Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Introduction

The unconventional thermal machining method of laser cutting is extensively used. Using this method, any material, essentially, having intricate geometries is machined accurately. The primary purpose of the current paper is to investigate how process factors affect kerf width for CO and fiber laser machining of the SS 316L method. This work mainly focuses on an experimental study of CO and fiber laser machining for SS 316L.

Methods

Changing process variables, including gas pressure, laser power, and cutting speed, the cut characteristics are assessed using the measurement of kerf width. A bystronic laser machine is used for the experimentation.

Results

The design of the experiment (DOE) technique is applied using the response surface methodology and Box Behnken design. In this, three factors and two levels are chosen, resulting in 17 trial runs. ANOVA is used to perform mathematical computations. This paper also covers the research on SS 316L laser machining and identifies the optimized parameter. The major finding of this research is that changing the laser power affects the kerf width. The CO and fiber laser processing results in optimum kerf width values of 0.5726 mm and 0.3950 mm, respectively.

Conclusion

This study contributes to the understanding of laser machining of SS 316L and is a valuable resource for potential patent applications related to laser cutting technologies and optimized machining parameters.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976341322241029085727
2024-12-13
2025-11-14
Loading full text...

Full text loading...

References

  1. Dutta MajumdarJ. MannaI. Laser processing of materials.Sadhana2003283-449556210.1007/BF02706446
    [Google Scholar]
  2. BiswasR. KuarA.S. SarkarS. MitraS. A parametric study of pulsed Nd:YAG laser micro-drilling of gamma-titanium aluminide.Opt. Laser Technol.2010421233110.1016/j.optlastec.2009.04.011
    [Google Scholar]
  3. PowellJ. Al-MashikhiS.O. KaplanA.F.H. VoiseyK.T. Fibre laser cutting of thin section mild steel: An explanation of the ‘striation free’ effect.Opt. Lasers Eng.20114981069107510.1016/j.optlaseng.2011.03.011
    [Google Scholar]
  4. PetringD. MolitorT. SchneiderF. WolfN. Diagnostics, modeling and simulation: three keys towards mastering the cutting process with fiber, disk and diode lasers.Phys. Procedia20123918619610.1016/j.phpro.2012.10.029
    [Google Scholar]
  5. FanCH LongtinJP Modeling optical breakdown in dielectrics during ultrafast laser processing.Appl Opt200140183124313110.1364/AO.40.003124
    [Google Scholar]
  6. PessoaD.F. HerwigP. WetzigA. ZimmermannM. Influence of notch effects created by laser cutting process on fatigue behavior of metastable austenitic.Procedia Eng.2017201717518210.1016/j.engfracmech.2017.05.040
    [Google Scholar]
  7. KaratasC. KelesO. UslanI. UstaY. Laser cutting of steel sheets: Influence of workpiece thickness and beam waist position on kerf size and stria formation.J. Mater. Process. Technol.20061721222910.1016/j.jmatprotec.2005.08.017
    [Google Scholar]
  8. GhanyK.A. NewishyM. Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser.J. Mater. Process. Technol.2005168343844710.1016/j.jmatprotec.2005.02.251
    [Google Scholar]
  9. Al-SulaimanF.A. YilbasB.S. AhsanM. CO2 laser cutting of a carbon/carbon multi-lamelled plain-weave structure.J. Mater. Proc. Technol.2006173334535110.1016/j.jmatprotec.2005.12.004
    [Google Scholar]
  10. LumK.C.P. NgS.L. BlackI. CO2 laser cutting of MDF: 1. Determination of process parameter settings.Optics Laser Technol.2000321677610.1016/S0030‑3992(00)00020‑7
    [Google Scholar]
  11. ZhengH.Y. HanZ.Z. ChenZ.D. ChenW.L. YeoS. Quality and cost comparisons between laser and waterjet cutting.J. Mater. Process. Technol.199662429429810.1016/S0924‑0136(96)02423‑5
    [Google Scholar]
  12. SchulzW. KostrykinV. NießenM. Dynamics of ripple formation and melt flow in laser beam cutting.J. Phys. D Appl. Phys.199932111219122810.1088/0022‑3727/32/11/307
    [Google Scholar]
  13. MakashevN.K. AsmolovE.S. BlinkovV.V. Gas-hydrodynamics of CW laser cutting of metals in inert gas.Proceedings of the SPIE Russia National Conference: Industrial Lasers and Laser Material Processing1993 SepMoscow, Russia. Bellingham (WA): SPIE19942910.1117/12.171629
    [Google Scholar]
  14. YudinP. KovalevO. Visualization of events inside kerfs during laser cutting of fusible metal.J. Laser Appl.2009211394510.2351/1.3071497
    [Google Scholar]
  15. HorisawaH. FushimiT. TakasakiT. YamaguchiS. Flow characterization in a laser cut kerf. Technical Digest. CLEO/Pacific Rim ’99, Proceedings of the Pacific Rim Conference on Lasers and Electro-OpticsSeoul, Korea30 August–3 September 199910.1109/CLEOPR.1999.811467
    [Google Scholar]
  16. AnamulH. AltabH. A Fuzzy logic based prediction model for kerf width in laser beam machining.Mater. Manuf. Process.201631567968410.1080/10426914.2015.1037901
    [Google Scholar]
  17. SoroushM. MostafaM. MohammadD. Development of an intelligent model to optimize heat-affected zone, kerf, and roughness in 309 stainless steel plasma cutting by using experimental results.Mater. Manuf. Process.201833161857186810.1080/10426914.2018.1532579
    [Google Scholar]
  18. YilbasB.S. Study of parameters for CO2 laser cutting process.Mater. Manuf. Process.199813451753610.1080/10426919808935273
    [Google Scholar]
  19. GulhaneU.D. PatkarP.P. ToraskarP.P. PatilS.P. PatilA.A. Analysis of abrasive jet machining parameters on MRR and kerf width of hard and brittle materials like ceramic.IJDMT201341515810.34218/IJDMT.4.1.2013.30320130401005
    [Google Scholar]
  20. Ramaswamy PillaiS. Reddy MadaraS. Pon SelvanC. Predication of kerf width and surface roughness in waterjet cutting using neural networks.J. Phys. Conf. Ser.20191276101201110.1088/1742‑6596/1276/1/012011
    [Google Scholar]
  21. RamliaR. AhmadR. GhaniJ.A. Kerf width optimization in wire-cut electrical discharge machine by using Taguchi Method.J. Teknologi.201259220921310.11113/jt.v59.2595
    [Google Scholar]
  22. KusumaA.I. HuangY-M. Performance comparison of machine learning models for kerf width prediction in pulsed laser cutting.Int. J. Adv. Manuf. Technol.20221237-82703271810.1007/s00170‑022‑10348‑3
    [Google Scholar]
  23. KumarJ. Optimization and measurement of kerf width and surface roughness of AISI 316L.Forces Mech.2022610007110.1016/j.finmec.2022.100071
    [Google Scholar]
  24. ModiM. AgarwalG. ChaugaonkarS.D. BhatiaU. PatilV. Effect of machine feed rate on kerf-width, material removal rate, and surface roughness in machining of Al/SiC composite material with wire electrical discharge machine. Strojnícky časopis -.J Mech Eng2020701818810.2478/scjme‑2020‑0008
    [Google Scholar]
  25. MadićM. MarinkovićV. RadovanovićM. Optimization of the kerf quality characteristics in CO2 laser cutting of AISI 304 stainless steel based on Taguchi method.Mechanics201319558058710.5755/j01.mech.19.5.5529
    [Google Scholar]
  26. VasileskaE. PacherM. PrevitaliB. In-line monitoring of focus shift by kerf width detection with coaxial thermal imaging during laser cutting.Int. J. Adv. Manuf. Technol.20221187-82587260010.1007/s00170‑021‑07893‑8
    [Google Scholar]
  27. SilvioG. EricaM. GianlucaR. VincenzoT. Experimental investigation of industrial laser cutting: The effect of the material selection and the process parameters on the Kerf quality.Appl. Sci.20201014495610.3390/app10144956
    [Google Scholar]
  28. GubencuD.V. OprișC. HanA.A. Analysis of Kerf quality characteristics of kevlar fiber-reinforced polymers cut by abrasive water jet.Materials2023166218210.3390/ma16062182 36984062
    [Google Scholar]
  29. DubeyA.K. YadavaV. Laser beam machining—A review.Int. J. Mach. Tools Manuf.200848660962810.1016/j.ijmachtools.2007.10.017
    [Google Scholar]
  30. SargarT. JadhavA. KumarG.N. Comparative study of process parameters on dross properties by laser machining of AISI 316L material.Mater. Today Proc.202310.1016/j.matpr.2023.07.015
    [Google Scholar]
  31. SargarT. JadhavA. Kumar GautamN. Experimental study of heat affected zone for CO2 and fiber laser machining of SS 316L material.Mater. Today Proc.202310.1016/j.matpr.2023.08.322
    [Google Scholar]
  32. SobihM LiL CrouseP. Laser cutting.W0 Patent 2009007708A22008
  33. ColinW. Laser Cutting method and machine.EP Patent 4219062 A12023
  34. TanakaY KawaharaC FunakiK WatanabeH Laser beam machine, method for setting machining conditions and control device for laser beam machine.EP Patent 3871826A12021
/content/journals/meng/10.2174/0122127976341322241029085727
Loading
/content/journals/meng/10.2174/0122127976341322241029085727
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): BBD; CO2 and fiber laser machining; DOE; kerf width; optimization; RSM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test