.7861/clinmed.2020‑058233762368
    [Google Scholar]
  51. KaragülleM GündüzE Şahin MutluF AkayMO Clinical significance of reticulocyte hemoglobin content in the diagnosis of iron deficiency anaemia.Turk. J. Hematol.2013302153156
    [Google Scholar]
  52. KumarY. KoulA. SinglaR. IjazM.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.J. Ambient Intell. Humaniz. Comput.20231478459848610.1007/s12652‑021‑03612‑z35039756
    [Google Scholar]
  53. NingS ZellerMP Management of iron deficiency.Hematology Am Soc Hematol Educ Program20192019131532210.1182/hematology.2019000034
    [Google Scholar]
  54. SchaeferB. MeindlE. WagnerS. TilgH. ZollerH. Intravenous iron supplementation therapy.Mol. Aspects Med.20207510086210.1016/j.mam.2020.10086232444112
    [Google Scholar]
  55. OkamM.M. KochT.A. TranM.H. Iron deficiency anemia treatment response to oral iron therapy: A pooled analysis of five randomized controlled trials.Haematologica20161011e6e710.3324/haematol.2015.12911426518747
    [Google Scholar]
  56. BlockGA Ferric citrate in patients with chronic kidney disease.Seminars in NephrologyWB Saunders20163613013510.1016/j.semnephrol.2016.02.008
    [Google Scholar]
  57. RichardsT. BreymannC. BrookesM.J. LindgrenS. MacdougallI.C. McMahonL.P. MunroM.G. NemethE. RosanoG.M.C. SchiefkeI. WeissG. Questions and answers on iron deficiency treatment selection and the use of intravenous iron in routine clinical practice.Ann. Med.202153127428510.1080/07853890.2020.186732333426933
    [Google Scholar]
  58. LepantoM.S. RosaL. CutoneA. ConteM.P. PaesanoR. ValentiP. Efficacy of lactoferrin oral administration in the treatment of anaemia and anaemia of inflammation in pregnant and non-pregnant women: An interventional study.Front. Immunol.20189212310.3389/fimmu.2018.0212330298070
    [Google Scholar]
  59. TolkienZ. StecherL. ManderA.P. PereiraD.I.A. PowellJ.J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis.PLoS One2015102e011738310.1371/journal.pone.011738325700159
    [Google Scholar]
  60. CappelliniM.D. MusallamK.M. TaherA.T. Iron deficiency anaemia revisited.J. Intern. Med.2020287215317010.1111/joim.1300431665543
    [Google Scholar]
  61. SteinJ. HartmannF. DignassA.U. Diagnosis and management of iron deficiency anemia in patients with IBD.Nat. Rev. Gastroenterol. Hepatol.201071159961010.1038/nrgastro.2010.15120924367
    [Google Scholar]
  62. NielsenO. SoendergaardC. ViknerM. WeissG. Rational management of iron-deficiency anaemia in inflammatory bowel disease.Nutrients20181018210.3390/nu1001008229342861
    [Google Scholar]
  63. SantiagoP. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: A clinical overview.Sci. World J.2012201284682410.1100/2012/846824
    [Google Scholar]
  64. ZariwalaM.G. SomavarapuS. FarnaudS. RenshawD. Comparison study of oral iron preparations using a human intestinal model.Sci. Pharm.20138141123113910.3797/scipharm.1304‑0324482777
    [Google Scholar]
  65. Gómez-RamírezS. BrilliE. TarantinoG. MuñozM. Sucrosomial® iron: A new generation iron for improving oral supplementation.Pharmaceuticals20181149710.3390/ph1104009730287781
    [Google Scholar]
  66. Wessling-ResnickM. Iron homeostasis and the inflammatory response.Annu. Rev. Nutr.201030110512210.1146/annurev.nutr.012809.10480420420524
    [Google Scholar]
  67. HanY. HuangW. MengH. ZhanY. HouJ. Pro‐inflammatory cytokine interleukin‐6‐induced hepcidin, a key mediator of periodontitis‐related anemia of inflammation.J. Periodontal Res.202156469070110.1111/jre.1286533656216
    [Google Scholar]
  68. SunC.C. VajaV. BabittJ.L. LinH.Y. Targeting the hepcidin–ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation.Am. J. Hematol.201287439240010.1002/ajh.2311022290531
    [Google Scholar]
  69. D’AngeloG. Role of hepcidin in the pathophysiology and diagnosis of anemia.Blood Res.2013481101510.5045/br.2013.48.1.1023589789
    [Google Scholar]
  70. MaladkarM. SankarS. YadavA. A novel approach for iron deficiency anaemia with liposomal iron: Concept to clinic.J. Biosci. Med.202089274110.4236/jbm.2020.89003
    [Google Scholar]
  71. DymekM. SikoraE. Liposomes as biocompatible and smart delivery systems – The current state.Adv. Colloid Interface Sci.202230910275710.1016/j.cis.2022.10275736152374
    [Google Scholar]
  72. TarantinoG. BrilliE. ZambitoY. GiordanoG. EquitaniF. Sucrosomial Iron®: A new highly bioavaible oral iron supplement.Blood201512623456110.1182/blood.V126.23.4561.4561
    [Google Scholar]
  73. WangY. YeA. HouY. JinY. XuX. HanJ. LiuW. Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes.Trends Food Sci. Technol.2022119364410.1016/j.tifs.2021.11.016
    [Google Scholar]
  74. SubramaniT. GanapathyswamyH. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical.J. Food Sci. Technol.202057103545355510.1007/s13197‑020‑04360‑232903987
    [Google Scholar]
  75. WaghmareR.B. WaghmareR.B. Encapsulation techniques for delivery of bioactive compounds in milk and dairy products- A review.J. Dairy Res Technol.2020311910.24966/DRT‑9315/100017
    [Google Scholar]
  76. MalhotraJ. GargR. MalhotraN. AgrawalP. Oral liposomal iron: A treatment proposal for anaemia.World J Anaemia.20171416
    [Google Scholar]
  77. TrivediR. BarveK. Delivery systems for improving iron uptake in anemia.Int. J. Pharm.202160112059010.1016/j.ijpharm.2021.12059033845149
    [Google Scholar]
  78. de Alvarenga AntunesC.V. de Alvarenga NascimentoC.R. Campanha da Rocha RibeiroT. de Alvarenga AntunesP. de Andrade ChebliL. Martins Gonçalves FavaL. MalagutiC. Maria Fonseca ChebliJ. Treatment of iron deficiency anemia with liposomal iron in inflammatory bowel disease: Efficacy and impact on quality of life.Int. J. Clin. Pharm.202042389590210.1007/s11096‑020‑01044‑x32367457
    [Google Scholar]
  79. BertaniL. TricòD. ZanziF. Baiano SvizzeroG. CoppiniF. de BortoliN. BelliniM. AntonioliL. BlandizziC. MarchiS. Oral sucrosomial iron is as effective as intravenous ferric carboxy-maltose in treating anaemia in patients with ulcerative colitis.Nutrients202113260810.3390/nu1302060833673371
    [Google Scholar]
  80. PisaniA. RiccioE. SabbatiniM. AndreucciM. Del RioA. ViscianoB. Effect of oral liposomal iron versus intravenous iron for treatment of iron deficiency anaemia in CKD patients: A randomized trial.Nephrol. Dial. Transplant.201530464565210.1093/ndt/gfu35725395392
    [Google Scholar]
  81. HussainU. ZiaK. IqbalR. SaeedM. AshrafN. Efficacy of a novel food supplement (Ferfer®) containing microencapsulated Iron in liposomal form in female Iron deficiency anaemia.Cureus2019115
    [Google Scholar]
  82. PleA. PleC. RosogaN. NedelcuS. Efficacy and tolerability of a novel food supplement (Turbofer®) containing microencapsulated iron in liposomal form, in female iron deficiency anaemia.J. Nutr. Int. Med.201517214219
    [Google Scholar]
  83. ParisiF. BertiC. MandòC. MartinelliA. MazzaliC. CetinI. Effects of different regimens of iron prophylaxis on maternal iron status and pregnancy outcome: A randomized control trial.J. Matern. Fetal Neonatal Med.201730151787179210.1080/14767058.2016.122484127588568
    [Google Scholar]
  84. VitaleS.G. FioreM. La RosaV.L. RapisardaA.M.C. MazzaG. ParatoreM. CommodariE. CarusoS. Liposomal ferric pyrophosphate and ascorbic acid supplementation in pregnant women with iron deficiency anaemia: Haematochemical, obstetric, neonatal and psychological outcomes in a prospective observational study.Int. J. Food Sci. Nutr.202273222122910.1080/09637486.2021.195012934238093
    [Google Scholar]
  85. HosnyK. BanjarZ. HaririA. HassanA.H. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.Drug Des. Devel. Ther.2015931332010.2147/DDDT.S7770225609917
    [Google Scholar]
  86. HatefiL. FarhadianN. A safe and efficient method for encapsulation of ferrous sulfate in solid lipid nanoparticle for non-oxidation and sustained iron delivery.Colloid Interface Sci. Commun.20203410022710.1016/j.colcom.2019.100227
    [Google Scholar]
  87. von MoosL.M. SchneiderM. HiltyF.M. HilbeM. ArnoldM. ZieglerN. MatoD.S. WinklerH. TarikM. LudwigC. NaegeliH. LanghansW. ZimmermannM.B. SturlaS.J. TrantakisI.A. Iron phosphate nanoparticles for food fortification: Biological effects in rats and human cell lines.Nanotoxicology201711449650610.1080/17435390.2017.131403528368214
    [Google Scholar]
  88. PereiraD.I.A. BruggraberS.F.A. FariaN. PootsL.K. TagmountM.A. AslamM.F. FrazerD.M. VulpeC.D. AndersonG.J. PowellJ.J. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans.Nanomedicine20141081877188610.1016/j.nano.2014.06.01224983890
    [Google Scholar]
  89. KoortsA.M. ViljoenM. Ferritin and ferritin isoforms I: Structure–function relationships, synthesis, degradation and secretion.Arch. Physiol. Biochem.20071131305410.1080/1381345070131858317522983
    [Google Scholar]
  90. PowellJ.J. BruggraberS.F.A. FariaN. PootsL.K. HondowN. PennycookT.J. Latunde-DadaG.O. SimpsonR.J. BrownA.P. PereiraD.I.A. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity.Nanomedicine20141071529153810.1016/j.nano.2013.12.01124394211
    [Google Scholar]
  91. FathyM.M. FahmyH.M. BalahA.M.M. MohamedF.F. ElshemeyW.M. Magnetic nanoparticles-loaded liposomes as a novel treatment agent for iron deficiency anemia: In vivo study.Life Sci.201923411678710.1016/j.lfs.2019.11678731445028
    [Google Scholar]
  92. GhibaudoF. GerbinoE. CopelloG.J. Campo Dall’ OrtoV. Gómez-ZavagliaA. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria.Colloids Surf. B Biointerfaces201918019320110.1016/j.colsurfb.2019.04.04931054459
    [Google Scholar]
  93. JaberN. Al-RemawiM. QatousehL.A. AhmadM. AiedehK. Synthesis, characterization and evaluation of oleoyl-chitosan derivatives as enhancers for ferrous ions nano-delivery using Caco-2 cell model.J. Drug Deliv. Sci. Technol.20205810176110.1016/j.jddst.2020.101761
    [Google Scholar]
  94. WangN. WuY. ZhaoX. LaiB. SunN. TanM. Food-borne nanocarriers from roast beef patties for iron delivery.Food Funct.2019b10106711671910.1039/C9FO01795J31560353
    [Google Scholar]
  95. TangM. WangD. HouY. BuchiliP. SunL. Preparation, characterization, bioavailability in vitro and in vivo of tea polysaccharides–iron complex.Eur. Food Res. Technol.2013236234135010.1007/s00217‑012‑1891‑8
    [Google Scholar]
  96. CuiJ. LiY. YuP. ZhanQ. WangJ. ChiY. WangP. A novel low molecular weight Enteromorpha polysaccharide-iron (III) complex and its effect on rats with iron deficiency anemia (IDA).Int. J. Biol. Macromol.201810841241810.1016/j.ijbiomac.2017.12.03329223752
    [Google Scholar]
  97. GanieS.A. NaikR.A. MirT.A. AliA. MazumdarN. LiQ. Tailored functionalization of gum arabic iron (II) complexes: Synthesis, characterization and dwindling of antianemic approach via in vivo studies.J. Polym. Environ.20233162448246110.1007/s10924‑023‑02757‑6
    [Google Scholar]
  98. LiuT. LiuT. LiuH. FanH. ChenB. WangD. ZhangY. SunF. Preparation and characterization of a novel polysaccharide-iron (III) complex in Auricularia auricula potentially used as an iron supplement.BioMed Res. Int.2019201911410.1155/2019/641694131309110
    [Google Scholar]
  99. ChengC. HuangD. ZhaoL. CaoC. ChenG. Preparation and in vitro absorption studies of a novel polysaccharide‑iron (III) complex from Flammulina velutipes.Int. J. Biol. Macromol.201913280181010.1016/j.ijbiomac.2019.04.01530953722
    [Google Scholar]
  100. WangJ. ChenH. WangY. XingL. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III) complex.Int. J. Biol. Macromol.20157521021710.1016/j.ijbiomac.2015.01.04125643995
    [Google Scholar]
  101. ZhengZ. ZengM. Bioavailability of iron-chelated peptides/proteins and their potential role in iron supplementation: A review.Food Chem.201927019420210.1016/j.foodchem.2018.07.031
    [Google Scholar]
  102. GandhiA. ShahN. SankheS. SonawaneA. Bioavailability of iron from spray-dried whey protein concentrate-iron complex in anemic and weaning conditions: A randomized controlled trial in rats.J. Food Sci.202287281982610.1111/1750‑3841.1560535067913
    [Google Scholar]
  103. UrsoV. ElefanteA. Di MiccoS. ColucciG. CirilloG. Evaluation of the efficacy of iron protein succinylate compared to ferrous sulphate in the management of iron deficiency anaemia: A randomized controlled trial.Curr. Med. Res. Opin.201935111959196510.1080/03007995.2019.1636664
    [Google Scholar]
  104. EckertE. RandallC. ShchukarevA. LarsenD. Barley protein-derived peptide with high affinity for iron: Potential functional food ingredient for iron uptake.J. Agric. Food Chem.201664112329233610.1021/acs.jafc.6b00350
    [Google Scholar]
  105. FiliponiT. BragaA. LacerdaD. PachecoM. BonaE. Microencapsulation techniques improve the stability of whey protein isolate-iron peptide complexes.J. Food Sci. Technol.20195683850386110.1007/s13197‑019‑03948‑7
    [Google Scholar]
  106. Caetano-SilvaM. PereiraR. BonaE. PollonioM. Influence of iron precursor compounds on the formation and properties of whey peptide-iron complexes.J. Food Sci. Technol.201754496797710.1007/s13197‑017‑2540‑7
    [Google Scholar]
  107. AbdelazimS. ElsedfyG. AbdallahM. AliA. Comparison between heme iron polypeptide and iron saccharate complex in the treatment of pregnant women with iron deficiency anaemia.Arch. Gynecol. Obstet.2017295113113710.1007/s00404‑016‑4210‑6
    [Google Scholar]
  108. Caetano-SilvaM. BonaE. PollonioM. Whey peptide-iron complexes: Iron bioavailability and its transport across the cell membrane.J. Food Sci. Technol.201855389390010.1007/s13197‑017‑3017‑5
    [Google Scholar]
  109. LiangX. SunY. WangQ. Slow-release properties of flaxseed gum nanocomposites for enhancing iron bioavailability.Int. J. Biol. Macromol.201811974174810.1016/j.ijbiomac.2018.07.030
    [Google Scholar]
  110. MorathB. SauerS. ZaradzkiM. WagnerA.H. Orodispersible films – Recent developments and new applications in drug delivery and therapy.Biochem. Pharmacol.202220011503610.1016/j.bcp.2022.11503635427572
    [Google Scholar]
  111. CuponeI.E. RoselliG. MarraF. RivaM. AngelettiS. DugoL. SpotoS. FogolariM. GioriA.M. Orodispersible film based on maltodextrin: A convenient and suitable method for iron supplementation.Pharmaceutics2023156157510.3390/pharmaceutics1506157537376024
    [Google Scholar]
  112. GuptaM.S. KumarT.P. ReddyD. PathakK. GowdaD.V. BabuA.V.N. AodahA.H. KhafagyE.S. AlotaibiH.F. Abu LilaA.S. MoinA. HussinT. Development and characterization of pullulan-based orodispersible films of iron.Pharmaceutics2023153102710.3390/pharmaceutics1503102736986887
    [Google Scholar]
  113. ShubhamK. AnukiruthikaT. DuttaS. KashyapA.V. MosesJ.A. AnandharamakrishnanC. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches.Trends Food Sci. Technol.202099587510.1016/j.tifs.2020.02.021
    [Google Scholar]
  114. GascheC. BerstadA. BefritsR. BeglingerC. DignassA. ErichsenK. GomollonF. HjortswangH. KoutroubakisI. KulniggS. OldenburgB. RamptonD. SchroederO. SteinJ. TravisS. Van AsscheG. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases#.Inflamm. Bowel Dis.200713121545155310.1002/ibd.2028517985376
    [Google Scholar]
  115. NaahidiS. JafariM. EdalatF. RaymondK. KhademhosseiniA. ChenP. Biocompatibility of engineered nanoparticles for drug delivery.J. Control. Release2013166218219410.1016/j.jconrel.2012.12.01323262199
    [Google Scholar]
  116. YugavathyN AbdullahBM LimSK GaforAH WongMG BavanandanS WongHS HuriHZ Precision medicine in erythropoietin deficiency and treatment resistance: A novel approach in management of anaemia of chronic kidney disease.Curr. Issues Mol. Biol. 2023456550656310.3390/cimb45080413
    [Google Scholar]
  117. TengY. StewartS.G. HaiY.W. LiX. BanwellM.G. LanP. Sucrose fatty acid esters: Synthesis, emulsifying capacities, biological activities and structure-property profiles.Crit. Rev. Food Sci. Nutr.202161193297331710.1080/10408398.2020.179834632746632
    [Google Scholar]
  118. ZariwalaM.G. FarnaudS. MerchantZ. SomavarapuS. RenshawD. Ascorbyl palmitate/DSPE-PEG nanocarriers for oral iron delivery: Preparation, characterisation and in vitro evaluation.Colloids Surf. B Biointerfaces2014115869210.1016/j.colsurfb.2013.11.02824333557
    [Google Scholar]
  119. DuránE. ChurioO. AriasJ.L. Neira-CarrilloA. ValenzuelaC. Preparation and characterization of novel edible matrices based on alginate and whey for oral delivery of iron.Food Hydrocoll.20209810527710.1016/j.foodhyd.2019.105277
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018300804240426070552
Loading
/content/journals/cdd/10.2174/0115672018300804240426070552
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test