Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Although lignin is one of the most naturally abundant biopolymers, the overall status of its utilization has long been subpar. The ability of Lignin to readily self-assemble into nanoparticles, along with its good biocompatibility and minimal toxicity, makes it a perfect agent for nanocarriers and drug delivery.

Method

Hence, in this study, we have attempted to examine lignin nanoparticles (LNPs) as an efficient pH-responsive nanocarrier for gastric-irritant oral NSAID, aspirin. Alkali lignin (AL) was extracted from rice straw alkaline treatment, and the lignin nanoparticles were synthesized from lignin using the acid precipitation method. The average particle size was 201.37 ± 1.20 nm, and the synthesized LNPs exhibited a spherical shape and smooth outer surface along with high polydispersity (PDI= 0.284 ± 0.012). The LNPs showed moderate hemocompatibility during hemolysis studies. The nanoparticles presented nearly similar chemical structures to the AL from which they were developed, and the FT-IR absorption spectra confirmed the similarity of this chemical structure to the LNPs and AL. Aspirin was successfully loaded into the LNPs with a satisfactory drug loading value of 39.12 ± 1.50 and an excellent encapsulation efficiency value of 91.44 ± 0.59.

Results

Finally, the LNPs were capable of protecting the loaded drug at the acidic pH of the stomach (1.2) with just 29.20% release of the loaded aspirin after 10 h of observation . Contrarily, the LNPs were capable of rapidly releasing the aspirin at the basic pH of the intestine (7.4) with nearly 90% release of the loaded drug after 10 h observation The basic pH of the intestine might lead to gradual dissociation of the LNPs followed by swift release of the loaded cargo.

Conclusion

These findings substantiate that the LNPs carry the potential to be an apt and safe nanocarrier for oral drugs like aspirin as well as parenteral drugs, and LNPs can be utilized as an efficient alternative to enteric coating.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018318035240910050003
2025-06-01
2025-10-09
Loading full text...

Full text loading...

References

  1. VaneJ.R. BottingR.M. The mechanism of action of aspirin.Thromb. Res.20031105-625525810.1016/S0049‑3848(03)00379‑7 14592543
    [Google Scholar]
  2. AwtryE.H. LoscalzoJ. Aspirin.Circulation2000101101206121810.1161/01.CIR.101.10.1206 10715270
    [Google Scholar]
  3. FusterV. SweenyJ.M. Aspirin.Circulation2011123776877810.1161/CIRCULATIONAHA.110.963843 21343593
    [Google Scholar]
  4. RosellR. A randomized trial comparing preoperative chemotherapy plus surgery with surgery alone in patients with non-small-cell lung cancer.N. Engl. J. Med.1994330315315810.1056/NEJM199401203300301 8043059
    [Google Scholar]
  5. PaikinJ.S. EikelboomJ.W. Aspirin.Circulation201212510e439e44210.1161/CIRCULATIONAHA.111.046243 22412097
    [Google Scholar]
  6. BeniansR.G. Points: Aspirin and the stomach.BMJ19812826280197810.1136/bmj.282.6280.1978‑b
    [Google Scholar]
  7. SostresC. LanasA. Gastrointestinal effects of aspirin.Nat. Rev. Gastroenterol. Hepatol.20118738539410.1038/nrgastro.2011.97 21647198
    [Google Scholar]
  8. BanoobD.W. McCloskeyW.W. WebsterW. WebsterW. Risk of gastric injury with enteric versus nonenteric-coated aspirin.Ann. Pharmacother.200236116316610.1345/aph.18325 11816246
    [Google Scholar]
  9. KedirH.M. SisayE.A. AbiyeA.A. Enteric-coated aspirin and the risk of gastrointestinal side effects: A systematic review.Int. J. Gen. Med.2021144757476310.2147/IJGM.S326929 34466020
    [Google Scholar]
  10. CoxD. MareeA.O. DooleyM. ConroyR. ByrneM.F. FitzgeraldD.J. Effect of enteric coating on antiplatelet activity of low-dose aspirin in healthy volunteers.Stroke20063782153215810.1161/01.STR.0000231683.43347.ec 16794200
    [Google Scholar]
  11. RashidM. Zaid AhmadQ. Trends in nanotechnology for practical applications.Applications of Targeted Nano Drugs and Delivery Systems.Elsevier2018297325
    [Google Scholar]
  12. KamalZ. SuJ. QiuM. Erythrocytes modified (coated) gold nanoparticles for effective drug delivery.Metal Nanoparticles for Drug Delivery and Diagnostic Applications.Elsevier20191329
    [Google Scholar]
  13. IravaniS. VarmaR.S. Greener synthesis of lignin nanoparticles and their applications.Green Chem.202022361263610.1039/C9GC02835H
    [Google Scholar]
  14. TangQ. QianY. YangD. QiuX. QinY. ZhouM. Lignin-based nanoparticles: A review on their preparations and applications.Polymers20201211247110.3390/polym12112471 33113775
    [Google Scholar]
  15. GosselinkR.J.A. SnijderM.H.B. KranenbargA. KeijsersE.R.P. de JongE. StigssonL.L. Characterisation and application of NovaFiber lignin.Ind. Crops Prod.200420219120310.1016/j.indcrop.2004.04.021
    [Google Scholar]
  16. DomínguezJ.C. OlietM. AlonsoM.V. GilarranzM.A. RodríguezF. Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus.Ind. Crops Prod.200827215015610.1016/j.indcrop.2007.07.006
    [Google Scholar]
  17. LaurichesseS. AvérousL. Chemical modification of lignins: Towards biobased polymers.Prog. Polym. Sci.20143971266129010.1016/j.progpolymsci.2013.11.004
    [Google Scholar]
  18. BoerjanW. RalphJ. BaucherM. Lignin Biosynthesis.Annu. Rev. Plant Biol.200354151954610.1146/annurev.arplant.54.031902.134938 14503002
    [Google Scholar]
  19. TortoraM. CavalieriF. MosessoP. CiaffardiniF. MeloneF. CrestiniC. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules.Biomacromolecules20141551634164310.1021/bm500015j 24720505
    [Google Scholar]
  20. GellerstedtG.L.F. HenrikssonE.G. Lignins: Major sources, structure and properties. In: MonomersPolym. Compos. from Renew. Resour200820122410.1016/B978‑0‑08‑045316‑3.00009‑0
    [Google Scholar]
  21. AzadiP. InderwildiO.R. FarnoodR. KingD.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review.Renew. Sustain. Energy Rev.20132150652310.1016/j.rser.2012.12.022
    [Google Scholar]
  22. XuF. LiY. Biomass digestion.Encyclopedia of Sustainable Technologies.Elsevier201719720410.1016/B978‑0‑12‑409548‑9.10108‑3
    [Google Scholar]
  23. WijayaC.J. IsmadjiS. GunawanS. A review of lignocellulosic-derived nanoparticles for drug delivery applications: Lignin nanoparticles, xylan nanoparticles, and cellulose nanocrystals.Molecules202126367610.3390/molecules26030676 33525445
    [Google Scholar]
  24. FigueiredoP. LintinenK. HirvonenJ.T. KostiainenM.A. SantosH.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications.Prog. Mater. Sci.20189323326910.1016/j.pmatsci.2017.12.001
    [Google Scholar]
  25. SipponenM.H. LangeH. CrestiniC. HennA. ÖsterbergM. Lignin for nano‐ and microscaled carrier systems: applications, trends, and challenges.ChemSusChem201912102039205410.1002/cssc.201900480 30933420
    [Google Scholar]
  26. DaiL. LiuR. HuL.Q. ZouZ.F. SiC.L. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol.ACS Sustain. Chem.& Eng.2017598241824910.1021/acssuschemeng.7b01903
    [Google Scholar]
  27. WangK. LooL.S. GohK.L. A facile method for processing lignin reinforced chitosan biopolymer microfibres: Optimising the fibre mechanical properties through lignin type and concentration.Mater. Res. Express2016303530110.1088/2053‑1591/3/3/035301
    [Google Scholar]
  28. KaiD. TanM.J. CheeP.L. ChuaY.K. YapY.L. LohX.J. Towards lignin-based functional materials in a sustainable world.Green Chem.20161851175120010.1039/C5GC02616D
    [Google Scholar]
  29. UgartondoV. MitjansM. VinardellM. Comparative antioxidant and cytotoxic effects of lignins from different sources.Bioresour. Technol.200899146683668710.1016/j.biortech.2007.11.038 18187323
    [Google Scholar]
  30. ThakurV.K. ThakurM.K. Recent advances in green hydrogels from lignin: A review.Int. J. Biol. Macromol.20157283484710.1016/j.ijbiomac.2014.09.044 25304747
    [Google Scholar]
  31. PonomarenkoJ. LaubertsM. DizhbiteT. LauberteL. JurkjaneV. TelyshevaG. Antioxidant activity of various lignins and lignin-related phenylpropanoid units with high and low molecular weight.Holzforschung201569679580510.1515/hf‑2014‑0280
    [Google Scholar]
  32. VinardellM. MitjansM. Lignins and their derivatives with beneficial effects on human health.Int. J. Mol. Sci.2017186121910.3390/ijms18061219 28590454
    [Google Scholar]
  33. KaurR. UppalS.K. SharmaP. Antioxidant and antibacterial activities of sugarcane bagasse lignin and chemically modified lignins.Sugar Tech201719667568010.1007/s12355‑017‑0513‑y
    [Google Scholar]
  34. AquibT.I. Lignin-based nanomaterials as drug delivery vehicles: A review.Crit. Rev. Ther. Drug Carrier Syst.202340416710.1615/CritRevTherDrugCarrierSyst.2022041829 37075067
    [Google Scholar]
  35. XiongF. HanY. WangS. LiG. QinT. ChenY. ChuF. Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly.ACS Sustain. Chem.& Eng.2017532273228110.1021/acssuschemeng.6b02585
    [Google Scholar]
  36. NairS.S. SharmaS. PuY. SunQ. PanS. ZhuJ.Y. DengY. RagauskasA.J. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends.ChemSusChem20147123513352010.1002/cssc.201402314 25319811
    [Google Scholar]
  37. GuptaA.K. MohantyS. NayakS.K. Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly(trimethylene terephthalate) hybrid nanocomposites.RSC Advances2015569560285603610.1039/C5RA07828H
    [Google Scholar]
  38. YangW. OwczarekJ.S. FortunatiE. KozaneckiM. MazzagliaA. BalestraG.M. KennyJ.M. TorreL. PugliaD. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging.Ind. Crops Prod.20169480081110.1016/j.indcrop.2016.09.061
    [Google Scholar]
  39. YangW. RalliniM. WangD-Y. GaoD. DominiciF. TorreL. KennyJ.M. PugliaD. Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure.Compos., Part A Appl. Sci. Manuf.2018107616910.1016/j.compositesa.2017.12.030
    [Google Scholar]
  40. YearlaS.R. PadmasreeK. Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants.J. Exp. Nanosci.201611428930210.1080/17458080.2015.1055842
    [Google Scholar]
  41. MalzahnK. MarsicoF. KoynovK. LandfesterK. WeissC.K. WurmF.R. Selective interfacial olefin cross metathesis for the preparation of hollow nanocapsules.ACS Macro Lett.201431404310.1021/mz400578e 35632867
    [Google Scholar]
  42. LiY. QiuX. QianY. XiongW. YangD. pH-responsive lignin-based complex micelles: Preparation, characterization and application in oral drug delivery.Chem. Eng. J.20173271176118310.1016/j.cej.2017.07.022
    [Google Scholar]
  43. MachadoT.O. BeckersS.J. FischerJ. MüllerB. SayerC. de AraújoP.H.H. LandfesterK. WurmF.R. Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants.Biomacromolecules20202172755276310.1021/acs.biomac.0c00487 32543851
    [Google Scholar]
  44. AlqahtaniM.S. KaziM. AhmadM.Z. SyedR. AlsenaidyM.A. AlbraikiS.A. Lignin nanoparticles as a promising vaccine adjuvant and delivery system for ovalbumin.Int. J. Biol. Macromol.20201631314132210.1016/j.ijbiomac.2020.07.026 32645499
    [Google Scholar]
  45. PengR. YangD. QiuX. QinY. ZhouM. Preparation of self-dispersed lignin-based drug-loaded material and its application in avermectin nano-formulation.Int. J. Biol. Macromol.202015142142710.1016/j.ijbiomac.2020.02.114 32061696
    [Google Scholar]
  46. DengY. ZhaoH. QianY. LüL. WangB. QiuX. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance.Ind. Crops Prod.20168719119710.1016/j.indcrop.2016.03.056
    [Google Scholar]
  47. AlqahtaniM.S. AlqahtaniA. Al-ThabitA. RoniM. SyedR. Novel lignin nanoparticles for oral drug delivery.J. Mater. Chem. B Mater. Biol. Med.20197284461447310.1039/C9TB00594C
    [Google Scholar]
  48. FigueiredoP. LintinenK. KiriazisA. HynninenV. LiuZ. Bauleth-RamosT. RahikkalaA. CorreiaA. KohoutT. SarmentoB. Yli-KauhaluomaJ. HirvonenJ. IkkalaO. KostiainenM.A. SantosH.A. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells.Biomaterials20171219710810.1016/j.biomaterials.2016.12.034 28081462
    [Google Scholar]
  49. LiuK. ZhengD. LeiH. LiuJ. LeiJ. WangL. MaX. Development of novel lignin-based targeted polymeric nanoparticle platform for efficient delivery of anticancer drugs.ACS Biomater. Sci. Eng.201845acsbiomaterials.8b0026010.1021/acsbiomaterials.8b00260 33445330
    [Google Scholar]
  50. ZhouY. HanY. LiG. YangS. XiongF. ChuF. Preparation of targeted lignin-based hollow nanoparticles for the delivery of doxorubicin.Nanomaterials20199218810.3390/nano9020188 30717357
    [Google Scholar]
  51. ZhaoJ. Self-assembled pH-responsive polymeric nanoparticles based on lignin-histidine conjugate with small particle size for efficient delivery of anti-tumor drugs.Biochem. Eng. J.202015610752610.1016/j.bej.2020.107526
    [Google Scholar]
  52. DeS. MishraS. PoonguzhaliE. RajeshM. TamilarasanK. Fractionation and characterization of lignin from waste rice straw: Biomass surface chemical composition analysis.Int. J. Biol. Macromol.202014579580310.1016/j.ijbiomac.2019.10.068 31739019
    [Google Scholar]
  53. BaranaD. SalantiA. OrlandiM. AliD.S. ZoiaL. Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax.Ind. Crops Prod.201686313910.1016/j.indcrop.2016.03.029
    [Google Scholar]
  54. SunS. LiuF. ZhangL. FanX. One-step process based on the order of hydrothermal and alkaline treatment for producing lignin with high yield and antioxidant activity.Ind. Crops Prod.2018119February26026610.1016/j.indcrop.2018.04.030
    [Google Scholar]
  55. Sultana TomaF. JemaatZ. BegM.D.H. KhanM.R. YunusR.M. Comparison between lignin extraction by alkaline and ultrasound-assisted alkaline treatment from oil palm empty fruit bunch IOP Conf.Ser. Mater. Sci. Eng.2021109201202710.1088/1757‑899X/1092/1/012027
    [Google Scholar]
  56. FrangvilleC. RutkevičiusM. RichterA.P. VelevO.D. StoyanovS.D. PaunovV.N. Fabrication of environmentally biodegradable lignin nanoparticles.ChemPhysChem201213184235424310.1002/cphc.201200537 23047584
    [Google Scholar]
  57. GeY. WeiQ. LiZ. Preparation and evaluation of the free radical scavenging activities of nanoscale lignin biomaterials.BioResources2014946699670610.15376/biores.9.4.6699‑6706
    [Google Scholar]
  58. OsmanN.A. ShantierS.W. AdamM.E. GadkariemE. Q-absorbance ratio and chromatographic method for the analysis of aspirin and salicylic acid vaccine design view project biological activities of saudi medicinal plants view project.Elixir Appl. Chem.20201445458354588Available from: https://www.researchgate.net/publication/343442668
    [Google Scholar]
  59. ZikeliF. VinciguerraV. SennatoS. Scarascia MugnozzaG. RomagnoliM. Preparation of lignin nanoparticles with entrapped essential oil as a bio-based biocide delivery system.ACS Omega20205135836810.1021/acsomega.9b02793 31956783
    [Google Scholar]
  60. SiddiquiL. BagJ. Seetha; Mittal, D.; Leekha, A.; Mishra, H.; Mishra, M.; Verma, A.K.; Mishra, P.K.; Ekielski, A.; Iqbal, Z.; Talegaonkar, S. Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies.Int. J. Biol. Macromol.202015278680210.1016/j.ijbiomac.2020.02.311 32114178
    [Google Scholar]
  61. PanX. LiJ. GanR. HuX. Preparation and in vitro evaluation of enteric-coated tablets of rosiglitazone sodium.Saudi Pharm. J.201523558158610.1016/j.jsps.2015.02.018 26594126
    [Google Scholar]
  62. YoswathanaN. PhuriphipatP. TreyawutthiwatP. EshtiaghiM.N. Bioethanol production from rice straw.Ener. Res. J.201011263110.3844/erjsp.2010.26.31
    [Google Scholar]
  63. ChengY.S. ZhengY. YuC.W. DooleyT.M. JenkinsB.M. VanderGheynstJ.S. Evaluation of high solids alkaline pretreatment of rice straw.Appl. Biochem. Biotechnol.201016261768178410.1007/s12010‑010‑8958‑4 20440580
    [Google Scholar]
  64. SindhuR. PandeyA. BinodP. Alkaline Treatment.Pretreat. Biomass Process.Technol2015516010.1016/B978‑0‑12‑800080‑9.00004‑9
    [Google Scholar]
  65. KimJ.S. LeeY.Y. KimT.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass.Bioresour. Technol.2016199424810.1016/j.biortech.2015.08.085 26341010
    [Google Scholar]
  66. ModenbachA. Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: An investigation of yields, kinetic modeling and glucose recovery.Theses Diss. Agric. Eng.2013378Available from: https://uknowledge.uky.edu/bae_etds/17%0Ahttps://uknowledge.uky.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1016&context=bae_etds
    [Google Scholar]
  67. ZhangY. NaebeM. Lignin: A review on structure, properties, and applications as a light-colored UV absorber.ACS Sustain. Chem.& Eng.2021941427144210.1021/acssuschemeng.0c06998
    [Google Scholar]
  68. Espinoza-AcostaJ.L. Figueroa-EspinozaE.G. Rosa-AlcarazM.Á.D. Recent progress in the production of lignin-based sunscreens: A Review.BioResources20221723674370110.15376/biores.17.2.Espinoza
    [Google Scholar]
  69. WangY. XiaoX. WangS. LiK. JiangY. MaY. ZhangT. RanR. Exploration on UV-blocking performance of lignin from palm (Trachycarpus Fortunei) Fiber.J. Nat. Fibers2021181717910.1080/15440478.2019.1612307
    [Google Scholar]
  70. SadeghifarH. RagauskasA. Lignin as a UV Light blocker: A review.Polymers2020125113410.3390/polym12051134 32429134
    [Google Scholar]
  71. AgustinM.B. PenttiläP.A. LahtinenM. MikkonenK.S. Rapid and direct preparation of lignin nanoparticles from alkaline pulping liquor by mild ultrasonication.ACS Sustain. Chem.& Eng.2019724199251993410.1021/acssuschemeng.9b05445
    [Google Scholar]
  72. ZhouY. HanY. LiG. YangS. ChuF. Lignin-based hollow nanoparticles for controlled drug delivery: grafting preparation using β-cyclodextrin/enzymatic-hydrolysis lignin.Nanomaterials20199799710.3390/nano9070997 31373282
    [Google Scholar]
  73. ChenL. ZhouX. ShiY. GaoB. WuJ. KirkT.B. XuJ. XueW. Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application.Chem. Eng. J.201834621722510.1016/j.cej.2018.04.020
    [Google Scholar]
  74. AhireE. ThakkarS. DarshanwadM. MisraM. Parenteral nanosuspensions: A brief review from solubility enhancement to more novel and specific applications.Acta Pharm. Sin. B20188573375510.1016/j.apsb.2018.07.011 30245962
    [Google Scholar]
  75. FecioruE. KleinM. KrämerJ. WackerM.G. In vitro performance testing of nanoparticulate drug products for parenteral administration.Dissolut. Technol.2019263283710.14227/DT260319P28
    [Google Scholar]
  76. AminK. DannenfelserR.M. In vitro hemolysis: Guidance for the pharmaceutical scientist.J. Pharm. Sci.20069561173117610.1002/jps.20627 16639718
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018318035240910050003
Loading
/content/journals/cdd/10.2174/0115672018318035240910050003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test