Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

During excavator operation, drivers often need to work continuously for a long period of time, and this work pattern can greatly reduce work efficiency. In addition, drivers maintain a fixed posture for a long time to operate the excavator, which can cause the phenomenon of muscle fatigue and joint discomfort, and even cause muscle strains and other injuries.

Objective

In order to protect the driver's health and work efficiency, the excavator cab is optimized and designed to reduce the harm to the human body through reasonable improvement for long time work, so as to improve the work efficiency.

Methods

Inspired by the patent, 16 muscles of human body were selected to conduct muscle fatigue analysis experiments on 11 operation processes of excavator to obtain the optimisation indexes, followed by the establishment of biomechanical model of human upper limbs and lower limbs according to the experimental results, and the construction of optimization model based on the value of the minimum joint moments, and finally, the optimized layout of excavator cab was re-optimized by using the whale optimization algorithm.

Results

After 600 iterations of the algorithm, the total joint torque decreases from 395 N*m to 348.2 N*m. In the optimised excavator, the driver's total RULA score decreases from 4 to 3 when performing the right turn, left turn and backward action, while the total RULA score decreases from 5 to 4 when performing the lowering arm, extending arm, shovel unloading and left rotation action.

Conclusion

The driver is more likely to cause muscle fatigue when controlling the excavator to perform forward movement and lower arm movement, the optimization of joystick position and length, pedal position, and seat height using whale algorithm improves the driver's comfort during operation and reduces the fatigue during operation accordingly. The findings of this study can provide a reference for related patent research and development.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976373057250203055436
2025-02-10
2025-11-14
Loading full text...

Full text loading...

References

  1. FabioG. MargheritaP. LucaZ. MarcelloP. An automatic procedure based on virtual ergonomic analysis to promote human-centric manufacturing.Procedia Manuf.20193848849610.1016/j.promfg.2020.01.062
    [Google Scholar]
  2. VitharanaV.H.P. ChindaT. Development of a lower back pain prevention index for heavy equipment operators in the construction industry: System dynamics modelling.Int J Construc Manag202121767769310.1080/15623599.2019.1579969
    [Google Scholar]
  3. KittusamyN.K. BuchholzB. Whole-body vibration and postural stress among operators of construction equipment: A literature review.J. Safety Res.200435325526110.1016/j.jsr.2004.03.01415288559
    [Google Scholar]
  4. SmetsM.P.H. EgerT.R. GrenierS.G. Whole-body vibration experienced by haulage truck operators in surface mining operations: A comparison of various analysis methods utilized in the prediction of health risks.Appl. Ergon.201041676377010.1016/j.apergo.2010.01.00220185120
    [Google Scholar]
  5. WatersT. GenaidyA. ViruetH.B. MakolaM. The impact of operating heavy equipment vehicles on lower back disorders.Ergonomics200851560263610.1080/0014013070177919718432441
    [Google Scholar]
  6. MahdaviN. DianatI. HeidarimoghadamR. KhotanlouH. FaradmalJ. A review of work environment risk factors influencing muscle fatigue.Int. J. Ind. Ergon.20208010302810.1016/j.ergon.2020.103028
    [Google Scholar]
  7. LuML LoweBD HowardNL Work-related Musculoskeletal disorders[M]//Modern Occupational Diseases: Diagnosis, Epidemiology, Management and Prevention.Dubai, UAEBentham Science Publishers2022287353
    [Google Scholar]
  8. La DelfaN.J. WhittakerR.L. LockleyR.M.E. FournierD.E. DickersonC.R. The sensitivity of shoulder muscle fatigue to vertical hand location during complex manual force exertions.Int. J. Ind. Ergon.20228810327210.1016/j.ergon.2022.103272
    [Google Scholar]
  9. HostensI. RamonH. Assessment of muscle fatigue in low level monotonous task performance during car driving.J. Electromyogr. Kinesiol.200515326627410.1016/j.jelekin.2004.08.00215763673
    [Google Scholar]
  10. ChenY. YangC. CôtéJ.N. Few sex-specific effects of fatigue on muscle synergies in a repetitive pointing task.J. Biomech.202416311190510.1016/j.jbiomech.2023.11190538183760
    [Google Scholar]
  11. YoonW. ShinG. Muscle fatigue tracking during dynamic elbow flexion-extension movements with a varying hand load.Appl. Ergon.202411610421710.1016/j.apergo.2023.10421738160628
    [Google Scholar]
  12. ShariatzadehM.J. HafshejaniE.H. MitchellC.J. Predicting muscle fatigue during dynamic contractions using wavelet analysis of surface electromyography signal.Biocybern. Biomed. Eng.202343242844110.1016/j.bbe.2023.04.002
    [Google Scholar]
  13. RakshitR. BarmanS. XiangY. YangJ. Sensitivity analysis of sex- and functional muscle group-specific parameters for a three-compartment-controller model of muscle fatigue.J. Biomech.202214111122410.1016/j.jbiomech.2022.11122435921702
    [Google Scholar]
  14. KangY. LiuF. ChenW. LiX. TaoY. HuangW. Recognizing situation awareness of forklift operators based on eye-movement & EEG features.Int. J. Ind. Ergon.202410010355210.1016/j.ergon.2024.103552
    [Google Scholar]
  15. ZhangW. YangH. LiY. ZhaoY. XuH. An optimization model of tractor clutch pedal design parameters based on lower limb biomechanical characteristics.Int. J. Ind. Ergon.20239810351910.1016/j.ergon.2023.103519
    [Google Scholar]
  16. HertzbergH.T.E. The human buttock in sitting: Pressures, patterns and palliatives.Ameri Automo Transac197281394710.4271/720005
    [Google Scholar]
  17. McAtamneyL. Nigel CorlettE. RULA: A survey method for the investigation of work-related upper limb disorders.Appl. Ergon.1993242919910.1016/0003‑6870(93)90080‑S15676903
    [Google Scholar]
  18. HignettS. McAtamneyL. Rapid entire body assessment (REBA).Appl. Ergon.200031220120510.1016/S0003‑6870(99)00039‑310711982
    [Google Scholar]
  19. KeeD. KarwowskiW. LUBA: An assessment technique for postural loading on the upper body based on joint motion discomfort and maximum holding time.Appl. Ergon.200132435736610.1016/S0003‑6870(01)00006‑011461037
    [Google Scholar]
  20. AkopovA.S. BeklaryanL.A. Simulation of human crowd behavior in extreme situations.Int. J. Pure Appl. Math.2012791121138
    [Google Scholar]
  21. VladimirV. NataljaD. IgorU. Coefficients determination of fuzzy products rules in a fuzzy model for excavators’ ergonomics estimation. MATEC Web Conf20182240201310.1051/matecconf/201822402013
    [Google Scholar]
  22. HellaF. TisserandM. SchoullerJ.F. EnglertM. A new method for checking the driving visibility on hydraulic excavators.Int. J. Ind. Ergon.19918213514510.1016/0169‑8141(91)90014‑D
    [Google Scholar]
  23. SchneiderL. SogemeierD. JaitnerT. BuchnerA. StutzigN. Adaptions in back muscle activity in long-haul truck drivers during prolonged driving with and without seat-integrated stimulation.Int. J. Ind. Ergon.20239610347510.1016/j.ergon.2023.103475
    [Google Scholar]
  24. VelikanovV. DyorinaN. PanfilovaO. Stability of a mine excavator with a variable cab position[C]//MATEC Web of Conferences.EDP Sciences201822417
    [Google Scholar]
  25. RahmaniR. AliabadiM. GolmohammadiR. BabamiriM. FarhadianM. Body physiological responses of city bus drivers subjected to noise and vibration exposure in working environment.Heliyon202288e1032910.1016/j.heliyon.2022.e1032936060995
    [Google Scholar]
  26. JinX.Q. ZhangJ.Y. LiuY.H. The ergonomics research of the joystick in excavator cab.Appl. Mech. Mater.2014494-49512813110.4028/www.scientific.net/AMM.494‑495.128
    [Google Scholar]
  27. KumarG.S. DasA. Analysis and ergonomic improvement of working postures in cast house work station using JACK modelling.Int. J. Hum. Factors Model. Simul.201231163110.1504/IJHFMS.2012.050060
    [Google Scholar]
  28. OhK.W. KimD. HongD. Performance evaluation of excavator control device with EMG-based fatigue analysis.Int. J. Precis. Eng. Manuf.201415219319910.1007/s12541‑014‑0325‑x
    [Google Scholar]
  29. RoggioF. VitaleE. FilettiV. RapisardaV. MusumeciG. RomanoE. Ergonomic evaluation of young agricultural operators using handle equipment through electromyography and vibrations analysis between the fingers.Saf. Health Work202213444044710.1016/j.shaw.2022.07.00336579008
    [Google Scholar]
  30. NamY. KooB. CichockiA. ChoiS. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.IEEE Trans. Biomed. Eng.201461245346210.1109/TBME.2013.228090024021635
    [Google Scholar]
  31. NgeoJ.G. TameiT. ShibataT. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.J. Neuroeng. Rehabil.201411112210.1186/1743‑0003‑11‑12225123024
    [Google Scholar]
  32. LecocqM. LantoineP. BougardC. Neuromuscular fatigue profiles depends on seat feature during long duration driving on a static simulator.Appl. Ergon.20208710311810.1016/j.apergo.2020.10311832501249
    [Google Scholar]
  33. SturdyJ.T. SessomsP.H. SilvermanA.K. A backpack load sharing model to evaluate lumbar and hip joint contact forces during shoulder borne and hip belt assisted load carriage.Appl. Ergon.20219010327710.1016/j.apergo.2020.10327733011587
    [Google Scholar]
  34. ParkJ. JungK. LeeB. Development of statistical geometric models for prediction of a driver’s hip and eye locations.Int. J. Ind. Ergon.201972132032910.1016/j.ergon.2019.06.011
    [Google Scholar]
  35. BarszapA.G. SkavhaugI.M. JoshiS.S. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.Hum. Mov. Sci.20164922523810.1016/j.humov.2016.06.00927455381
    [Google Scholar]
  36. LarsonD.J. PintoB.L. BrownS.H.M. Differential effects of muscle fatigue on dynamic spine stability: Implications for injury risk.J. Electromyogr. Kinesiol.20184320921610.1016/j.jelekin.2018.11.00130439631
    [Google Scholar]
  37. ZabihhosseinianM. YielderP. HolmesM.W.R. MurphyB. Neck muscle fatigue affects performance of an eye-hand tracking task.J. Electromyogr. Kinesiol.2019471910.1016/j.jelekin.2019.04.00131005033
    [Google Scholar]
  38. PeternelL. FangC. TsagarakisN. AjoudaniA. A selective muscle fatigue management approach to ergonomic human-robot co-manipulation.Robot. Comput.-Integr. Manuf.201958697910.1016/j.rcim.2019.01.013
    [Google Scholar]
  39. RussellM.S. La DelfaN.J. MurphyB.A. The effect of neck muscle fatigue on shoulder humeral rotation joint position sense.J. Electromyogr. Kinesiol.20215910255410.1016/j.jelekin.2021.10255434029973
    [Google Scholar]
  40. KarthickP.A. RamakrishnanS. Muscle fatigue analysis in isometric contractions using geometric features of surface electromyography signals.Biomed. Signal Process. Control20216810260310.1016/j.bspc.2021.102603
    [Google Scholar]
  41. JirglM. SedivaS. BradacZ. Evaluating the effect of fatigue on Driver’s performance.IFAC-PapersOnLine202458926326810.1016/j.ifacol.2024.07.407
    [Google Scholar]
  42. MehmoodI. LiH. UmerW. Non-invasive detection of mental fatigue in construction equipment operators through geometric measurements of facial features.J. Safety Res.20248923425010.1016/j.jsr.2024.01.01338858047
    [Google Scholar]
  43. LiJ. ChenG. Antwi-AfariM.F. Recognizing sitting activities of excavator operators using multi-sensor data fusion with machine learning and deep learning algorithms.Autom. Construct.202416510555410.1016/j.autcon.2024.105554
    [Google Scholar]
  44. AssadzadehA. ArashpourM. LiH. HosseiniR. ElghaishF. BadugeS. Excavator 3D pose estimation using deep learning and hybrid datasets.Adv. Eng. Inform.20235510187510.1016/j.aei.2023.101875
    [Google Scholar]
  45. XuS. LiuY. LeeH. LiW. Neural interfaces: Bridging the brain to the world beyond healthcare.Exploration2024452023014610.1002/EXP.2023014639439491
    [Google Scholar]
  46. LiJ. LiH. UmerW. Identification and classification of construction equipment operators’ mental fatigue using wearable eye-tracking technology.Autom. Construct.202010910300010.1016/j.autcon.2019.103000
    [Google Scholar]
  47. ShiJ. WangK. Fatigue driving detection method based on Time-Space-Frequency features of multimodal signals.Biomed. Signal Process. Control20238410474410.1016/j.bspc.2023.104744
    [Google Scholar]
  48. PengB. ZhangY. WangM. ChenJ. GaoD. T-A-MFFNet: Multi-feature fusion network for EEG analysis and driving fatigue detection based on time domain network and attention network.Comput. Biol. Chem.202310410786310.1016/j.compbiolchem.2023.10786337023639
    [Google Scholar]
  49. LinZ. QiuT. LiuP. ZhangL. ZhangS. MuZ. Fatigue driving recognition based on deep learning and graph neural network.Biomed. Signal Process. Control20216810259810.1016/j.bspc.2021.102598
    [Google Scholar]
  50. ZhangY. ChenS. CaoW. MFFNet: Multi-dimensional Feature Fusion Network based on attention mechanism for sEMG analysis to detect muscle fatigue.Expert Syst. Appl.202118511563910.1016/j.eswa.2021.115639
    [Google Scholar]
  51. XuS. ManshaiiF. XiaoX. ChenJ. Artificial intelligence assisted nanogenerator applications.J. Mater. Chem. A Mater. Energy Sustain.202513283285410.1039/D4TA07127A
    [Google Scholar]
  52. ZhangW. WangQ. XuZ. ShangY. XuH. Development of a tractor operator-operation environment coupled biomechanical model and analysis of lower limb muscle fatigue.Int. J. Ind. Ergon.20239310340710.1016/j.ergon.2022.103407
    [Google Scholar]
  53. GrujicicM. PanduranganB. XieX. GramopadhyeA.K. WagnerD. OzenM. Musculoskeletal computational analysis of the influence of car-seat design/adjustments on long-distance driving fatigue.Int. J. Ind. Ergon.201040334535510.1016/j.ergon.2010.01.002
    [Google Scholar]
  54. JebelliH. SeoJ. HwangS. LeeS.H. Physiology-based dynamic muscle fatigue model for upper limbs during construction tasks.Int. J. Ind. Ergon.20207810298410.1016/j.ergon.2020.102984
    [Google Scholar]
  55. Systems and methods for ergonomic measurement.US Patent 9378412B22010
  56. Information processing device, transport device and method, and program.WO Patent 2020054458A12019
  57. Osafo-YeboahB. JiangS. DelpishR. JiangZ. NtuenC. Empirical study to investigate the range of force feedback necessary for best operator performance in a haptic controlled excavator interface.Int. J. Ind. Ergon.201343319720210.1016/j.ergon.2013.02.005
    [Google Scholar]
  58. SalcudeanS.E. Hashtrudi-ZaadK. TafazoliS. Bilateral matched impedance teleoperation with application to excavator control.IEEE Control Syst.1999196293710.1109/37.806913
    [Google Scholar]
  59. JamaluddinF.N. IbrahimF. AhmadS.A. A new approach to noninvasive‐prolonged fatigue identification based on surface EMG time‐frequency and wavelet features.J. Healthc. Eng.202320231195116510.1155/2023/195116536756137
    [Google Scholar]
  60. LinCS ChangPR LuhJYS Formulation and optimization of cubic polynomial joint trajectories for industrial robots.IEEE Trans Autom Control.198328121066107410.1109/TAC.1983.1103175
    [Google Scholar]
  61. AkyeampongJ. Using digital human modeling to enhance work visibility for excavator.IIE Ann Confer Procee201331119091918
    [Google Scholar]
  62. LuD. Measurement Methods of sports biomechanics.BeijingBeijing Sport University Press2001327355
    [Google Scholar]
  63. FukushimaE.F. HiroseS. A computed torque method based attitude control with optimal force distribution for articulated body mobile robots.J Robot Soci Japan200018457658310.7210/jrsj.18.576
    [Google Scholar]
  64. TangZ. YangH. ZhangL. LiuP. Effect of shoulder angle variation on sEMG-based elbow joint angle estimation.Int. J. Ind. Ergon.201868328028910.1016/j.ergon.2018.08.012
    [Google Scholar]
  65. SaraswatP. AndersenM.S. MacWilliamsB.A. A musculoskeletal foot model for clinical gait analysis.J. Biomech.20104391645165210.1016/j.jbiomech.2010.03.00520385385
    [Google Scholar]
  66. IshakM. KhalidM.N.H. HarunM. Determination of epoch length and regression model for 15-second segment of sEMG signal used in joiny analysis of spectrum and amplitude.J Technol201658713
    [Google Scholar]
  67. Kuijt-EversL.F.M. KrauseF. VinkP. Aspects to improve cabin comfort of wheel loaders and excavators according to operators.Appl. Ergon.200334326527110.1016/S0003‑6870(03)00032‑212737927
    [Google Scholar]
  68. ZhaoX. Azim SharudinS. LvH.L. A novel product shape design method integrating Kansei engineering and whale optimization algorithm.Adv. Eng. Inform.20246210284710.1016/j.aei.2024.102847
    [Google Scholar]
  69. GuoW. LiuT. DaiF. XuP. An improved whale optimization algorithm for forecasting water resources demand.Appl. Soft Comput.20208610592510.1016/j.asoc.2019.105925
    [Google Scholar]
  70. ZhaoJ ZhuX SongT Serial manipulator time-jerk optimal trajectory planning based on hybrid IWOA-PSO algorithm.IEEE Access2022106592660410.1109/ACCESS.2022.3141448
    [Google Scholar]
  71. BozorgiS.M. YazdaniS. IWOA: An improved whale optimization algorithm for optimization problems.J Computa Desi Enginee20196324325910.1016/j.jcde.2019.02.002
    [Google Scholar]
  72. GoldbogenJ.A. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology.Bioscience20136329010010.1525/bio.2013.63.2.5
    [Google Scholar]
  73. MirjaliliS. LewisA. The whale optimization algorithm.Adv. Eng. Softw.2016955516710.1016/j.advengsoft.2016.01.008
    [Google Scholar]
/content/journals/meng/10.2174/0122127976373057250203055436
Loading
/content/journals/meng/10.2174/0122127976373057250203055436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test