Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

Zeolitic imidazolate frameworks (ZIFs) play a crucial role among metal-organic frameworks due to their highly desirable properties, including high surface area, appropriate pore size, and excellent thermal and chemical stability.

Methods

In this study, ZIF-8 loaded with aspirin and coated using pectin (ZIF-8/Asp@Pectin) was utilized as a suitable and effective platform for the drug delivery system. The preparation of this coated MOF followed environmentally friendly methods, and aspirin was successfully loaded.

Results

Characterization of the obtained ZIF-8/Asp@Pectin was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FT-IR) spectroscopy, and BET analysis.

Conclusion

The release of aspirin from ZIF-8/Asp@Pectin was studied using UV–Vis spectroscopy at 258 nm under conditions in HCl and PBS buffer solutions.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018288328240109064308
2025-06-01
2025-09-02
Loading full text...

Full text loading...

References

  1. HatamiA.H. An introduction to nanotechnology and drug delivery.Chem. Methodol.20215153165
    [Google Scholar]
  2. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.20202411210.1186/s40824‑020‑00190‑7 32537239
    [Google Scholar]
  3. PatraJ.K.D. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnol.2018161133
    [Google Scholar]
  4. ParkH. OtteA. ParkK. Evolution of drug delivery systems: From 1950 to 2020 and beyond.J. Control. Release2022342536510.1016/j.jconrel.2021.12.030 34971694
    [Google Scholar]
  5. Seyed Mohammad Hossein HosseiniM.R.N.-J. Preparation and characterization of mebeverine hydrochloride niosomes as controlled release drug delivery system.Chem. Methodol.202213
    [Google Scholar]
  6. BhowmikD. Recent advances in novel topical drug delivery system.Pharma Innov.201219
    [Google Scholar]
  7. JainK.K. Drug delivery systems - An overview.Methods Mol. Biol.200843715010.1007/978‑1‑59745‑210‑6_1 18369961
    [Google Scholar]
  8. FengS. ZhangX. ShiD. WangZ. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review.Front. Chem. Sci. Eng.202115222123710.1007/s11705‑020‑1927‑8
    [Google Scholar]
  9. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules26195905 34641447
    [Google Scholar]
  10. LiuY.L. ChenD. ShangP. YinD.C. A review of magnet systems for targeted drug delivery.J. Control. Release20193029010410.1016/j.jconrel.2019.03.031 30946854
    [Google Scholar]
  11. SingcoB. LiuL.H. ChenY.T. ShihY.H. HuangH.Y. LinC.H. Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal-organic frameworks.Microporous Mesoporous Mater.201622325426010.1016/j.micromeso.2015.08.017
    [Google Scholar]
  12. TibbettsI. KostakisG. Recent bio-advances in metal-organic frameworks.Molecules2020256129110.3390/molecules25061291 32178399
    [Google Scholar]
  13. HarrisonD. Metal-organic frameworks for drug delivery: A design perspective.ACS Appl. Mater. Interfaces202113670047020
    [Google Scholar]
  14. ZhouH.C.J. KitagawaS. Metal-Organic Frameworks (MOFs).Chem. Soc. Rev.201443165415541810.1039/C4CS90059F 25011480
    [Google Scholar]
  15. SunY. ZhengL. YangY. QianX. FuT. LiX. YangZ. YanH. CuiC. TanW. Metal–organic framework nanocarriers for drug delivery in biomedical applications.Nano-Micro Lett.202012110310.1007/s40820‑020‑00423‑3 34138099
    [Google Scholar]
  16. VahedT.A. Naimi-JamalM.R. PanahiL. Metal-organic frameworks as an appropriate platform for controlled drug release.The 20th International Electronic Conference on Synthetic Organic Chemistry,2016
    [Google Scholar]
  17. ChenW. WuC. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.Dalton Trans.20184772114213310.1039/C7DT04116K 29369314
    [Google Scholar]
  18. PloetzE. EngelkeH. LächeltU. WuttkeS. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials.Adv. Funct. Mater.20203041190906210.1002/adfm.201909062
    [Google Scholar]
  19. Azizi VahedT. Naimi-JamalM.R. PanahiL. Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release.J. Drug Deliv. Sci. Technol.20194957057610.1016/j.jddst.2018.12.022
    [Google Scholar]
  20. WangQ. SunY. LiS. ZhangP. YaoQ. Synthesis and mod-ification of ZIF-8 and its application in drug delivery and tumor therapy.RSC Adv.20201062376003762010.1039/D0RA07950B 35515141
    [Google Scholar]
  21. LeeY.R. JangM.S. ChoH.Y. KwonH.J. KimS. AhnW.S. ZIF-8: A comparison of synthesis methods.Chem. Eng. J.201527127628010.1016/j.cej.2015.02.094
    [Google Scholar]
  22. SoomroN.A. WuQ. AmurS.A. LiangH. Ur RahmanA. YuanQ. WeiY. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent.Colloids Surf. B Biointerfaces201918211036410.1016/j.colsurfb.2019.110364 31352254
    [Google Scholar]
  23. MorrisG.A. KökS.M. HardingS.E. AdamsG.G. Polysaccharide drug delivery systems based on pectin and chitosan.Biotechnol. Genet. Eng. Rev.201027125728410.1080/02648725.2010.10648153 21415901
    [Google Scholar]
  24. LiD. LiJ. DongH. LiX. ZhangJ. RamaswamyS. XuF. Pectin in biomedical and drug delivery applications: A review.Int. J. Biol. Macromol.2021185496510.1016/j.ijbiomac.2021.06.088 34146559
    [Google Scholar]
  25. FarshadS. Darvish GanjiM. Theoretical study of interaction between aspirine drug and Al-soped graphene nanostructure toward designing of suitable nanocarrier for drug delivery.Majallah-i Ulum-i Pizishki202030214115410.29252/iau.30.2.141
    [Google Scholar]
  26. TangY. SinghJ. Controlled delivery of aspirin: Effect of aspi-rin on polymer degradation and in vitro release from PLGA based phase sensitive systems.Int. J. Pharm.20083571-211912510.1016/j.ijpharm.2008.01.053 18329202
    [Google Scholar]
  27. KedirH.M. SisayE.A. AbiyeA.A. Enteric-coated aspirin and the risk of gastrointestinal side effects: A systematic review.Int. J. Gen. Med.2021144757476310.2147/IJGM.S326929 34466020
    [Google Scholar]
  28. Al-HamadinyS.Q. SalmanR.I. NajmanS.K. DilfyS.H. QurabiyH.E.A. Clinical evaluation of aspirin effects on gastrointestinal tract and circulatory system.NVEO-Nat. Volat. Essent. Oils J.202153285343
    [Google Scholar]
  29. SadekS. FazelY. SparacinoG. CheungR. TajammalR. TahirM. MahmoodS. Aspirin and the gastrointestinal tract: A review of risks and benefits.Am. Coll. Gastroenterol.2020115S61710.14309/01.ajg.0000706964.55460.af
    [Google Scholar]
  30. JianM. LiuB. LiuR. QuJ. WangH. ZhangX. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature.RSC Advances2015560484334844110.1039/C5RA04033G
    [Google Scholar]
  31. LiuY. YangG. JinS. XuL. ZhaoC.X. Development of high‐drug‐loading nanoparticles.ChemPlusChem20208592143215710.1002/cplu.202000496 32864902
    [Google Scholar]
  32. AzeezN.A. SaravananM. ChandarN.R.K. VishaalM.K. DeepaV.S. Enhancing the aspirin loading and release efficiency of silver oxide nanoparticles using oleic acid‐based bio‐surfactant fromENTEROMORPHA INTESTINALIS.Appl. Organomet. Chem.20203411e593410.1002/aoc.5934
    [Google Scholar]
  33. AminP.D. Raimi-AbrahamB.T. ShahD.S. GurramS. Medicated topicals.Remington.Elsevier202138139310.1016/B978‑0‑12‑820007‑0.00021‑0
    [Google Scholar]
  34. Md NordinN.A.H. IsmailA.F. YahyaN. Zeolitic imidazole framework 8 decorated graphene oxide (ZIF-8/GO) mixed matrix membrane (MMM) for CO2/CH4 separation.J. Teknol.2017791-2596310.11113/jt.v79.10438
    [Google Scholar]
  35. ParkK.S. NiZ. CôtéA.P. ChoiJ.Y. HuangR. Uribe-RomoF.J. ChaeH.K. O’KeeffeM. YaghiO.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.Proc. Natl. Acad. Sci.200610327101861019110.1073/pnas.0602439103 16798880
    [Google Scholar]
  36. MuL. LiuB. LiuH. YangY. SunC. ChenG. A novel method to improve the gas storage capacity of ZIF-8.J. Mater. Chem.20122224122461225210.1039/c2jm31541f
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018288328240109064308
Loading
/content/journals/cdd/10.2174/0115672018288328240109064308
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): aspirin; drug delivery system; MOF; pectin; ZIF-8; ZIF-8/Asp@Pectin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test