Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction/Background

Tetrandrine (TET) has multiple pharmacological activities, but its water solubility is poor, which is the main reason for its low bioavailability.

Objectives

The purpose of this study was to prepare TET nanocrystals (TET-NCs) using a grinding method to enhance the dissolution rate and ultimately improve the bioavailability of TET.

Methods

TET-NCs were synthesized media milling, employing Poloxam 407 (P407) as surface stabilizer and mannitol as a cryoprotectant during freeze-drying. The crystal structure, particle diameter, and zeta potential were characterized using differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The release behavior and pharmacokinetics of TET-NCs were assessed. The cytotoxicity of TET and TET-NCS on RAW264.7 cells was determined by the CCK-8 method.

Results

The particle size of TET-NCs was 360.0±7.03 nm, PDI was 0.26±0.03, and zeta potential was 6.64±0.22 mV. The cumulative dissolution within 60 minutes was 96.40±2.31%. The pharmacokinetic study showed that AUC0-72 h and Cmax of TET-NCs were significantly enhanced by 3.07 and 2.57 times, respectively, compared with TET (<0.01). TET-NCs significantly increased the cell inhibition on RAW264.7 cells compared to the TET (<0.01).

Conclusion

The preparation of TET-NCs enhanced dissolution rate and bioavailability significantly, and it also improved the inhibition effect of RAW264.7 cells.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018341709241121092617
2025-06-01
2025-10-09
Loading full text...

Full text loading...

References

  1. ShafiqA. MadniA. KhanS. SultanaH. Sumaira; Shah, H.; Khan, S.; Rehman, S.; Nawaz, M. Core-shell Pluronic F127/chitosan based nanoparticles for effective delivery of methotrexate in the management of rheumatoid arthritis.Int. J. Biol. Macromol.202221346547710.1016/j.ijbiomac.2022.05.192 35661673
    [Google Scholar]
  2. RafikS.T. ZeitounT.M. ShalabyT.I. BarakatM.K. IsmailC.A. Methotrexate conjugated gold nanoparticles improve rheumatoid vascular dysfunction in rat adjuvant-induced arthritis: gold revival.Inflammopharmacology202331132133510.1007/s10787‑022‑01104‑w 36482036
    [Google Scholar]
  3. YangM. FengX. DingJ. ChangF. ChenX. Nanotherapeutics relieve rheumatoid arthritis.J. Control. Release201725210812410.1016/j.jconrel.2017.02.032 28257989
    [Google Scholar]
  4. ZhangK. LiangF. JiaX. QianQ. WangH. Research status and progress of the role of macrophages in rheumatoid arthritis inflammatory response.J. Biomed. Nanotechnol.202319691992610.1166/jbn.2023.3607
    [Google Scholar]
  5. DolatiS. SadreddiniS. RostamzadehD. AhmadiM. Jadidi-NiaraghF. YousefiM. Utilization of nanoparticle technology in rheumatoid arthritis treatment.Biomed. Pharmacother.201680304110.1016/j.biopha.2016.03.004 27133037
    [Google Scholar]
  6. Pirmardvand CheginiS. VarshosazJ. TaymouriS. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment.Artif. Cells Nanomed. Biotechnol.201846sup250251410.1080/21691401.2018.1460373 29661045
    [Google Scholar]
  7. LyuJ. WangL. BaiX. DuX. WeiJ. WangJ. LinY. ChenZ. LiuZ. WuJ. ZhongZ. Treatment of rheumatoid arthritis by serum albumin nanoparticles coated with mannose to target neutrophils.ACS Appl. Mater. Interfaces202113126627610.1021/acsami.0c19468 33379867
    [Google Scholar]
  8. HuS. LinY. TongC. HuangH. YiO. DaiZ. SuZ. LiuB. CaiX. A pH-Driven indomethacin-loaded nanomedicine for effective rheumatoid arthritis therapy by combining with photothermal therapy.J. Drug Target.202230773775210.1080/1061186X.2022.2053539 35282742
    [Google Scholar]
  9. Al-RahimA.M. AlChalabiR. Al-SaffarA.Z. SulaimanG.M. AlbukhatyS. BelaliT. AhmedE.M. KhalilK.A.A. Folate-methotrexate loaded bovine serum albumin nanoparticles preparation: An in vitro drug targeting cytokines overwhelming expressed immune cells from rheumatoid arthritis patients.Anim. Biotechnol.202334216618210.1080/10495398.2021.1951282 34319853
    [Google Scholar]
  10. DeacA. QiQ. IndulkarA.S. PurohitH.S. GaoY. ZhangG.G.Z. TaylorL.S. Dissolution mechanisms of amorphous solid dispersions: Role of drug load and molecular interactions.Mol. Pharm.202320172273710.1021/acs.molpharmaceut.2c00892 36545917
    [Google Scholar]
  11. LiuJ. LiY. AoW. XiaoY. BaiM. LiS. Preparation and characterization of aprepitant solid dispersion with HPMCAS-LF.ACS Omega2022744399073991210.1021/acsomega.2c04021 36385804
    [Google Scholar]
  12. LiuJ. ZhangS. ZhaoX. LuY. SongM. WuS. Molecular simulation and experimental study on the inclusion of rutin with β-cyclodextrin and its derivative.J. Mol. Struct.2022125413235913236910.1016/j.molstruc.2022.132359
    [Google Scholar]
  13. WangQ. QinX. FangJ. SunX. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies.Acta Pharm. Sin. B20211151158117410.1016/j.apsb.2021.03.013 34094826
    [Google Scholar]
  14. HeY. HoC. YangD. ChenJ. OrtonE. Measurement and accurate interpretation of the solubility of pharmaceutical salts.J. Pharm. J. Pharm. Sci.201710651190119610.1016/j.xphs.2017.01.023 28153596
    [Google Scholar]
  15. ChenZ. LiuZ. WangS. ChengC. SunX. LiuZ. WeiJ. JiangJ. LanH. ZhouM. JingP. LinY. ZhouX. ZhongZ. Long-circulating lipid nanospheres loaded with flurbiprofen axetil for targeted rheumatoid arthritis treatment.Int. J. Nanomedicine2023185159518110.2147/IJN.S419502 37705869
    [Google Scholar]
  16. NasrS.S. NasraM.M.A. HazzahH.A. AbdallahO.Y. Mesoporous silica nanoparticles, a safe option for silymarin delivery: Preparation, characterization, and in vivo evaluation.Drug Deliv. Transl. Res.20199596897910.1007/s13346‑019‑00640‑3 31001719
    [Google Scholar]
  17. WuL. MengY. XuY. ChuX. Improved uptake and bioavailability of cinnamaldehyde via solid lipid nanoparticles for oral delivery.Pharm. Dev. Technol.202227101038104810.1080/10837450.2022.2147542 36367964
    [Google Scholar]
  18. KalhapureR.S. PalekarS. PatelK. MonparaJ. Nanocrystals for controlled delivery: State of the art and approved drug products.Expert Opin. Drug Deliv.202219101303131610.1080/17425247.2022.2110579 35930427
    [Google Scholar]
  19. ChenZ. WuW. LuY. What is the future for nanocrystal-based drug-delivery systems?Ther. Deliv.202011422522910.4155/tde‑2020‑0016 32157960
    [Google Scholar]
  20. ZhangX. LiZ. GaoJ. WangZ. GaoX. LiuN. LiM. ZhangH. ZhengA. Preparation of nanocrystals for insoluble drugs by top-down nanotechnology with improved solubility and bioavailability.Molecules20202551080110010.3390/molecules25051080 32121076
    [Google Scholar]
  21. PelikhO. StahrP.L. HuangJ. GerstM. ScholzP. DietrichH. GeiselN. KeckC.M. Nanocrystals for improved dermal drug delivery.Eur. J. Pharm. Biopharm.201812817017810.1016/j.ejpb.2018.04.020 29680482
    [Google Scholar]
  22. MiaoX. YangW. FengT. LinJ. HuangP. Drug nanocrystals for cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2018103e149910.1002/wnan.1499
    [Google Scholar]
  23. SigfridssonK. SkantzeP. SkantzeU. SvenssonL. LöfgrenL. NordellP. MichaëlssonE. SmedsrødB. FuglestegB. ElvevoldK. LindforsL. Nanocrystal formulations of a poorly soluble drug. 2. Evaluation of nanocrystal liver uptake and distribution after intravenous administration to mice.Int. J. Pharm.20175241-224825610.1016/j.ijpharm.2017.03.062 28373104
    [Google Scholar]
  24. FuhrmannK. GauthierM.A. LerouxJ.C. Targeting of injectable drug nanocrystals.Mol. Pharm.20141161762177110.1021/mp5001247 24766270
    [Google Scholar]
  25. PetersM.C.C. Santos NetoE. MonteiroL.M. YukuyamaM.N. MachadoM.G.M. de OliveiraI.F. ZaninM.H.A. LöbenbergR. Bou-ChacraN. Advances in ophthalmic preparation: The role of drug nanocrystals and lipid-based nanosystems.J. Drug Target.202028325927010.1080/1061186X.2019.1663858 31491352
    [Google Scholar]
  26. JakubowskaE. LulekJ. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions – A review.J. Drug Deliv. Sci. Technol.20216210235710237710.1016/j.jddst.2021.102357
    [Google Scholar]
  27. YangH. KimH. JungS. SeoH. NidaS.K. YooS.Y. LeeJ. Pharmaceutical strategies for stabilizing drug nanocrystals.Curr. Pharm. Des.201824212362237410.2174/1381612824666180515125247 29766785
    [Google Scholar]
  28. BiC. MiaoX.Q. ChowS.F. WuW.J. YanR. LiaoY.H. ChowA.H.L. ZhengY. Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution.Nanomedicine201713394395310.1016/j.nano.2016.11.004 27884638
    [Google Scholar]
  29. PuX. SunJ. QinY. ZhangX. ZhangP. YanZ. HeZ. The passive targeting and the cytotoxicity of intravenous 10-HCPT nanosuspension.Curr. Nanosci.20128576276610.2174/157341312802884553
    [Google Scholar]
  30. FontanaF. FigueiredoP. ZhangP. HirvonenJ.T. LiuD. SantosH.A. Production of pure drug nanocrystals and nano co-crystals by confinement methods.Adv. Drug Deliv. Rev.201813132110.1016/j.addr.2018.05.002 29738786
    [Google Scholar]
  31. FormicaM.L. Awde AlfonsoH.G. ParedesA.J. MelianM.E. CamachoN.M. FaccioR. TártaraL.I. PalmaS.D. Development of triamcinolone acetonide nanocrystals for ocular administration.Pharmaceutics202315268370410.3390/pharmaceutics15020683 36840006
    [Google Scholar]
  32. GigliobiancoM.R. CasadidioC. CensiR. Di MartinoP. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability.Pharmaceutics201810313416210.3390/pharmaceutics10030134 30134537
    [Google Scholar]
  33. LiuY. ZhangC. ChengL. WangH. LuM. XuH. Enhancing both oral bioavailability and anti-ischemic stroke efficacy of ginkgolide B by preparing nanocrystals self-stabilized Pickering nano-emulsion.Eur. J. Pharm. Sci.202419210662010663110.1016/j.ejps.2023.106620 37871688
    [Google Scholar]
  34. ThakurP.S. SheokandS. BansalA.K. Factors affecting crystallization kinetics of fenofibrate and its implications for the generation of nanocrystalline solid dispersions via spray drying.Cryst. Growth Des.20191984417442810.1021/acs.cgd.9b00203
    [Google Scholar]
  35. HuC. LiuZ. LiuC. ZhangY. FanH. QianF. Improvement of antialveolar echinococcosis efficacy of albendazole by a novel nanocrystalline formulation with enhanced oral bioavailability.ACS Infect. Dis.20206580281010.1021/acsinfecdis.9b00231 31576751
    [Google Scholar]
  36. SheokandS. NavikU. BansalA.K. Nanocrystalline solid dispersions (NSD) of hesperetin (HRN) for prevention of 7, 12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in Sprague-Dawley (SD) rats.Eur. J. Pharm. Sci.201912824024910.1016/j.ejps.2018.12.006 30553062
    [Google Scholar]
  37. FuX. XuS. LiZ. ChenK. FanH. WangY. XieZ. KouL. ZhangS. Enhanced intramuscular bioavailability of cannabidiol using nanocrystals: Formulation, in vitro appraisal, and pharmacokinetics.AAPS PharmSciTech2022233859610.1208/s12249‑022‑02239‑3 35288801
    [Google Scholar]
  38. RahmanM. AhmadS. TarabokijaJ. BilgiliE. Roles of surfactant and polymer in drug release from spray-dried hybrid nanocrystal-amorphous solid dispersions (HyNASDs).Powder Technol.202036166367810.1016/j.powtec.2019.11.058
    [Google Scholar]
  39. MohammadI.S. HuH. YinL. HeW. Drug nanocrystals: Fabrication methods and promising therapeutic applications.Int. J. Pharm.201956218720210.1016/j.ijpharm.2019.02.045 30851386
    [Google Scholar]
  40. KarimianA. YousefiB. SadeghiF. FeiziF. NajafzadehvarziH. ParsianH. Synthesis of biocompatible nanocrystalline cellulose against folate receptors as a novel carrier for targeted delivery of doxorubicin.Chem. Biol. Interact.202235110973110974710.1016/j.cbi.2021.109731 34728188
    [Google Scholar]
  41. ShenB. ZhuY. WangF. DengX. YueP. YuanH. ShenC. Fabrication and in vitro/vivo evaluation of quercetin nanocrystals stabilized by glycyrrhizic acid for liver targeted drug delivery.Int. J. Pharm. X2024710024610025310.1016/j.ijpx.2024.100246 38628619
    [Google Scholar]
  42. WangY.C. ZhangR.H. HuS.C. ZhangH. YangD. ZhangW.L. ZhaoY.L. CuiD.B. LiY.J. PanW.D. LiaoS.G. ZhouM. Design, synthesis, and biological evaluation of n14-amino acid-substituted tetrandrine derivatives as potential antitumor agents against human colorectal cancer.Molecules202227134040406310.3390/molecules27134040 35807286
    [Google Scholar]
  43. ChenZ. ZhaoL. ZhaoF. YangG. WangJ. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway.Oncol. Lett.20181557433 via 10.3892/ol.2018.8190 29849794
    [Google Scholar]
  44. BhagyaN. ChandrashekarK.R. Tetrandrine – A molecule of wide bioactivity.Phytochemistry201612551310.1016/j.phytochem.2016.02.005 26899361
    [Google Scholar]
  45. ChuS. LuY. LiuW. MaX. PengJ. WangX. JiangM. BaiG. Ursolic acid alleviates tetrandrine-induced hepatotoxicity by competitively binding to the substrate-binding site of glutathione S-transferases.Phytomedicine20221041543251543210.1016/j.phymed.2022.154325 35820303
    [Google Scholar]
  46. LinY.C. ChangC.W. WuC.R. Anti-nociceptive, anti-inflammatory and toxicological evaluation of Fang-Ji-Huang-Qi-Tang in rodents.BMC Complement. Altern. Med.2015151101810.1186/s12906‑015‑0527‑5 25652206
    [Google Scholar]
  47. JiangY. LiuM. LiuH. LiuS. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji).Phytochem. Rev.202019244948910.1007/s11101‑020‑09673‑w 32336965
    [Google Scholar]
  48. ZhangY. QiD. GaoY. LiangC. ZhangY. MaZ. LiuY. PengH. ZhangY. QinH. SongX. SunX. LiY. LiuZ. History of uses, phytochemistry, pharmacological activities, quality control and toxicity of the root of Stephania tetrandra S. Moore: A review.J. Ethnopharmacol.202026011299511300810.1016/j.jep.2020.112995 32497674
    [Google Scholar]
  49. WangJ. YaoZ. LaiX. BaoH. LiY. LiS. ChangL. ZhangG. Tetrandrine sensitizes nasopharyngeal carcinoma cells to irradiation by inducing autophagy and inhibiting MEK/ERK pathway.Cancer Med.20209197268727810.1002/cam4.3356 32780562
    [Google Scholar]
  50. SchützR. MüllerM. GeisslingerF. VollmarA. BartelK. BracherF. Synthesis, biological evaluation and toxicity of novel tetrandrine analogues.Eur. J. Med. Chem.202020711281011282810.1016/j.ejmech.2020.112810 32942071
    [Google Scholar]
  51. ShiJ. LiS. MaZ. GaoA. SongY. ZhangH. Acute and subchronic toxicity of tetrandrine in intravenously exposed female BALB/c mice.Chin. J. Integr. Med.2016221292593110.1007/s11655‑015‑2303‑2 26514966
    [Google Scholar]
  52. Al GareebA. GorialF. MahmoodA. The anti-rheumatoid activity of niclosamide in collagen-induced arthritis in rats.Arch. Rheumatol.201934442643310.5606/ArchRheumatol.2019.7100 32010892
    [Google Scholar]
  53. JangD. LeeA.H. ShinH.Y. SongH.R. ParkJ.H. KangT.B. LeeS.R. YangS.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics.Int. J. Mol. Sci.20212252719273510.3390/ijms22052719 33800290
    [Google Scholar]
  54. LiuR. WangS. FangS. WangJ. ChenJ. HuangX. HeX. LiuC. Liquid crystalline nanoparticles as an ophthalmic delivery system for tetrandrine: Development, characterization, and in vitro and in vivo evaluation.Nanoscale Res. Lett.201611125426610.1186/s11671‑016‑1471‑0 27188974
    [Google Scholar]
  55. ToghanA. GoudaM. ShalabiK. El-LateefH.M.A. Preparation, characterization, and evaluation of macrocrystalline and nanocrystalline cellulose as potential corrosion inhibitors for SS316 alloy during acid pickling process: Experimental and computational methods.Polymers (Basel)202113142275229910.3390/polym13142275 34301033
    [Google Scholar]
  56. ParkJ.S. KimM.S. JoungM.Y. ParkH.J. HoM.J. ChoiJ.H. SeoJ.H. SongW.H. ChoiY.W. LeeS. ChoiY.S. KangM.J. Design of montelukast nanocrystalline suspension for parenteral prolonged delivery.Int. J. Nanomedicine2022173673369010.2147/IJN.S375888 36046838
    [Google Scholar]
  57. FangY. LiS. YeL. YiJ. LiX. GaoC. WuF. GuoB. Increased bioaffinity and anti-inflammatory activity of florfenicol nanocrystals by wet grinding method.J. Microencapsul.202037210912010.1080/02652048.2019.1701115 31814493
    [Google Scholar]
  58. JiaL. XiaoJ. YangX. GaoJ. ZhangH. YuF. ZhengA. Development and comparison of intramuscularly injected long-acting testosterone undecanoate nano-/microcrystal suspensions with three different particle size.Iran. J. Pharm. Res.2021201307317 34400960
    [Google Scholar]
  59. LiuC. LiuZ. ChenY. ChenZ. ChenH. PuiY. QianF. Oral bioavailability enhancement of β-lapachone, a poorly soluble fast crystallizer, by cocrystal, amorphous solid dispersion, and crystalline solid dispersion.Eur. J. Pharm. Biopharm.2018124738110.1016/j.ejpb.2017.12.016 29305142
    [Google Scholar]
  60. ShuangR. WangM. MaoJ. ZouJ. PingY. Pharmacokinetics of 10‐hydroxycamptothecin–tetrandrine liposome complexes in rat by a simple and sensitive ultra‐high performance liquid chromatography with tandem mass spectrometry.J. Sep. Sci.202043356957610.1002/jssc.201900347 31701613
    [Google Scholar]
  61. LuanF. HeX. ZengN. Tetrandrine: A review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems.J. Pharm. Pharmacol.202072111491151210.1111/jphp.13339 32696989
    [Google Scholar]
  62. WangY. LiY. LiuJ. LiX. Pharmacokinetics and Tissue Distribution of PLGAPLL- PEG-TF Nanoparticles Loaded with Daunorubicin and Tetrandrine Following Intravenous Injection in the Rats Using LC-MS/MS.Indian J. Pharm. Edu. Res.2018521425310.5530/ijper.52.1.5
    [Google Scholar]
  63. WangZ.B. MaY. LiuH. BiY.J. WangM. KuangH.X. Simultaneous determination and pharmacokinetics of tetrandrine, fangchinoline, and cyclanoline in rat plasma by ultra-high performance liquid chromatography-mass spectrometry after oral administration of stephaniae tetrandrae radix extract.World J. Tradit. Chin. Med.20217113013710.4103/wjtcm.wjtcm_73_20
    [Google Scholar]
  64. LiuC. LvL. GuoW. MoL. HuangY. LiG. HuangX. Self-nanoemulsifying drug delivery system of tetrandrine for improved bioavailability: Physicochemical characterization and pharmacokinetic study.BioMed Res. Int.2018201811010.1155/2018/6763057 30363745
    [Google Scholar]
  65. LiJ. JinX. ZhangL. YangY. LiuR. LiZ. Comparison of different chitosan lipid nanoparticles for improved ophthalmic tetrandrine delivery: Formulation, characterization, pharmacokinetic and molecular dynamics simulation.J. Pharm. Sci.2020109123625363510.1016/j.xphs.2020.09.010 32946897
    [Google Scholar]
  66. ZhouC. GaoJ. QuH. XuL. ZhangB. GuoQ. JingF. Anti-inflammatory mechanism of action of benzoylmesaconine in lipopolysaccharide-stimulated RAW264.7 Cells.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/7008907 35873638
    [Google Scholar]
  67. JiR. WuD. LiuQ. Icariin inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells via inhibition of reactive oxygen species production by reducing the expression of NOX1 and NOX4.Biochem. Biophys. Res. Commun.202260061310.1016/j.bbrc.2022.02.023 35182975
    [Google Scholar]
  68. MaM. ZhangG. LiW. LiM. FuQ. HeZ. A carbohydrate polymer is a critical variable in the formulation of drug nanocrystals: A case study of idebenone.Expert Opin. Drug Deliv.201916121403141110.1080/17425247.2019.1682546 31622561
    [Google Scholar]
  69. CaoY. WeiZ. LiM. WangH. YinL. ChenD. WangY. ChenY. YuanQ. PuX. ZongL. DuanS. Formulation, pharmacokinetic evaluation and cytotoxicity of an enhanced-penetration paclitaxel nanosuspension.Curr. Cancer Drug Targets201919433834710.2174/1568009618666180629150927 29956630
    [Google Scholar]
  70. RayapoluR.G. YadavB. ApteS.S. VenugantiV.V.K. Development of posaconazole nanocrystalline solid dispersion: preparation, characterization and in vivo evaluation.Pharm. Dev. Technol.202429553054010.1080/10837450.2024.2353314 38713634
    [Google Scholar]
  71. MacedoL.O. BarbosaE.J. LöbenbergR. Bou-ChacraN.A. Anti-inflammatory drug nanocrystals: State of art and regulatory perspective.Eur. J. Pharm. Sci.202115810565410566810.1016/j.ejps.2020.105654 33253884
    [Google Scholar]
  72. WuH.Y. SunC.B. LiuN. Effects of different cryoprotectants on microemulsion freeze-drying.Innov. Food Sci. Emerg. Technol.201954283310.1016/j.ifset.2018.12.007
    [Google Scholar]
  73. PatelV. MehtaT.A. Betamethasone dipropionate nanocrystals: Investigation, feasibility and in vitro evaluation.AAPS PharmSciTech202223619721210.1208/s12249‑022‑02346‑1 35835936
    [Google Scholar]
  74. AmerA.M. AllamA.N. AbdallahO.Y. Preparation, characterization and ex vivo – in vivo assessment of candesartan cilexetil nanocrystals via solid dispersion technique using an alkaline esterase activator carrier.Drug Dev. Ind. Pharm.20194571140114810.1080/03639045.2019.1600533 30912678
    [Google Scholar]
  75. LuY. LvY. LiT. Hybrid drug nanocrystals.Adv. Drug Deliv. Rev.201914311513310.1016/j.addr.2019.06.006 31254558
    [Google Scholar]
  76. ShariareM.H. AltamimiM.A. MarzanA.L. TabassumR. JahanB. RezaH.M. RahmanM. AhsanG.U. KaziM. In vitro dissolution and bioavailability study of furosemide nanosuspension prepared using design of experiment (DoE).Saudi Pharm. J.20192719610510.1016/j.jsps.2018.09.002 30662312
    [Google Scholar]
  77. WangL. DuJ. ZhouY. WangY. Safety of nanosuspensions in drug delivery.Nanomedicine201713245546910.1016/j.nano.2016.08.007 27558350
    [Google Scholar]
  78. LiuH. GuoC. ShangY. ZengL. JiaH. WangZ. A supramolecular nanoparticle of pemetrexed improves the anti-tumor effect by inhibiting mitochondrial energy metabolism.Front. Bioeng. Biotechnol.2021980474780475610.3389/fbioe.2021.804747 34993192
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018341709241121092617
Loading
/content/journals/cdd/10.2174/0115672018341709241121092617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test