Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction/Background

Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is one of the leading causes of death and an immense financial burden on healthcare systems. Rifaximin (RFX) has good antibacterial activity against MRSA, but its clinical application is limited due to its poor oral absorption.

Objective

In order to improve the oral bioavailability of rifaximin and expand the clinical application of RFX for MRSA pneumonia, this study developed a RFX-loaded myristic acid solid lipid nanoparticles (RFX-SLNs).

Methods

This study first screened the formula of RFX-SLNs through single factor screening. After that, the particle size, zeta potential and polydispersity index (PDI) of the RFX-SLNs were measured, the morphology of RFX-SLNs was observed by transmission electron microscopy, and the encapsulation efficiency (EE) and drug loading capacity (LC) of RFX-SLNs were detected by high performance liquid chromatography. Then, the sustained release ability and oral bioavailability of RFX-SLNs were studied through release and pharmacokinetics. Finally, the therapeutic effect of RFX-SLNs on MRSA pneumonia infection was studied by using a mouse MRSA pneumonia infection model.

Results

The optimal formulation of RFX-SLNs was 1% RFX with a water (3% PVA) and oil (myristic acid) ratio of 1:19. RFX-SLNs were spherical shape with a smooth surface and uniform size. The EE and LC of three different batches of RFX-SLNs were 89.35±2.47%, 90.45±3.69%, 88.72±1.18%, and 9.50 ± 0.01%, 10.09±0.01%, and 9.68±0.00%, respectively. release and pharmacokinetic studies showed that the myristic acid solid lipid nanoparticles showed excellent sustained release as expected and increased the oral bioavailability of RFX by 2.18 times. RFX-SLNs showed a good therapeutic effects in a mouse MRSA pneumonia infection model.

Conclusion

This study indicates that the myristic acid solid lipid nanoparticles might be an effective way to enhance the oral absorption and therapy effects of RFX and other insoluble drugs.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018276382231207103955
2025-06-01
2025-10-27
Loading full text...

Full text loading...

References

  1. HeH. WunderinkR.G. Staphylococcus aureus pneumonia in the community.Semin. Respir. Crit. Care Med.202041447047910.1055/s‑0040‑1709992 32521547
    [Google Scholar]
  2. VlaeminckJ. RaafatD. SurmannK. TimbermontL. NormannN. SellmanB. van WamelW.J.B. Staphylococcus aureusexploring virulence factors and alternative therapies against pneumonia.Toxins2020121172110.3390/toxins12110721
    [Google Scholar]
  3. CillonizC. DominedòC. GabarrúsA. Garcia-VidalC. BecerrilJ. TovarD. MorenoE. PericásJ.M. VargasC.R. TorresA. Methicillin-susceptible staphylococcus aureus in community-acquired pneumonia: Risk factors and outcomes.J. Infect.2021821768310.1016/j.jinf.2020.10.032 33144192
    [Google Scholar]
  4. LeeA.S. de LencastreH. GarauJ. KluytmansJ. Malhotra-KumarS. PeschelA. HarbarthS. Methicillin-resistant staphylococcus aureus.Nat. Rev. Dis. Primers201841803310.1038/nrdp.2018.33
    [Google Scholar]
  5. LiesenborghsL. VerhammeP. VanasscheT. Staphylococcus aureus, master manipulator of the human hemostatic system.J. Thromb. Haemost.201816344145410.1111/jth.13928 29251820
    [Google Scholar]
  6. LeonardA.C. PetrieL.E. CoxG. Staphylococcus aureus bacterial anti-adhesives: Inhibition of nasal colonization.ACS Infect. Dis.20195101668168110.1021/acsinfecdis.9b00193 31374164
    [Google Scholar]
  7. KozajdaA. JeżakK. KapsaA. Airborne Staphylococcus aureus in different environments-a review.Environ. Sci. Pollut. Res. Int.20192634347413475310.1007/s11356‑019‑06557‑1 31654301
    [Google Scholar]
  8. WangL.S. GuptaA. RotelloV.M. Nanomaterials for the treatment of bacterial biofilms.ACS Infect. Dis.2016213410.1021/acsinfecdis.5b00116 27622944
    [Google Scholar]
  9. GattaL. ScarpignatoC. Systematic review with meta‐analysis: Rifaximin is effective and safe for the treatment of small intestine bacterial overgrowth.Aliment. Pharmacol. Ther.201745560461610.1111/apt.13928 28078798
    [Google Scholar]
  10. WangH. ChenC. ChenX. ZhangJ. LiuY. LiX. PK/PD modeling to assess rifaximin clinical dosage in a mouse model of staphylococcus aureus-induced mastitis.Front. Vet. Sci.2021865136910.3389/fvets.2021.651369
    [Google Scholar]
  11. WangH. ChenC. ChenX. ZhangJ. LiuY. LiX. Staphylococcus aureus-PK/PD modeling to assess rifaximin clinical dosage in a mouse model of induced mastitis.Front. Vet. Sci.2021865136910.3389/fvets.2021.651369
    [Google Scholar]
  12. ValentinT. HoeniglM. WagnerJ. KrauseR. Zollner-SchwetzI. Bacteraemia with rifampin-resistant Staphylococcus aureus and the potential role of cross-resistance between rifampin and rifaximin.J. Infect.201469329529710.1016/j.jinf.2014.04.003 24780764
    [Google Scholar]
  13. CalanniF. RenzulliC. BarbantiM. ViscomiG.C. Rifaximin: Beyond the traditional antibiotic activity.J. Antibiot.201467966767010.1038/ja.2014.106 25095806
    [Google Scholar]
  14. NasibovaA. Generation of nanoparticles in biological systems and their application prospects.Adv. Biol. Earth Sci.202382140146
    [Google Scholar]
  15. RamazanliV.N. Effect of ph and temperature on the synthesis of silver nano particles extracted from olive leaf.Adv. Biol. Earth Sci.202162169173
    [Google Scholar]
  16. AhmadovI.S. BandaliyevaA.A. NasibovaA.N. The synthesis of the silver nanodrugs in the medicinal plant baikal skullcap (scutellaria baicalensis georgi) and their antioxidant, antibacterial activity.Adv. Biol. Earth Sci.202052103118
    [Google Scholar]
  17. AhmadianE. EftekhariA. KavetskyyT. KhosroushahiA.Y. TurksoyV.A. KhalilovR. Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes.Pestic. Biochem. Physiol.202016710458610.1016/j.pestbp.2020.104586
    [Google Scholar]
  18. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics20181041004019110.3390/pharmaceutics10040191
    [Google Scholar]
  19. ScioliM.S. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.587997
    [Google Scholar]
  20. RajpootK. Solid lipid nanoparticles: A promising nanomaterial in drug delivery.Curr. Pharm. Des.201925373943395910.2174/1381612825666190903155321 31481000
    [Google Scholar]
  21. Mendoza-MuñozN. Urbán-MorlánZ. Leyva-GómezG. Zambrano-ZaragozaM.L. Piñón-SegundoE. Solid lipid nanoparticles: An approach to improve oral drug delivery.J. Pharm. Pharm. Sci.20212450453210.18433/jpps31788
    [Google Scholar]
  22. MirchandaniY. PatravaleV.B. BrijeshS. Solid lipid nanoparticles for hydrophilic drugs.J. Control. Release202133545746410.1016/j.jconrel.2021.05.032
    [Google Scholar]
  23. LiC. ZhouK. ChenD. XuW. TaoY. PanY. MengK. ShabbirM.A.B. LiuQ. HuangL. XieS. Solid lipid nanopar-ticles with enteric coating for improving stability, palatability, and oral bioavailability of enrofloxacin.Int. J. Nanomed.2019141619163110.2147/IJN.S183479
    [Google Scholar]
  24. ZhouK. YanY. ChenD. HuangL. LiC. MengK. WangS. AlgharibS.A. YuanZ. XieS. Solid lipid nanoparticles for duodenum targeted oral delivery of tilmicosin.Pharmaceutics202012873110.3390/pharmaceutics12080731 32759764
    [Google Scholar]
  25. ZhengY.X. HeQ. XuM. HuangY. Construction of oral insulin-loaded solid lipid nanoparticles and their intestinal epithelial cell transcytosis study.Sichuan Da Xue Xue Bao Yi Xue Ban202152457057610.12182/20210760502 34323033
    [Google Scholar]
  26. AlgharibS.A. DawoodA. ZhouK. ChenD. LiC. MengK. MaaM.K. AhmedS. HuangL. XieS. Designing, structural determination and biological effects of rifaximin loaded chitosan- carboxymethyl chitosan nanogel.Carbohydr. Polym.202024811678210.1016/j.carbpol.2020.116782 32919570
    [Google Scholar]
  27. AntonirajM.G. KumarC.S. HenryL.J.K. NatesanS. KandasamyR. Atrial natriuretic peptide-conjugated chitosan-hydrazone-mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone.Carbohydr. Polym.20171571677168610.1016/j.carbpol.2016.11.049
    [Google Scholar]
  28. DickinsonE. Hydrocolloids as emulsifiers and emulsion stabilizers.Food Hydrocoll.20092361473148210.1016/j.foodhyd.2008.08.005
    [Google Scholar]
  29. ZhangA. MengK. LiuY. PanY. QuW. ChenD. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences.Adv. Colloid Interface Sci.202028410226110.1016/j.cis.2020.102261
    [Google Scholar]
  30. DesaiM.P. LabhasetwarV. AmidonG.L. LevyR.J. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size.Pharm. Res.199613121838184510.1023/A:1016085108889 8987081
    [Google Scholar]
  31. LiH. JinK. LuoM. WangX. ZhuX. LiuX. JiangT. ZhangQ. WangS. PangZ. Size dependency of circulation and biodistribution of biomimetic nanoparticles: Red blood cell membranecoated nanoparticles.Cells20198810.3390/cells8080881
    [Google Scholar]
  32. AnwerM.K. AliE.A. IqbalM. AhmedM.M. AldawsariM.F. SaqrA.A. AnsariM.N. AboudzadehM.A. Development of sustained release baricitinib loaded lipid-polymer hybrid nanoparticles with improved oral bioavailability.Molecules202127110.3390/molecules27010168
    [Google Scholar]
  33. TrivediV. BhomiaR. MitchellJ.C. Myristic acid coated protein immobilised mesoporous silica particles as pH induced oral delivery system for the delivery of biomolecules.Pharmaceuti-cals201912415310.3390/ph12040153
    [Google Scholar]
  34. JiaM. WangY. WangJ. QinD. WangM. ChaiL. FuY. ZhaoC. GaoC. JiaJ. ZhaoW. Myristic acid as a checkpoint to regulate STING-dependent autophagy and interferon responses by promoting N-myristoylation.Nat. Commun.202314166010.1038/s41467‑023‑36332‑3 36750575
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018276382231207103955
Loading
/content/journals/cdd/10.2174/0115672018276382231207103955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test