Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Introduction

The findings of the study elucidated that as the porosity of copper foam diminished, the internal average temperature of the composite phase change material increased, concurrent with a reduction in the maximum average temperature differential and an enhancement in temperature homogeneity between the heating interface and the copper composite phase change material. Patent methods and models were applied to investigate this effect.

Methods

Under the filling rate of this experiment, the heat transfer mechanism of copper composite phase change materials (CPCMs) was mainly heat conduction.

Results

With the increase of porosity, the melting time of phase change materials shortened, and the change of natural convection ratio was more obvious. At the same melting time, the porosity decreased, and the pressure drop increased.

Conclusion

When the porosity was 94% and 96%, the pressure drop was 1425.34 Pa/m and 1222.65 Pa/m, respectively, which was 37.01% and 17.53% higher than that when the porosity was 98%.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976327017240729073233
2024-08-16
2025-09-23
Loading full text...

Full text loading...

References

  1. ZhaoF. BaiF. LiuX. LiuZ. A review on renewable energy transition under china’s carbon neutrality target.Sustainability2022142215006610.3390/su142215006
    [Google Scholar]
  2. ChavanS. GumtapureV. PerumalD.A. Performance assessment of composite phase change materials for thermal energy storage-characterization and simulation studies.Recent Pat. Mech. Eng.2021141758510.2174/2212797613999200708140952
    [Google Scholar]
  3. ZhangS. FengD.L. ShiL. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage.Renew. Sustain. Energy Rev.202113511012710.1016/j.rser.2020.110127
    [Google Scholar]
  4. ChavanS. GumtapureV. PerumalD.A. A review on thermal energy storage using composite phase change materials.Recent Pat. Mech. Eng.201811429831010.2174/2212797611666181009153110
    [Google Scholar]
  5. NieB. PalaciosA. ZouB. LiuJ. ZhangT. LiY. Review on phase change materials for cold thermal energy storage applications.Renew. Sustain. Energy Rev.202013411034010.1016/j.rser.2020.110340
    [Google Scholar]
  6. WuT. HuY. LiuX. WangC. ZengZ. SheZ. Heat transfer enhancement of finned copper foam/paraffin composite phase change material.Recent Pat. Mech. Eng.202215334035010.2174/2212797614666210901164157
    [Google Scholar]
  7. PawarV.R. SobhansarbandiS. Heat transfer enhancement of a PCM-porous metal based heat pipe evacuated tube solar collector: An experimental study.Sol. Energy202325110611810.1016/j.solener.2022.10.054
    [Google Scholar]
  8. RezaieB.A. MontazerM. In situ incorporation and loading of copper nanoparticles into a palmitic–lauric phase‐change material on polyester fibers.J. Appli. Polymer. Sci.201913634695110.1002/app.46951
    [Google Scholar]
  9. ZhaiY.P. DouY.Q. ZhaoD.Y. ChemInform abstract: Carbon materials for chemical capacitive energy storage.ChemInform201243210.1002/chin.201202205
    [Google Scholar]
  10. DineshB.V.S. BhattacharyaA. Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions.J. Energy Storage202028101190010.1016/j.est.2019.101190
    [Google Scholar]
  11. ZhuM. WangZ. ZhangH. Experimental investigation of the comprehensive heat transfer performance of PCMs filled with CMF in a heat storage device.Int. J. Heat Mass Transf.202218812258210.1016/j.ijheatmasstransfer.2022.122582
    [Google Scholar]
  12. ChiP.T. XieY.Q. YuJ.Z. Application of new type phase change energy storage devices on the refrigeration equipment.Adv. Sci. Lett.2012858859310.1166/asl.2012.2352
    [Google Scholar]
  13. LiC. LiQ. GeR. Enhancement of melting performance in a shell and tube thermal energy storage device under different structures and materials.Appl. Therm. Eng.202221411870110.1016/j.applthermaleng.2022.118701
    [Google Scholar]
  14. WangZ. ZhuL. ZhangH. Numerical study of heat transfer characteristics of phase change materials reinforced with porous media based on hybrid mesh.Sustain. Energy Technol. Assess.20246510374010.1016/j.seta.2024.103740
    [Google Scholar]
  15. KarthikeyanV. PrasannaaP. SathishkumarN. Selection and preparation of suitable composite phase change material for pv module cooling.Int J Emerg Technol2019104385394
    [Google Scholar]
  16. LafdiK. MesalhyO. ShaikhS. Experimental study on the influence of foam porosity and pore size on the melting of phase change materials.J. Appl. Phys.2007102808354910.1063/1.2802183
    [Google Scholar]
  17. SundarramS.S. LiW. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams.Appl. Therm. Eng.2014641-214715410.1016/j.applthermaleng.2013.11.072
    [Google Scholar]
  18. KarthikeyanV. SirisamphanwongC. SukchaiS. Investigation on thermal absorptivity of pcm matrix material for photovoltaic module temperature reduction.Key Eng. Mater.20187779710110.4028/www.scientific.net/KEM.777.97
    [Google Scholar]
  19. KarthikeyanV. SirisamphanwongC. SukchaiS. Thermal investigation of paraffin wax for low-temperature application.J Adv Res Dynam Control Sys20191114371443
    [Google Scholar]
  20. RekhaS.M.S. KarthikeyanV. Thu ThuyL.T. Efficient heat batteries for performance boosting in solar thermal cooking module.J. Clean. Prod.202132412922310.1016/j.jclepro.2021.129223
    [Google Scholar]
  21. ParidaA. BhattacharyaA. RathP. Effect of convection on melting characteristics of phase change material-metal foam composite thermal energy storage system.J. Energy Storage20203210180410.1016/j.est.2020.101804
    [Google Scholar]
  22. TaoY.B. YouY. HeY.L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material.Appl. Therm. Eng.20169347648510.1016/j.applthermaleng.2015.10.016
    [Google Scholar]
  23. ZhangZ. HeX. Three-dimensional numerical study on solid-liquid phase change within open-celled aluminum foam with porosity gradient.Appl. Therm. Eng.201711329830810.1016/j.applthermaleng.2016.10.173
    [Google Scholar]
  24. WangZ. ZhangH. DouB. ZhangG. WuW. ZhouX. Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials.Appl. Therm. Eng.202220111777810.1016/j.applthermaleng.2021.117778
    [Google Scholar]
  25. XuB. LiP. ChanC. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments.Appl. Energy201516028630710.1016/j.apenergy.2015.09.016
    [Google Scholar]
  26. BoomsmaK. PoulikakosD. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam.Int. J. Heat Mass Transf.200144482783610.1016/S0017‑9310(00)00123‑X
    [Google Scholar]
  27. MehtaK.A. RastogiA. AgrawalT. KotaM. AgrawalN. Composite phase change material and its method of preparation.US Patent 20230183539A12023
    [Google Scholar]
/content/journals/meng/10.2174/0122127976327017240729073233
Loading
/content/journals/meng/10.2174/0122127976327017240729073233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test