Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Bacterial skin and soft tissue infections (SSTIs) are widespread microbic invasions of the skin and deeper tissues. Topical drug delivery systems are the most favored administration pathway when treating SSTIs. This is down to their minimal risk of inducing systemic adverse events, reduced development of bacterial resistance, and ease of application. However, they have several drawbacks, including the lack of control over the drug release profile, skin irritations, and the limited permeability of certain compounds through the skin. To address these limitations, several nanocarrier systems were developed, with nanoliposomes standing out as the leading delivery system for the topical management of SSTIs. Despite considerable research into liposomes over the past decade, there remains a gap in detailed knowledge about designing these carriers specifically for SSTIs. Consequently, there is a pressing need for comprehensive research that focuses on the use of nanoliposomes for SSTIs and offers an extensive understanding of both SSTIs and liposomal formulations. This review explores bacterial SSTIs, covering their epidemiology, classification, microbiology, and management. It emphasizes the contribution of liposome-based nanovesicles in enhancing the local administration of antibiotics and natural antibacterial compounds for SSTI management. It also delves into the effects of liposomal formulation changes on the disease therapeutic outcomes. Additionally, it provides a guide for aligning the characteristics of the liposomes with the infection types, depths, properties, and causative agents. This signifies a substantial leap forward in the domains of drug design, development, and delivery.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018328954240801110200
2025-06-01
2025-09-02
Loading full text...

Full text loading...

References

  1. SalatinS. LotfipourF. JelvehgariM. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections.Expert Opin. Drug Deliv.201916121313133110.1080/17425247.2020.169399831738622
    [Google Scholar]
  2. LeongH.N. KurupA. TanM.Y. KwaA.L.H. LiauK.H. WilcoxM. Management of complicated skin and soft tissue infections with a special focus on the role of newer antibiotics.Infect. Drug Resist.2018111959197410.2147/IDR.S17236630464538
    [Google Scholar]
  3. KiV. RotsteinC. Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care.Cancer J. Infect. Dis. Med. Microbiol.200819217318410.1155/2008/84645319352449
    [Google Scholar]
  4. MalheiroL.F. MaganoR. FerreiraA. SarmentoA. SantosL. Skin and soft tissue infections in the intensive care unit: A retrospective study in a tertiary care center.Rev. Bras. Ter. Intensiva201729219520510.5935/0103‑507X.2017001928614442
    [Google Scholar]
  5. WalshT.L. ChanL. KonopkaC.I. BurkittM.J. MoffaM.A. BremmerD.N. MurilloM.A. WatsonC. Chan-TompkinsN.H. Appropriateness of antibiotic management of uncomplicated skin and soft tissue infections in hospitalized adult patients.BMC Infect. Dis.201616172110.1186/s12879‑016‑2067‑027899072
    [Google Scholar]
  6. KayeK.S. PettyL.A. ShorrA.F. ZilberbergM.D. Current epidemiology, etiology, and burden of acute skin infections in the United States.Clin. Infect. Dis.201968Suppl. 3S193S19910.1093/cid/ciz00230957165
    [Google Scholar]
  7. FerreiraM. OgrenM. DiasJ.N.R. SilvaM. GilS. TavaresL. Aires-da-SilvaF. GasparM.M. AguiarS.I. Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance.Molecules2021267204710.3390/molecules2607204733918529
    [Google Scholar]
  8. KarnamS. JindalA.B. AgnihotriC. SinghB.P. PaulA.T. Topical nanotherapeutics for treating MRSA-associated skin and soft tissue infection (SSTIs).AAPS PharmSciTech202324510810.1208/s12249‑023‑02563‑237100956
    [Google Scholar]
  9. PartoazarA. KianvashN. GoudarziR. New concepts in wound targeting through liposome-based nanocarriers (LBNs).J. Drug Deliv. Sci. Technol.20227710387810.1016/j.jddst.2022.103878
    [Google Scholar]
  10. ChambersE.S. Vukmanovic-StejicM. Skin barrier immunity and ageing.Immunology2020160211612510.1111/imm.1315231709535
    [Google Scholar]
  11. GalloR.L. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.J. Invest. Dermatol.201713761213121410.1016/j.jid.2016.11.04528395897
    [Google Scholar]
  12. KolimiP. NaralaS. NyavanandiD. YoussefA.A.A. DudhipalaN. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements.Cells20221115243910.3390/cells1115243935954282
    [Google Scholar]
  13. Lopez-OjedaW. PandeyA. AlhajjM. OakleyA.M. Anatomy, Skin (Integument).StatPearls2022
    [Google Scholar]
  14. DąbrowskaA.K. SpanoF. DerlerS. AdlhartC. SpencerN.D. RossiR.M. The relationship between skin function, barrier properties, and body‐dependent factors.Skin Res. Technol.201824216517410.1111/srt.1242429057509
    [Google Scholar]
  15. NagyI. PivarcsiA. KisK. KoreckA. BodaiL. McDowellA. SeltmannH. PatrickS. ZouboulisC.C. KeményL. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes.Microbes Infect.2006882195220510.1016/j.micinf.2006.04.00116797202
    [Google Scholar]
  16. NaikS. BouladouxN. WilhelmC. MolloyM.J. SalcedoR. KastenmullerW. DemingC. QuinonesM. KooL. ConlanS. SpencerS. HallJ.A. DzutsevA. KongH. CampbellD.J. TrinchieriG. SegreJ.A. BelkaidY. Compartmentalized control of skin immunity by resident commensals.Science201233760981115111910.1126/science.122515222837383
    [Google Scholar]
  17. ParkY.J. LeeH.K. The role of skin and orogenital microbiota in protective immunity and chronic immune-mediated inflammatory disease.Front. Immunol.20188JAN195510.3389/fimmu.2017.0195529375574
    [Google Scholar]
  18. EspositoS. NovielloS. LeoneS. Epidemiology and microbiology of skin and soft tissue infections.Curr. Opin. Infect. Dis.201629210911510.1097/QCO.000000000000023926779772
    [Google Scholar]
  19. KumarV. AbbasA.K. AsterJ.C. CotranR.S. RobbinsS.L. Pathologic Basis of Disease10th edElsevier2020
    [Google Scholar]
  20. EronL.J. LipskyB.A. LowD.E. NathwaniD. TiceA.D. VolturoG.A. Expert panel on managing skin and soft tissue infections Managing skin and soft tissue infections: Expert panel recommendations on key decision points.J. Antimicrob. Chemother.20035290001Suppl. 13i1710.1093/jac/dkg46614662806
    [Google Scholar]
  21. StevensD.L. BisnoA.L. ChambersH.F. DellingerE.P. GoldsteinE.J.C. GorbachS.L. HirschmannJ.V. KaplanS.L. MontoyaJ.G. WadeJ.C. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America.Clin. Infect. Dis.201459214715910.1093/cid/ciu44424947530
    [Google Scholar]
  22. OliverJ.D. Wound infections caused by Vibrio vulnificus and other marine bacteria.Epidemiol. Infect.2005133338339110.1017/S095026880500389415962544
    [Google Scholar]
  23. PoulakouG. LagouS. TsiodrasS. What’s new in the epidemiology of skin and soft tissue infections in 2018?Curr. Opin. Infect. Dis.2019322778610.1097/QCO.000000000000052730664027
    [Google Scholar]
  24. RhoadsJ.L.W. WillsonT.M. SuttonJ.D. SpivakE.S. SamoreM.H. StevensV.W. Epidemiology, disposition, and treatment of ambulatory veterans with skin and soft tissue infections.Clin. Infect. Dis.202172467568110.1093/cid/ciaa13332047886
    [Google Scholar]
  25. HershA.L. ChambersH.F. MaselliJ.H. GonzalesR. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections.Arch. Intern. Med.2008168141585159110.1001/archinte.168.14.158518663172
    [Google Scholar]
  26. EdelsbergJ. TanejaC. ZervosM. HaqueN. MooreC. ReyesK. SpaldingJ. JiangJ. OsterG. Trends in US hospital admissions for skin and soft tissue infections.Emerg. Infect. Dis.20091591516151810.3201/eid1509.08122819788830
    [Google Scholar]
  27. LautzT.B. RavalM.V. BarsnessK.A. Increasing national burden of hospitalizations for skin and soft tissue infections in children.J. Pediatr. Surg.201146101935194110.1016/j.jpedsurg.2011.05.00822008331
    [Google Scholar]
  28. RayG.T. SuayaJ.A. BaxterR. Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: A retrospective population-based study.BMC Infect. Dis.201313125210.1186/1471‑2334‑13‑25223721377
    [Google Scholar]
  29. KayeK.S. PatelD.A. StephensJ.M. KhachatryanA. PatelA. JohnsonK. Rising United States hospital admissions for acute bacterial skin and skin structure infections: Recent trends and economic impact.PLoS One20151011e014327610.1371/journal.pone.014327626599005
    [Google Scholar]
  30. MillerL.G. EisenbergD.F. LiuH. ChangC.L. WangY. LuthraR. WallaceA. FangC. SingerJ. SuayaJ.A. Incidence of skin and soft tissue infections in ambulatory and inpatient settings, 2005–2010.BMC Infect. Dis.201515136210.1186/s12879‑015‑1071‑026293161
    [Google Scholar]
  31. MorganE. HohmannS. RidgwayJ.P. DaumR.S. DavidM.Z. Decreasing incidence of skin and soft-tissue infections in 86 US emergency departments, 2009–2014.Clin. Infect. Dis.201968345345910.1093/cid/ciy50929912305
    [Google Scholar]
  32. TognettiL. MartinelliC. BertiS. HercogovaJ. LottiT. LeonciniF. MorettiS. Bacterial skin and soft tissue infections: Review of the epidemiology, microbiology, aetiopathogenesis and treatment.J. Eur. Acad. Dermatol. Venereol.201226893194110.1111/j.1468‑3083.2011.04416.x22214317
    [Google Scholar]
  33. MayA.K. Skin and soft tissue infections.Surg. Clin. North Am.2009892403420, viii10.1016/j.suc.2008.09.00619281891
    [Google Scholar]
  34. DiPiroJ.T. Pharmacotherapy: A Pathophysiologic Approach11th edMcGraw-Hill Education2020
    [Google Scholar]
  35. ChillerK. SelkinB.A. MurakawaG.J. Skin microflora and bacterial infections of the skin.J. Investig. Dermatol. Symp. Proc.20016317017410.1046/j.0022‑202x.2001.00043.x11924823
    [Google Scholar]
  36. DrydenM.S. Skin and soft tissue infection: Microbiology and epidemiology.Int. J. Antimicrob. Agents2009341Suppl. 1S2S710.1016/S0924‑8579(09)70541‑219560670
    [Google Scholar]
  37. BowlerP.G. DuerdenB.I. ArmstrongD.G. Wound microbiology and associated approaches to wound management.Clin. Microbiol. Rev.200114224426910.1128/CMR.14.2.244‑269.200111292638
    [Google Scholar]
  38. AmparoT.R. SeibertJ.B. VieiraP.M.A. TeixeiraL.F.M. SantosO.D.H. de SouzaG.H.B. Herbal medicines to the treatment of skin and soft tissue infections: Advantages of the multi‐targets action.Phytother. Res.20203419410310.1002/ptr.651931713305
    [Google Scholar]
  39. StevensD.L. BisnoA.L. ChambersH.F. DellingerE.P. GoldsteinE.J.C. GorbachS.L. HirschmannJ.V. KaplanS.L. MontoyaJ.G. WadeJ.C. Infectious Diseases Society of America Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America.Clin. Infect. Dis.2014592e10e5210.1093/cid/ciu29624973422
    [Google Scholar]
  40. NwabuifeJ.C. PantA.M. GovenderT. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus.Adv. Drug Deliv. Rev.202117811386110.1016/j.addr.2021.11386134242712
    [Google Scholar]
  41. LinY.F. YangC.H. SindyH. LinJ.Y. Rosaline HuiC.Y. TsaiY.C. WuT.S. HuangC.T. KaoK.C. HuH.C. ChiuC.H. HungS.I. ChungW.H. Severe cutaneous adverse reactions related to systemic antibiotics.Clin. Infect. Dis.201458101377138510.1093/cid/ciu12624599767
    [Google Scholar]
  42. KoyaS. F. GaneshS. SelvarajS. WirtzV. J. GaleaS. RockersP. C. Consumption of systemic antibiotics in India in 2019.Lancet Reg Health Southeast Asia2022410002510.1016/j.lansea.2022.100025
    [Google Scholar]
  43. CaputoW.J. MonterosaP. BeggsD. Antibiotic misuse in wound care: Can bacterial localization through fluorescence imaging help?Diagnostics20221212320710.3390/diagnostics1212320736553214
    [Google Scholar]
  44. PatilP.B. DatirS.K. SaudagarR.B. A review on topical gels as drug delivery system.J. Drug Deliv. Ther.201993-s98999410.22270/JDDT.V9I3‑S.2930
    [Google Scholar]
  45. KaurJ. KaurJ. JaiswalS. GuptaG. Recent advances in topical drug delivery system.Indo Am J Pharm Res2016663536369
    [Google Scholar]
  46. RukavinaZ. Šegvić KlarićM. Filipović-GrčićJ. LovrićJ. VanićŽ. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections.Int. J. Pharm.20185531-210911910.1016/j.ijpharm.2018.10.02430312749
    [Google Scholar]
  47. MishraA. PanolaR. VyasB. MarothiaD. KansaraH. Topical antibiotics and semisolid dosage forms.Int. J. Pharm. Erud.433354
    [Google Scholar]
  48. HmingthansangaV. SinghN. BanerjeeS. ManickamS. VelayuthamR. NatesanS. Improved topical drug delivery: Role of permeation enhancers and advanced approaches.Pharmaceutics20221412281810.3390/pharmaceutics1412281836559311
    [Google Scholar]
  49. TapfumaneyiP. ImranM. MohammedY. RobertsM.S. Recent advances and future prospective of topical and transdermal delivery systems.Front. Drug Deliv.2022295773210.3389/fddev.2022.957732
    [Google Scholar]
  50. SinghJ. DuttaT. KimK. H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation.J. Nanobiotechnol.201816112410.1186/s12951‑018‑0408‑4
    [Google Scholar]
  51. BeheshtkhooN. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material.Appl. Phys. A201812436310.1007/s00339‑018‑1782‑3
    [Google Scholar]
  52. KrishnanV. MitragotriS. Nanoparticles for topical drug delivery: Potential for skin cancer treatment.Adv. Drug Deliv. Rev.20201538710810.1016/j.addr.2020.05.01132497707
    [Google Scholar]
  53. GoyalR. MacriL.K. KaplanH.M. KohnJ. Nanoparticles and nanofibers for topical drug delivery.J. Control. Release2016240779210.1016/j.jconrel.2015.10.04926518723
    [Google Scholar]
  54. RainaN. RaniR. Kumar ThakurV. GuptaM. New insights in topical drug delivery for skin disorders: From a nanotechnological perspective.ACS Omega2023822191451916710.1021/acsomega.2c08016
    [Google Scholar]
  55. YahC. SimateG. HlangothiP. SomaiB. Nanotechnology and the future of condoms in the prevention of sexually transmitted infections.Ann. Afr. Med.2018172495710.4103/aam.aam_32_1729536957
    [Google Scholar]
  56. WuX. GuyR.H. Applications of nanoparticles in topical drug delivery and in cosmetics.J. Drug Deliv. Sci. Technol.200919637138410.1016/S1773‑2247(09)50080‑9
    [Google Scholar]
  57. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S12195628243086
    [Google Scholar]
  58. GaoY. ChenY. CaoY. MoA. PengQ. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus.Eur. J. Med. Chem.202121311305610.1016/j.ejmech.2020.11305633280899
    [Google Scholar]
  59. OlmosD. González-BenitoJ. Polymeric materials with antibacterial activity: A review.Polymers202113461310.3390/polym1304061333670638
    [Google Scholar]
  60. DizajS.M. LotfipourF. Barzegar-JalaliM. ZarrintanM.H. AdibkiaK. Antimicrobial activity of the metals and metal oxide nanoparticles.Mater. Sci. Eng. C20144427828410.1016/j.msec.2014.08.03125280707
    [Google Scholar]
  61. AlaviM. VarmaR.S. Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances.Sustain. Chem. Pharm.20212110041210.1016/j.scp.2021.100412
    [Google Scholar]
  62. XinQ. ShahH. NawazA. XieW. AkramM.Z. BatoolA. TianL. JanS.U. BoddulaR. GuoB. LiuQ. GongJ.R. Antibacterial carbon‐based nanomaterials.Adv. Mater.20193145180483810.1002/adma.20180483830379355
    [Google Scholar]
  63. AlaviM. JabariE. JabbariE. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: A review.Expert Rev. Anti Infect. Ther.2021191354410.1080/14787210.2020.181056932791928
    [Google Scholar]
  64. AranaL. GallegoL. AlkortaI. Incorporation of antibiotics into solid lipid nanoparticles: A promising approach to reduce antibiotic resistance emergence.Nanomaterials2021115125110.3390/nano1105125134068834
    [Google Scholar]
  65. MadkhaliO.A. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems.2022275154310.3390/molecules2705154335268643
    [Google Scholar]
  66. DingX. WangA. TongW. XuF.J. Biodegradable antibacterial polymeric nanosystems: A new hope to cope with multidrug‐resistant bacteria.Small20191520190099910.1002/smll.20190099930957927
    [Google Scholar]
  67. Hallaj-NezhadiS. HassanM. Nanoliposome-based antibacterial drug delivery.Drug Deliv.201522558158910.3109/10717544.2013.86340924313827
    [Google Scholar]
  68. PatelS.K. PrajapatiB.G. PatelN.K. PanchalM.M. PatelR.P. Topical liposomes in drug delivery.RE:view2021413944
    [Google Scholar]
  69. RahmanM. AlamK. BegS. AnwarF. KumarV. Liposomes as Topical Drug Delivery Systems: State of the Arts.Biomedical Applications of Nanoparticles201914916110.1016/B978‑0‑12‑816506‑5.00004‑8
    [Google Scholar]
  70. MallickA. SahuR. NandiG. DuaT.K. ShawT.K. DharA. KanuA. PaulP. Development of liposomal formulation for controlled delivery of valacyclovir: An in vitro study.J. Pharm. Innov.20231831020102910.1007/s12247‑022‑09706‑1
    [Google Scholar]
  71. ShawT.K. PaulP. ChatterjeeB. Research-based findings on scope of liposome-based cosmeceuticals: An updated review.Futur. J. Pharm. Sci.2022814610.1186/s43094‑022‑00435‑3
    [Google Scholar]
  72. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  73. PanahiY. FarshbafM. MohammadhosseiniM. MirahadiM. KhalilovR. SaghfiS. AkbarzadehA. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications.Artif. Cells Nanomed. Biotechnol.201745478879910.1080/21691401.2017.128249628278586
    [Google Scholar]
  74. LiM. DuC. GuoN. TengY. MengX. SunH. LiS. YuP. GalonsH. Composition design and medical application of liposomes.Eur. J. Med. Chem.201916464065310.1016/j.ejmech.2019.01.00730640028
    [Google Scholar]
  75. ShahS. DhawanV. HolmR. NagarsenkerM.S. PerrieY. Liposomes: Advancements and innovation in the manufacturing process.Adv. Drug Deliv. Rev.2020154-15510212210.1016/j.addr.2020.07.00232650041
    [Google Scholar]
  76. MajaL. ŽeljkoK. MatejaP. Sustainable technologies for liposome preparation.J. Supercrit. Fluids202016510498410.1016/j.supflu.2020.104984
    [Google Scholar]
  77. AjeeshkumarK.K. AneeshP.A. RajuN. SuseelaM. RavishankarC.N. BenjakulS. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review.Compr. Rev. Food Sci. Food Saf.20212021280130610.1111/1541‑4337.1272533665991
    [Google Scholar]
  78. WangJ. GongJ. WeiZ. Strategies for liposome drug delivery systems to improve tumor treatment efficacy.AAPS PharmSciTech20222312710.1208/s12249‑021‑02179‑434907483
    [Google Scholar]
  79. ElhissiA. PhoenixD. AhmedW. Some Approaches to Large-Scale Manufacturing of Liposomes.Emerging Nanotechnologies for Manufacturing201440241710.1016/B978‑0‑323‑28990‑0.00015‑4
    [Google Scholar]
  80. HasC. SuntharP. A comprehensive review on recent preparation techniques of liposomes.J. Liposome Res.202030433636510.1080/08982104.2019.166801031558079
    [Google Scholar]
  81. NobleG.T. StefanickJ.F. AshleyJ.D. KiziltepeT. BilgicerB. Ligand-targeted liposome design: Challenges and fundamental considerations.Trends Biotechnol.2014321324510.1016/j.tibtech.2013.09.00724210498
    [Google Scholar]
  82. NayakD. TippavajhalaV.K. A comprehensive review on preparation, evaluation and applications of deformable liposomes.Iran. J. Pharm. Res.202120118620510.22037/IJPR.2020.112878.1399734400952
    [Google Scholar]
  83. LombardoD. KiselevM.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application.Pharmaceutics202214354310.3390/pharmaceutics1403054335335920
    [Google Scholar]
  84. van der KoogL. GandekT.B. NagelkerkeA. Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization.Adv. Healthc. Mater.2022115210063910.1002/adhm.20210063934165909
    [Google Scholar]
  85. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.11385134224787
    [Google Scholar]
  86. SheoranR. KhokraS.L. ChawlaV. DurejaH. Recent patents, formulation techniques, classification and characterization of liposomes.Recent Pat. Nanotechnol.2019131172710.2174/187221051366618112711041330479223
    [Google Scholar]
  87. FarooqueF. WasiM. MugheesM.M. Liposomes as drug delivery system: An updated review.J. Drug Deliv. Ther.2021115-S14915810.22270/jddt.v11i5‑S.5063
    [Google Scholar]
  88. AndraV.V.S.N.L. PammiS.V.N. BhatrajuL.V.K.P. RuddarajuL.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents.Bionanoscience202212127429110.1007/s12668‑022‑00941‑x35096502
    [Google Scholar]
  89. ChudasmaM.P. ShahS.A. QureshiM.H.N. ShahN. ShahD. TrivediR. ShahV.H. Brief insight on nanovesicular liposomes as drug-delivery carriers for medical applications.J. Explor. Res. Pharmacol.20238310.14218/JERP.2022.00086
    [Google Scholar]
  90. CuiM. WirajaC. ChewS.W.T. XuC. Nanodelivery systems for topical management of skin disorders.Mol. Pharm.202118249150510.1021/acs.molpharmaceut.0c0015432470311
    [Google Scholar]
  91. MarwahM. PerrieY. BadhanR.K.S. LowryD. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer.J. Liposome Res.202030213614910.1080/08982104.2019.160474631010367
    [Google Scholar]
  92. Mat RaniN.N.I. Mustafa HusseinZ. MustapaF. AzhariH. SekarM. ChenX.Y. Mohd AminM.C.I. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA).Eur. J. Pharm. Biopharm.20211658410510.1016/j.ejpb.2021.04.02133974973
    [Google Scholar]
  93. KimE.M. JeongH.J. Liposomes: Biomedical applications.Chonnam Med. J.2021571273510.4068/cmj.2021.57.1.2733537216
    [Google Scholar]
  94. Gonzalez GomezA. HosseinidoustZ. Liposomes for antibiotic encapsulation and delivery.ACS Infect. Dis.20206589690810.1021/acsinfecdis.9b0035732208673
    [Google Scholar]
  95. FerreiraM. PintoS.N. Aires-da-SilvaF. BettencourtA. AguiarS.I. GasparM.M. Liposomes as a nanoplatform to improve the delivery of antibiotics into Staphylococcus aureus biofilms.Pharmaceutics202113332110.3390/pharmaceutics1303032133801281
    [Google Scholar]
  96. PircalabioruG.G. ChifiriucM.C. Nanoparticulate drug-delivery systems for fighting microbial biofilms: From bench to bedside.Future Microbiol.202015867969810.2217/fmb‑2019‑025132495694
    [Google Scholar]
  97. ScriboniA.B. CoutoV.M. RibeiroL.N.M. FreiresI.A. GroppoF.C. de PaulaE. Franz-MontanM. Cogo-MüllerK. Fusogenic liposomes increase the antimicrobial activity of vancomycin against Staphylococcus aureus Biofilm.Front. Pharmacol.201910140110.3389/fphar.2019.0140131849660
    [Google Scholar]
  98. MakhathiniS.S. KalhapureR.S. JadhavM. WaddadA.Y. GannimaniR. OmoloC.A. RambharoseS. MocktarC. GovenderT. Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA).J. Drug Target.201927101094110710.1080/1061186X.2019.159938030901236
    [Google Scholar]
  99. HajiahmadiF. AlikhaniM.Y. ShariatifarH. ArabestaniM.R. AhmadvandD. The bactericidal effect of liposomal vancomycin as a topical combating system against Methicillin-resistant Staphylococcus aureus skin wound infection in mice.Med. J. Islam. Repub. Iran201933115310.47176/mjiri.33.15332280659
    [Google Scholar]
  100. HajiahmadiF. AlikhaniM.Y. ShariatifarH. ArabestaniM.R. AhmadvandD. The bactericidal effect of lysostaphin coupled with liposomal vancomycin as a dual combating system applied directly on methicillin-resistant Staphylococcus aureus infected skin wounds in mice.Int. J. Nanomedicine2019145943595510.2147/IJN.S21452131447553
    [Google Scholar]
  101. ThapaR.K. KiickK.L. SullivanM.O. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds.Acta Biomater.202010311512810.1016/j.actbio.2019.12.01431843720
    [Google Scholar]
  102. SandeL. SanchezM. MontesJ. WolfA.J. MorganM.A. OmriA. LiuG.Y. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model.J. Antimicrob. Chemother.20126792191219410.1093/jac/dks21222661572
    [Google Scholar]
  103. VanićŽ. RukavinaZ. MannerS. FallareroA. UzelacL. KraljM. Amidžić KlarićD. BogdanovA. RaffaiT. VirokD.P. Filipović-GrčićJ. Škalko-BasnetN. Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections.Int. J. Nanomedicine2019145957597610.2147/IJN.S21169131440052
    [Google Scholar]
  104. KarpuzM. Atlihan-GundogduE. DemirE.S. SenyigitZ. Radiolabeled tedizolid phosphate liposomes for topical application: Design, characterization, and evaluation of cellular binding capacity.AAPS PharmSciTech20212226210.1208/s12249‑020‑01917‑433528714
    [Google Scholar]
  105. Eroğluİ. AslanM. YamanÜ. GultekinogluM. ÇalamakS. KartD. UlubayramK. Liposome-based combination therapy for acne treatment.J. Liposome Res.202030326327310.1080/08982104.2019.163064631185768
    [Google Scholar]
  106. AscensoA. BatistaC. CardosoP. MendesT. PraçaF. BentleyV. RaposoS. SimõesS. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes.Int. J. Nanomedicine2015105837585110.2147/IJN.S8618626425085
    [Google Scholar]
  107. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery.Int. J. Pharm.20063221-2606610.1016/j.ijpharm.2006.05.02716806755
    [Google Scholar]
  108. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics1209085532916782
    [Google Scholar]
  109. MatharooN. MohdH. Michniak-KohnB. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024161e191810.1002/wnan.191837527953
    [Google Scholar]
  110. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.7241522247858
    [Google Scholar]
  111. VermaP. PathakK. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation.Nanomedicine20128448949610.1016/j.nano.2011.07.00421839053
    [Google Scholar]
  112. MaheshwariR.G.S. TekadeR.K. SharmaP.A. DarwhekarG. TyagiA. PatelR.P. JainD.K. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment.Saudi Pharm. J.201220216117010.1016/j.jsps.2011.10.00123960788
    [Google Scholar]
  113. LimsuwanT. AmnuaikitT. Development of ethosomes containing mycophenolic acid.Procedia Chem.2012432833510.1016/j.proche.2012.06.046
    [Google Scholar]
  114. SguizzatoM. FerraraF. HallanS.S. BaldisserottoA. DrechslerM. MalatestaM. CostanzoM. CortesiR. PugliaC. ValacchiG. EspositoE. Ethosomes and transethosomes for mangiferin transdermal delivery.Antioxidants202110576810.3390/antiox1005076834066018
    [Google Scholar]
  115. SongC.K. BalakrishnanP. ShimC.K. ChungS.J. ChongS. KimD.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation.Colloids Surf. B Biointerfaces20129229930410.1016/j.colsurfb.2011.12.00422205066
    [Google Scholar]
  116. GharbaviM. AmaniJ. Kheiri-ManjiliH. DanafarH. SharafiA. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier.Adv. Pharmacol. Sci.2018201811510.1155/2018/684797130651728
    [Google Scholar]
  117. El-MenshaweS.F. HusseinA.K. Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery.Pharm. Dev. Technol.201318477978610.3109/10837450.2011.59816621913880
    [Google Scholar]
  118. GuptaM. PrajapatiR.N. IrchhaiyaR. SinghN. PrajapatiS.K. Novel clindamycin loaded transfersomes formulation for effective management of acne.World J. Pharm. Res.201776577310.20959/wjpr20176‑8494
    [Google Scholar]
  119. TiwariR. TiwariG. WalP. WalA. MauryaP. Development, characterization and transdermal delivery of dapsone and an antibiotic entrapped in ethanolic liposomal gel for the treatment of lapromatous leprosy.Open Nanomed. J.20185111510.2174/1875933501805010001
    [Google Scholar]
  120. van ZylL. ViljoenJ.M. HaynesR.K. AucampM. NgwaneA.H. du PlessisJ. Topical delivery of artemisone, clofazimine and decoquinate encapsulated in vesicles and their in vitro efficacy against mycobacterium tuberculosis.AAPS PharmSciTech20192013310.1208/s12249‑018‑1251‑530604176
    [Google Scholar]
  121. SinghV. GaikwadM. Development and evaluation of transferosomal gel using cephalexin.Research Square202110.21203/rs.3.rs‑940323/v1
    [Google Scholar]
  122. MistryA. RavikumarP. Development and evaluation of azelaic acid based ethosomes for topical delivery for the treatment of acne.IJPER2016503sS232S24310.5530/ijper.50.3.34
    [Google Scholar]
  123. BurchackaE. PotaczekP. PaduszyńskiP. Karłowicz-BodalskaK. HanT. HanS. New effective azelaic acid liposomal gel formulation of enhanced pharmaceutical bioavailability.Biomed. Pharmacother.20168377177510.1016/j.biopha.2016.07.01427484346
    [Google Scholar]
  124. EspositoE. MenegattiE. CortesiR. Ethosomes and liposomes as topical vehicles for azelaic acid: A preformulation study.Int. J. Cosmet. Sci.200426527027110.1111/j.1467‑2494.2004.00233_2.x15264053
    [Google Scholar]
  125. IskandarsyahI. AprianiE.F. RosanaY. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne.J. Adv. Pharm. Technol. Res.2019102758010.4103/japtr.JAPTR_289_1831041186
    [Google Scholar]
  126. VollonoL. FalconiM. GazianoR. IacovelliF. DikaE. TerraccianoC. BianchiL. CampioneE. Potential of curcumin in skin disorders.Nutrients2019119216910.3390/nu1109216931509968
    [Google Scholar]
  127. NguyenM.H. VuN.B.D. NguyenT.H.N. LeH.S. LeH.T. TranT.T. LeX.C. LeV.T. NguyenT.T. BuiC.B. ParkH.J. In vivo comparison of wound healing and scar treatment effect between curcumin–oligochitosan nanoparticle complex and oligochitosan-coated curcumin-loaded-liposome.J. Microencapsul.201936215616810.1080/02652048.2019.161247631030591
    [Google Scholar]
  128. PartoazarA. KianvashN. DarvishiM. NasoohiS. RezayatS. BahadorA. Ethosomal curcumin promoted wound healing and reduced bacterial flora in second degree burn in rat.Drug Res.2016661266066510.1055/s‑0042‑11403427626605
    [Google Scholar]
  129. KianvashN. BahadorA. PourhajibagherM. GhafariH. NikouiV. RezayatS.M. DehpourA.R. PartoazarA. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: Biocompatibility, wound healing, and anti-bacterial effects.Drug Deliv. Transl. Res.20177565466310.1007/s13346‑017‑0405‑428707264
    [Google Scholar]
  130. TernulloS. GagnatE. JulinK. JohannessenM. BasnetP. VanićŽ. Škalko-BasnetN. Liposomes augment biological benefits of curcumin for multitargeted skin therapy.Eur. J. Pharm. Biopharm.201914415416410.1016/j.ejpb.2019.09.01631542438
    [Google Scholar]
  131. RahmanM. SinghJ.G. AfzalO. AltamimiA.S.A. AlrobaianM. HaneefJ. BarkatM.A. AlmalkiW.H. HandaM. ShuklaR. Nasar Mir Najib UllahS. KumarV. BegS. Preparation, characterization, and evaluation of curcumin–graphene oxide complex-loaded liposomes against Staphylococcus aureus in topical disease.ACS Omega2022748434994350910.1021/acsomega.2c0394036506117
    [Google Scholar]
  132. MadanS. NehateC. BarmanT.K. RathoreA.S. KoulV. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: In vitro and in vivo studies.Drug Dev. Ind. Pharm.201945339540410.1080/03639045.2018.1546310
    [Google Scholar]
  133. TernulloS. Schulte WerningL.V. HolsæterA.M. Škalko-BasnetN. Curcumin-in-deformable liposomes-in-chitosan-hydrogel as a novel wound dressing.Pharmaceutics2019121810.3390/pharmaceutics1201000831861794
    [Google Scholar]
  134. LiD. AnX. MuY. A liposomal hydrogel with enzyme triggered release for infected wound.Chem. Phys. Lipids201922310478310.1016/j.chemphyslip.2019.10478331233714
    [Google Scholar]
  135. ZhangC.W. LiM.F. TaoR. PengM.J. WangZ.H. QiZ.W. XueX.Y. WangC.Z. Physiochemical property and antibacterial activity of formulation containing polyprenol extracted from Ginkgo biloba leaves.Ind. Crops Prod.202014711221310.1016/j.indcrop.2020.112213
    [Google Scholar]
  136. Abu-SeidaA.M. Effect of propolis on experimental cutaneous wound healing in dogs.Vet. Med. Int.201520151410.1155/2015/67264326783495
    [Google Scholar]
  137. OlczykP. WisowskiG. Komosinska-VassevK. StojkoJ. KlimekK. OlczykM. KozmaE.M. Propolis modifies collagen types I and III accumulation in the matrix of burnt tissue.Evid. Based Complement. Alternat. Med.2013201311010.1155/2013/42380923781260
    [Google Scholar]
  138. OlczykP. Komosinska-VassevK. WisowskiG. MencnerL. StojkoJ. KozmaE.M. Propolis modulates fibronectin expression in the matrix of thermal injury.BioMed Res. Int.2014201411010.1155/2014/74810124738072
    [Google Scholar]
  139. AytekinA.A. Tuncay TanrıverdiS. Aydın KöseF. KartD. Eroğluİ. ÖzerÖ. Propolis loaded liposomes: Evaluation of antimicrobial and antioxidant activities.J. Liposome Res.202030210711610.1080/08982104.2019.159901230913939
    [Google Scholar]
  140. ForouzanfarF. BazzazB.S. HosseinzadehH. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects.Iran. J. Basic Med. Sci.2014171292993825859296
    [Google Scholar]
  141. BhalaniU. ShahK. Preparation and evaluation of topical gel of nigella sativa (kalonji).Int. J. Res. Dev. Pharm. Life Sci20154416691672
    [Google Scholar]
  142. NasirA-A. HadiA-H. Treatment of acne vulgaris with nigella sativa oil lotion.Iraqi Postgrad. Med. J.201092
    [Google Scholar]
  143. KausarH. MujeebM. AhadA. MoolakkadathT. AqilM. AhmadA. AkhterM.H. Optimization of ethosomes for topical thymoquinone delivery for the treatment of skin acne.J. Drug Deliv. Sci. Technol.20194917718710.1016/j.jddst.2018.11.016
    [Google Scholar]
  144. Abd-allahH. RagaieM.H. ElmowafyE. Unraveling the pharmaceutical and clinical relevance of the influence of syringic acid loaded linoleic acid transferosomes on acne.Int. J. Pharm.202363912294010.1016/j.ijpharm.2023.12294037040824
    [Google Scholar]
  145. ItohA. IsodaK. KondohM. KawaseM. WatariA. KobayashiM. TamesadaM. YagiK. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury.Biol. Pharm. Bull.201033698398710.1248/bpb.33.98320522963
    [Google Scholar]
  146. NoubighA. AkermiA. Solubility and thermodynamic behavior of syringic acid in eight pure and water + methanol mixed solvents.J. Chem. Eng. Data201762103274328310.1021/acs.jced.7b00333
    [Google Scholar]
  147. BulbakeU. DoppalapudiS. KommineniN. KhanW. Liposomal formulations in clinical use: An updated review.Pharmaceutics2017921210.3390/pharmaceutics902001228346375
    [Google Scholar]
  148. AlshaerW. NsairatH. LafiZ. HouraniO.M. Al-KadashA. EsawiE. AlkilanyA.M. Quality by design approach in liposomal formulations: Robust product development.20222811010.3390/molecules2801001036615205
    [Google Scholar]
  149. GhasemiyehP. Mohammadi-SamaniS. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages.Drug Des. Devel. Ther.2020143271328910.2147/DDDT.S26464832848366
    [Google Scholar]
  150. VermaD. VermaS. BlumeG. FahrA. Particle size of liposomes influences dermal delivery of substances into skin.Int. J. Pharm.20032581-214115110.1016/S0378‑5173(03)00183‑212753761
    [Google Scholar]
  151. ZhangL. WangJ. ChiH. WangS. Local anesthetic lidocaine delivery system: Chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles.Drug Deliv.20162393529353710.1080/10717544.2016.120456927340888
    [Google Scholar]
  152. JeonS. YooC.Y. ParkS.N. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery.Colloids Surf. B Biointerfaces201512971410.1016/j.colsurfb.2015.03.01825819360
    [Google Scholar]
  153. MorrowD.I.J. GarlandM.J. McCarronP.A. WoolfsonA.D. DonnellyR.F. Innovative drug delivery strategies for topical photodynamic therapy using porphyrin precursors.J. Environ. Pathol. Toxicol. Oncol.200726210511610.1615/JEnvironPatholToxicolOncol.v26.i2.5017725536
    [Google Scholar]
  154. LymberopoulosA. DemopoulouC. KyriaziM. KatsarouM.S. DemertzisN. HatziandoniouS. MaswadehH. PapaioanouG. DemetzosC. MaibachH. RallisM. Liposome percutaneous penetration in vivo.Toxicology Research and Application2017110.1177/2397847317723196
    [Google Scholar]
  155. ChoiM.J. MaibachH.I. Liposomes and niosomes as topical drug delivery systems.Skin Pharmacol. Physiol.200518520921910.1159/00008666616015019
    [Google Scholar]
  156. IbarakiH. KanazawaT. OogiC. TakashimaY. SetaY. Effects of surface charge and flexibility of liposomes on dermal drug delivery.J. Drug Deliv. Sci. Technol.20195015516210.1016/j.jddst.2019.01.028
    [Google Scholar]
  157. GilletA. EvrardB. PielG. Liposomes and parameters affecting their skin penetration behaviour.J. Drug Deliv. Sci. Technol.2011211354210.1016/S1773‑2247(11)50004‑8
    [Google Scholar]
  158. OgisoT. YamaguchiT. IwakiM. TaninoT. MiyakeY. Effect of positively and negatively charged liposomes on skin permeation of drugs.J. Drug Target.200191495910.3109/1061186010899563211378523
    [Google Scholar]
  159. González-RodríguezM.L. RabascoA.M. Charged liposomes as carriers to enhance the permeation through the skin.Expert Opin. Drug Deliv.20118785787110.1517/17425247.2011.57461021557706
    [Google Scholar]
  160. ElmowafyM. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation.Colloids Surf. B Biointerfaces202120311174810.1016/j.colsurfb.2021.11174833853001
    [Google Scholar]
  161. LuP. ZhangX. LiF. XuK.F. LiY.H. LiuX. YangJ. ZhuB. WuF.G. Cationic liposomes with different lipid ratios: Antibacterial activity, antibacterial mechanism, and cytotoxicity evaluations.Pharmaceuticals20221512155610.3390/ph1512155636559007
    [Google Scholar]
  162. IbarakiH. KanazawaT. ChienW.Y. NakaminamiH. AokiM. OzawaK. KanekoH. TakashimaY. NoguchiN. SetaY. The effects of surface properties of liposomes on their activity against Pseudomonas aeruginosa PAO-1 biofilm.J. Drug Deliv. Sci. Technol.20205710175410.1016/j.jddst.2020.101754
    [Google Scholar]
  163. AlhaririM. MajrashiM.A. BahkaliA.H. AlmajedF.S. AzghaniA.O. KhiyamiM. AlyamaniE.J. AljohaniS.M. HalwaniM.A. Efficacy of neutral and negatively charged liposome-loaded gentamicin on planktonic bacteria and biofilm communities.Int. J. Nanomedicine2017126949696110.2147/IJN.S14170929075113
    [Google Scholar]
  164. GraceV.M.B. WilsonD.D. GuruvayoorappanC. DanishaJ.P. BonatiL. Liposome nano‐formulation with cationic polar lipid DOTAP and cholesterol as a suitable pH‐responsive carrier for molecular therapeutic drug (all‐ trans retinoic acid) delivery to lung cancer cells.IET Nanobiotechnol.202115438039010.1049/nbt2.1202834694713
    [Google Scholar]
  165. MaheraniB. Arab-TehranyE. MozafariR. Liposomes: A review of manufacturing techniques and targeting strategies.Curr. Nanosci.20117343645210.2174/157341311795542453
    [Google Scholar]
  166. SharmaV.K. SarwaK.K. MazumderB. Fluidity enhancement: A critical factor for performance of liposomal transdermal drug delivery system.J. Liposome Res.2014242838910.3109/08982104.2013.84795624160895
    [Google Scholar]
  167. SakdisetP. OkadaA. TodoH. SugibayashiK. Selection of phospholipids to design liposome preparations with high skin penetration-enhancing effects.J. Drug Deliv. Sci. Technol.201844586410.1016/j.jddst.2017.11.021
    [Google Scholar]
  168. van HoogevestP. WendelA. The use of natural and synthetic phospholipids as pharmaceutical excipients.Eur. J. Lipid Sci. Technol.201411691088110710.1002/ejlt.20140021925400504
    [Google Scholar]
  169. DrescherS. van HoogevestP. The phospholipid research center: Current research in phospholipids and their use in drug delivery.Pharmaceutics20201212123510.3390/pharmaceutics1212123533353254
    [Google Scholar]
  170. BalakrishnanP. ShanmugamS. LeeW.S. LeeW.M. KimJ.O. OhD.H. KimD.D. KimJ.S. YooB.K. ChoiH.G. WooJ.S. YongC.S. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery.Int. J. Pharm.20093771-21810.1016/j.ijpharm.2009.04.02019394413
    [Google Scholar]
  171. GargV. SinghH. BimbrawhS. SinghS.K. GulatiM. VaidyaY. KaurP. Ethosomes and transfersomes: Principles, perspectives and practices.Curr. Drug Deliv.201714561363310.2174/156720181366616052011443627199229
    [Google Scholar]
  172. DasB. NayakA. K. MallickS. Transferosomes: A novel nanovesicular approach for drug delivery.Systems of Nanovesicular Drug DeliveryAcademic Press202210311410.1016/B978‑0‑323‑91864‑0.00022‑X
    [Google Scholar]
  173. ChauhanP. TyagiB.K. ChauhanP. Herbal novel drug delivery systems and transfersomes.J. Drug Deliv. Ther.20188316216810.22270/jddt.v8i3.1772
    [Google Scholar]
  174. BarenholzY. Relevancy of drug loading to liposomal formulation therapeutic efficacy.J. Liposome Res.20031311810.1081/LPR‑12001748212725720
    [Google Scholar]
  175. ChountoulesiM. NazirisN. PippaN. DemetzosC. The significance of drug-to-lipid ratio to the development of optimized liposomal formulation.J. Liposome Res.201828324925810.1080/08982104.2017.134383628627268
    [Google Scholar]
  176. PattniB.S. ChupinV.V. TorchilinV.P. New developments in liposomal drug delivery.Chem. Rev.201511519109381096610.1021/acs.chemrev.5b0004626010257
    [Google Scholar]
  177. MajiR. OmoloC.A. JaglalY. SinghS. DevnarainN. MocktarC. GovenderT. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride.Int. J. Pharm.202160712099010.1016/j.ijpharm.2021.12099034389419
    [Google Scholar]
  178. Gonzalez GomezA. SyedS. MarshallK. HosseinidoustZ. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics.ACS Omega201946108661087610.1021/acsomega.9b0082531460184
    [Google Scholar]
  179. SankarC. MuthukumarS. ArulkumaranG. ShaliniS. SundaraganapathyR. samuelS. Formulation and characterization of liposomes containing clindamycin and green tea for anti acne.Res J Pharm Technol201912125977598410.5958/0974‑360X.2019.01038.2
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018328954240801110200
Loading
/content/journals/cdd/10.2174/0115672018328954240801110200
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test